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ABSTRACT. In this paper, we propose a new method for proving the correctness of Logical
Equivalences (LEs) in a newly defined class called ES. Proving the correctness of LEs
is important for guaranteeing the correctness of Equivalent Transformation (ET) rules
made from LEs. ET rules are useful for constructing correct sequential and parallel
programs. The proposed method proves the equivalence of the declarative meaning of
two definite clause sets using a bidirectional search that starts from two different points
simultaneously. In the proposed method, the two definite clause sets at the starting points
are transformed by ET rules. The method can generate ET rules that are essential for
advancing the proof along with the general unfolding rules that are given before computing
the proof. Class ES is a superclass of the classes proposed in past studies and therefore
covers the LEs they contain.
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1. Introduction. In Equivalent Transformation (ET) programming [2], a program is a
set of ET rules, each of which replaces one definite clause set with another while pre-
serving the declarative meaning of the original clause set. Methodologies for automatic
construction of sequential and parallel programs by ET programming have already been
proposed [1, 3], and an e-learning system for programming education has been developed
using ET rules [10].

ET rules can be made from logical formulas, and each of which is called a Logical
Equivalence (LE) [15] and describes an equivalence relationship between two conjunctions
of existentially quantified atoms under some specified preconditions. Miura et al. [13]
showed that various ET rules can be made based on LEs, while researchers such as
Chazarain and Muller [4], Flener [5], and Yoshida et al. [17] have proposed methods
for constructing programs from logical formulas and have demonstrated the efficacy of
logical formulas.

Methods that can prove the correctness of LEs are essential for guaranteeing the cor-
rectness of ET rules. Consequently, Miura et al. [12, 14] have proposed methods for
proving the correctness of LEs in specified classes. In this paper, we present an expanded
class that covers the provable range presented in past studies, and propose a new method
of proving the correctness of LEs in this new class. The class treated in this paper is
called £S.
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The new method proposed in this paper guarantees the correctness of LEs by proving
equivalence of the declarative meaning between two definite clause sets using a bidirec-
tional search. The bidirectional search starts from two different points simultaneously
and terminates with success if a meeting point is found. In the new method, the starting
points are two definite clause sets determined from an LE. To find the meeting point, the
two definite clause sets are successively transformed by ET rules. The ET rules perform
clause transformations until both clause sets are the same.

The proposed method gives general unfolding rules that are basic ET rules, before
computing the proof. If ET rules other than the given unfolding rules are needed for the
proof, new ET rules can be generated and used for transformation. To generate new ET
rules, the correctness of other LEs is proven by recursively calling the proposed method,
and new ET rules are made from the correct LEs thus proven.

There are complex LEs in which the same clause set cannot be found by simple clause
transformations by ET rules. We prove the correctness of several complex LEs by intro-
ducing induction into the proof method. Proof of correctness is computed by dividing the
proof into a base case and an inductive step. In the inductive step, a special ET rule,
called an induction rule, is used for the clause transformations.

The remainder of this paper is organized as follows. Section 2 formulates the new class
ES of LEs and defines the correctness of the LEs in £S. Examples of LEs in this class
are also presented. Section 3 defines ET rules and presents examples of ET rules. Section
4 outlines the new method of proving the correctness of LEs in £S. In Section 5, we give
a concrete example of LEs, and prove the correctness of a given LE using the proposed
method. Section 6 explains the nondeterministic processing executed in the proposed
method. Section 7 discusses the usefulness of the proposed method and compares it with
other approaches.

2. Logical Equivalences and Correctness.

2.1. Logical equivalences. The LEs considered in this paper are of the form
Vﬁ(ﬂylé‘l < 35252),

where £ and & are conjunctions of atoms, v, and v, are, respectively, sets of variables
in & and &, and 7 is the set of all variables in £ and &, that does not include variables
in 77 and Ty. This class of LEs is called £S. When no confusion is possible, 7 is often
omitted. We assume that £ and &£, are written as sets of atoms.

For example,

(1) Yixy Fpryp{rev(X,Y), rev(Y, X)} < {list(X)})
(2) V{Y,Z,V,W}(H{X}{app(Xv [Y]a Z)a app(v, [W]v X)} < {app(V, [Wa Y]a Z)})

(3) Vixywy Gz {app(X, Y, Z2), rev(Z, W)} < Ipgy{rev(X, P), rev(Y,Q), app(Q,
P,W)})

are LEs in £S, where rev(z, y) means that lists x and y are in reverse order, app(z, y, 2)
means that the concatenation of lists x and y is a list z, and list(z) means that x is a list.

2.2. Correctness of LEs.

2.2.1. Declarative meaning. Given a set D of definite clauses, the declarative meaning of
D, denoted by M (D), is defined as follows.

Definition 2.1. Let S be the set of all substitutions. Let G be all ground atoms. Given a
set D of definite clauses, Tp is defined by

Tp(G)={g|(H+ B)eD) & (0e€S)& (BICG) & (9=HO € G)},
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for any subset G of G. M(D) is defined by
M(D) = U=, [To]" (),
where [Tp]'(0) = Tp(0), [Tp]™(0) = Tp([Tp]™ (D).

2.2.2. Correctness of LEs. The correctness of LEs in £§ is dependent on background
knowledge D, which is a set of definite clauses. An LE V;(3;,&1 <> 33,E2) is correct with
respect to D iff M(D) is a model of V3(35,&1 <> F5,Es).

For example, let D be {cl, cly, cl3, cly, cls, clg}, where

cly zapp([], X, X) «

cly :app([A | X1, Y, [A] Z]) < app(X, Y, Z)

cs :rev([], []) «

cy:rev([A| X], Z) « app(Y, [A], Z), rev(X, Y)
cls - list([]) +

clg : list([A | B]) < list(B).

Then, an LE
V(3 {rev(X, Y), rev(Y, X)} < {list(X)})

is correct with respect to D since, for any ground term X, 3y {rev(X, Y), rev(Y, X)},
and {list(X)} have the same truth value.

3. ET Rules. An ET rule replaces a definite clause set with another while preserving
its declarative meaning with respect to background knowledge D, where the predicate
appearing in the head of the definite clause set exists neither in D nor in the body of the
clause set. A rewriting rule r is an ET rule with respect to background knowledge D iff
the formula

M(DUelsl) = M(D U els2)

is true for any definite clause sets cls1 and cls2 such that c¢lsl is transformed to cls2 by
r.
For example,

ry i rev(A, B) =
rs :list(A) = {A=11};
= {A=[B|C]}, list(C).

are general unfolding rules for the app, rev, and list predicates. Rule r; is applicable to
a clause set

cla: {ans(X) < app([L, 2, 3], [4], X)}.
By applying ry to cl4, cl 4 is transformed into

clp : {ans([1 | Y]) <= app([2, 3], [4], Y)}.
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4. Proving LEs in Class £S. This paper proposes a new method for proving the
correctness of LEs in Class £S. The method has the following features:

1. Computation by ET rules.

2. Bidirectional search (Section 4.1)

3. Use of induction (Section 4.2)

4. Generation of ET rules (Section 4.3)

4.1. Bidirectional search. A bidirectional search starts from two different points simul-
taneously and terminates with success when a meeting point is found. In the proposed
method, the starting points are two definite clause sets, which are subsequently trans-
formed by ET rules. Given ¥4(35,&1 < 35,E:), the proposed method of proving it is
outlined as follows:

1. Make a pair (S;, Sg) of two singleton sets of a definite clause from the LE:
SL = {P < 51}
Sr=A{P « &},
where P is an atom with a new predicate (ans is used in this paper) with variables
in v as arguments.

2. Make a new pair (S;, Sg) from the current pair by transforming one of Sy and Sg
by applying an ET rule.

3. If S, = Sg, terminate with success, otherwise go to Step 2.

In Step 2, there are two nondeterministic selections for (1) one clause from {S;, Sg}, and
@) one ET rule.

4.2. Induction and induction rules. Use of induction is often required to prove the
correctness of difficult LEs, where the proof of LEs is computed by dividing the proof
into a base case and an inductive step. In this paper, recursive variables are selected from
among variables on P in Sy and Sg. Recursive variables are selected nondeterministically.

An induction rule is made from an LE, and is used in the inductive step. Induction
rules are applicable to atoms that contain recursive variables.

For example, an LE V(I {rev(X, Y), rev(Y, Y)} < {list(X)}) is proven using
induction, where variable X is selected as a recursive variable. A substitution {X/[V" |
P~*]} is applied to the LE. Tag k shows that variable X is a recursive variable. An
induction rule

rev(P~*, Y), rev(Y, P~%), {isolated(Y)} = list(P~F)

is made from the LE, where an atom with the predicate isolated is made of an existentially
quantified variable Y in the left-hand side of the LE.

4.3. Generation of ET rules. It is difficult to prepare all ET rules that are necessary
for the proof of LEs prior to the start of proof computation. The proposed method allows
ET rules to be generated while the LEs are being proven. We believe that generation of
ET rules is useful for bringing S; and Sg into closer form.

For example, consider the transformation of the following set:

Sy = {ans(A, B, C) « list(C), app(A, [B, C)}
The following rule is useful because it removes the [ist atom from the body:
list(C), app(A, [B], C), {isolated(C)} = app(A, [B], C).

It is preferable to generate this rule in the course of the proof because it is difficult to
predict when app(A, B, C) and list(C) will appear in the body, before transforming S,
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TABLE 1. Clause transformations for the proof of rev-last problem

‘ Transformations of S5} | Transformations of S5}
s1 t {ans([],A) < rev([],[4 ]| B])} s3 1 {ans([],A) < last([],A)}
4 Apply 4 Apply 73
s2 : {} sqg ¢ {}
‘ Transformations of SB?2 | Transformations of S532 ‘
s {ans([A], B) < rev([A],[B | C])} Sg {ans([A], B) + last([A], B)}
4 Apply { Apply 73
s¢ : {ans([A],B) < rev([ ], D),app(D,[A],[B | C])} || si0 {ans([A], A) <}
4 Apply 7
st + {ans([A], B) + app([ ],[A],[B | C])}
4 Apply 2
sg : {ans([A], A) «+}
| Transformations of Sfll || Transformations of szz
s {ans([4,B|C~*],D) + s1s : {ans([A,B|C~*],D) «
rev([A, B | C~*],[D | E])} last([A, B | C~*], D)}
UApply ri =11 =719 = rog =519 =511 =19 =7 J Apply rg
s12 ¢ {ans([A,B],B) «+ s19 & {ans([A,B| C~*],D) + last([B| C~*], D)}
ans([C,D | E~*], F) 4 Apply 75
<_app(Ha [C},I),app(G, [D],H),TeU(ENk,[F | G])} S20 {ans([A7 B]aB) —
| Apply 73 ans([C, D | E~*], F) « last(E~*, F)}
s13 ¢ {ans([A,B],B) «+
ans([C, D | E~¥], F)
« list(H),app(G, [D], H),rev(E~*,[F | G])}
4 Apply 4
s14 ¢ {ans([A,B],B) «+

516

S17

S15 -

ans([C,D | E~F], F) « rev(E~* [F | G]),app(G,[D], H)}
U Apply r3
{ans([A, B], B) +
ans([C,D | E~F], F) « rev(E~F[F | G)),list(G)}
UApply re =1y =1y = rg =1 =1 =17
: {ans([A, B], B) +
ans([C,D | E~*, F) « rev(E~*,[F | H])}
4 Apply R;
1 {ans([A, B], B) +
ans([C,D | E~F], F) « last(E~*, F)}

5. Example of Proof of LEs Using the Proposed Method.

5.1. Replacement of problem settings for the proof. In this section, we prove the
correctness of the following LE using the proposed method:

E. V(3 {rev(X, [Y | Z])} < {last(X, Y)})

In this paper, this proof problem is called the rev-last problem. Definite clause sets S,;;
and S,;» are made from E,.;. The body of set S,;; is composed of atoms in the left-hand
side in E,;, while set S,;; is composed of atoms in the right-hand side. The variables in
the ans atom comprise universally quantified variables in E,;.

Sin=A{ans(X, Y) < rev(X, [Y | Z])}
Siie = {ans(X, Y) < last(X, Y)}
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The proposed method uses induction to prove equivalence of the declarative meaning of
two clause sets S,;; and S,;5. To prove by induction, two tasks are executed in preparation:

1. Select some variables in the ans atom.
2. Determine the substitutions to apply to the variables.

Some clause sets are obtained by applying the substitutions to clause sets S,;; and S, 5.
Clause sets SZ and SZ) are obtained by applying an empty list [ | to variable X. Clause
sets S52 and SE2 are obtained by applying singleton list [A] to variable X. Clause sets
SE, and SE, are obtained by applying a list [A, B | C~*] to variable X. The proof for
Syi1 = Sy is replaced with the three proofs for SB = SBL §B2 = §B2 and S, = SE,.
In Section 6.1, we present methods for selecting variables in the ans atom and determine
substitutions for induction.

St = f{ans([], Y) < rev([], Y | Z])}
Stz = f{ans([ ], Y) « last([], Y)}

(
(
SB2 = {ans([A], Y) < rev([4], [V | Z])}
SE2 = {ans([A], V) < last([A], YV)}
(
(

St = {ans([4, B|C™], Y) +rev([4, B|C™], [V | Z])}
= {ans([A, B|C™"], Y) + last([A, B|C~*], Y)}

5.2. Transformations of clause sets by ET rules. This section presents the proof
of three problems: (1) the equivalence of clause sets SB! and SBL @) the equivalence of
clause sets S22 and SB2, and (3 the equivalence of clause sets S, and S%,. The proposed
method first proves problems (1) and (2), then problem (3). Problems (1) and (2) are for
the base case, while problem (@) is for the inductive step. The proof of problem (3) uses
induction; i.e., problem (3) uses an induction rule. As indicated by the shaded area in
Table 1, the same clause set is obtained from the clause sets of each problem, respectively.
The rev-last problem uses the set R,; of ET rules and an induction rule Ri:

(ri:rev(X, Y)={X=[], Y =[]}
= {X =[A | B]}, rev(B, C), app(C, [4], V).
rorapp(X, Y, Z)={X =[], Y =7};

~ (X =[A|B], Z=[4|C]}, app(B, Y, O).
ry :app(X, [Y], Z), {isolated(Z)} = list(A).
Ry = racapp(X, [Y], Z), list(Z) = app(X, [Y], Z).
rs:rev(X, Y), list(Y) = rev(X, Y).
re : app(V, [X], Z), rev(Y, V), {isolated(V)} = rev([X | Y], Z).
T rev(X Y) = rev(Y, X).
rs s last(X, V) = {X =[A], Y = A};
\ ~ (X =[4, B|C]}, last((B| C), V).

The isolated atom in rule r3 means that variable Z applies to a variable only and the
variable appears only in the third argument of the app atom, which is a body atom of a
clause set to which is applied rule r3. The isolated atom in rule r4 means that variable 1/
applies to a variable only and the variable appears only in the arguments written to be
V' with the head atoms of rule r¢ of the app and list atoms to which the rule is applied.
An induction rule Ri is needed in the transformations of clause set S, and so rule Ri
is made from the LE E,;. The number of elements in list C~* is smaller than that in list
[A, B | C™*] by two elements. Rule Ri is added to a set R,; of rules:

Ri: rev(C~F [V | Z]), {isolated(Z)} = last(C™F, Y).
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TABLE 2. Definite clause sets for base case and inductive step

| Clause set S, || Substitution H Clause sets made by applying Substitution
{Zfi;lf(X,Y) « rev(X,[Y | < Th = {X/[1}} = Aans([],Y) < rev([],[Y | Z])}
{ans(X,Y) + rev(X,[Y | Z])} x TE ={X/[A| B~*]} = {ans([A | B™*],Y) < rev([A | B~*],[Y | Z])}
Hans(XY) ¢ reo(X, V1 2D} x T = ((XADAX/ADY | {ans([LY) reo((LIY (2D}
{ans([A],Y) < rev([A],[Y | Z])}

{ans(X,Y) « rev(X,[Y | Z]))} x TE ={X/[4,B|C~*]} = {ans([4,B|C~*,Y)}
«rev([A, B | C™M, [V | Z])}}

| Clause set S, H Substitution || Clause sets made by applying Substitution ‘
{ans(X,Y) < last(X,Y)} x ']I‘Z ={{X/[1}} = {ans([],Y) < last([],Y)}
{ans(X,Y) < last(X,Y)} x ']I‘fl ={X/[A| B~*]} = {ans([A | B~*],Y) < last([A| B~*],Y)}
{ans(X,Y) < last(X,Y)}  x T = {{X/[IL X/} . A{ans([1Y) « last((LY)}

{ans(X,Y) < last(X,Y)} x 'H‘ﬁ ={X/[A,B| C™*]} = {ans([A,B | C~*],Y) «+ last([4,B | C~*],Y)}

The isolated atom in rule Ri means that variable Z applies to a variable only and the
variable appears only in the arguments written to be Z with the head atoms of rule Ri
of the rev atom to which the rule is applied.

In the computation by ET rules, if two or more applicable rules exist in set R,;, then a
clause set can be transformed by any rule selected from among the applicable rules. The
sequence of transformations of clause sets shown in Table 1 is one of various sequences for
outputting answers. In Section 6.2, we discuss methods for determining atoms that apply
to a rule and selecting a rule from among applicable rules. If ET rules for transforming
clause sets do not exist in set R,;, then new ET rules have to be made. In Section 6.3, we
explain how new ET rules that are applicable to atoms are made.

6. Nondeterministic Processing to be Executed in the Proof.

6.1. Determination of base case and inductive step. From the meaning of the LE
E,; (see Section 5.1) and the definition of the rev predicate, it is clear that variable X
applies to any list with zero or more elements. In this paper, the number of elements in
a list is viewed as the length of that list. Even when lists of any length are substituted
with variable X of definite clause sets S,;; and S,;2, a meeting point is always found from
the two definite clause sets S,;; and S,;5. Since lists can have infinite lengths, it is difficult
to prove the length of all lists one by one. This paper uses induction to prove that the
same clause set is obtained from definite clause sets S,;; and S,;» with respect to lists
of any length. To use induction, it is necessary that the base case and inductive step
are determined. The base case and inductive step are determined by applying a list to
variable X of definite clause sets S,;; and S,;5. The list for the base case is a fixed-length
list (such as [ ], [A], and [A, B]), while the list for the inductive step is a list without
a fixed length (such as [A | B] and [A, B | C]). The minimal length of the list in the
inductive step is longer than that of the base case by one element. For example, if the
list of the base case is an empty list only, then the list of the inductive step is a list
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Y(3gylrevix, [Y12)} =+ {last(x, V) )

Determine l

Sy ={ans(X,Y) «rev(X, [Y|Z])} == Sy ={ans(X, Y) « last(X, Y) }
Apply T8 ={{X/[]}} //';' Apply Tg = { {X/[J}{X/[Al}} (‘\t\\ Apply T = {{X/ [TH{X/[A] (X /A, BI}}}
TR={X/[A|BY} rZ T={X/[A B|CY} Sy TRE(X/[AB,C|DY}
Sit={ans((.) < rev((}.[Y2)} == s={ans((}.Y) < last(]. )} Si={ans((],Y) < rev(}[Y | 2) } == sg={ans((]Y) < last((]. V)}
i1 ={ans(A | B4, V) « rev(A| B, [Y | Z)) } == S}, ={ans(A|B*], ) « last(A|B¥, Y)} Sit={ans(AL Y) < rev((AL [Y] 2) } === Siz={ans(AL, )  last(AL, V)}
Se2={ans([A, B], Y) « rev((A, BL, [Y | Z)) } === Sy ={ans(A B], Y) « last(A, B], Y) }
Sh={ans((A, B, C| D™, Y) < rev((A, B,C| DM, [Y | Z]) } == Si,={ans((A B,C|D¥, Y) « last([A, B, C| D™}, Y)}
Sa={ans((],Y) < rev((L,[Y | Z)} === s ={ans(],Y) < last((}, )}
St = {ans(Al, Y) < rev((Al [V 2]) } == Si = {ans(A], ) < last(A], V)}
it ={ans([A B|CH, Y) <{rev([A, B|CH, [Y | 2|} == S}, ={ans((A, B|C¥, Y) «[ast(A, B|CH, V)|
ADPY [y o1 >y o [ —> T, —
l 1 A R Fnd R PR P Fnd PR P Aply 1y
sy, - {ans([A, B], B) «
ans([C, D | E™, F) « rev(E*, [F| G}
Apply 15 e Sy {ans([A, B| C],Y) {last([B | C™], Y)
~._ Generate new rule
551 {ans([A, B], B) « S Apply 1
ans([C, D | E™|, F) < list(H), app(G, [D], H)rev(E™, [F | G]) } N
Y
Apely T, 0, {ans((A, Bl B) <
5., {ans((A, B, B) « ans((C,D| E¥, F) ev(E* [F|G]) }
B ans([C, D | E™, F) « rev(E™, [F | G]),|Japp(G, [D], H)[}
&pply 15 - - aenerale new rule
s15: {ans((A, B], B) « < Apply 1
ans([C, D | E™], F) «{rev(E™, [F| G])| list(G) }
Apply ;=1 =T
Sy {ans([A, B], B) «
" s(C, D E, F) <ffev(E® [F [ HD)
Apply Ri
sy7: fans([A, B], B) « —_ Sy:fans((A B],B) «
ans(C,D|EN F) < lastEX P}  — ans([C, D | E¥, F) « last(E*, F) }

FIGURE 1. Transformations of definite clause sets S, and S%,

comprising one or more elements. The proposed method gives substitutions for applying
lists to variables of definite clause sets. Let T? be a substitution for the base case, and
let T be a substitution for the inductive step. Substitutions T and TZ, shown by the
shaded area in Table 2, signify that the base case is an empty list and a list comprising
one element, while the inductive step is a list comprising two or more elements. The
processing for induction is carried out as follows:

1. Determine a set V,; of variables selected from among the variables of an ans atom.
2. Determine sets T5 and T% of substitutions for applying lists to variables in V,;.

If two or more variables appear in an ans atom, then there are various patterns for
selection of variables. In this example, a set V,; is selected from among the following
patterns:

(X3 v (X v}

It is preferable to at first select from among patterns with few variables. There are

patterns of various combinations of sets TS and TZ, as exemplified below:
Pattern 1: T/ = {{X/[ ]}, TE = {X/[4 | B~}
Pattern 2. TJ] = {{X/[ ]}, {X/[A]}}, T}; = {X/[A, B|C™*]}
Pattern 3: Ty = {{X/[ ]}, {X/[A]}, {X/[4, B]}}, T} = {X/[A, B, C| D~}

Pattern N: T = {{X/[ ]}, {X/[Al}, {X/[A, Bl}.---}, T& = {X/[4, B, C, ---| 2*¥]}

rl

If the number of elements in TZ increases, the number of relationships of definite clause
sets that need the proof correspondingly increases (refer to Figure 1).



ET-BASED BIDIRECTIONAL SEARCH FOR PROVING FORMULAS 2007

6.2. Selection of atom set and application of ET rules. The sequence of trans-
formations of definite clause set S, shown in Table 1 is one of various sequences (refer
to Figure 1). The correctness of the proof is guaranteed no matter the path followed in
transformation of the definite clause sets. Various sequences exist because nondeterminis-
tic processing is included in the following two procedures for transforming definite clause
sets:

1. Select atoms from among the body atoms of a definite clause.
2. Select an ET rule applicable to the atoms.

The following state exists in between states s;; and si5 in Table 1.

¢ : {ans([A, B |C™*], B) < rev(C™*, []), app([], [4], D)
ans([E, F,| G|, H) = rev(G™*, [H [ 1)), app(J, [E], K), app(I, [F], J)}

In the transformations in Table 1, rule r; in set R,; is applied to the atom rev(C~*, []).
As a result, the following clause set is obtained from the above set by the application of
the rule.

{ans([A, B], B) < app([], [4], C)
ans([D, E, H | 1], E) < app([], [D], G), rev(I, J), app(J, [H], [])
ans([K, L | M™¥], N) < rev(M~*, [N | O]), app(P, [K], Q), app(O, [L], P)}

In state go, rev(C~*, []) is selected, but it is possible to select app([ ], [A], D), rev(G™*,
[H | I]), or app(J, [E], K). The atom app([ |, [A], D) applies a rule ry, rev(G~*, [H | I])
applies a rule 7, and app(J, [E], K) applies a rule r3. If two or more ET rules applicable
to atoms of a definite clause set exist, then the definite clause set can be transformed by
any rule nondeterministically selected from among them.

6.3. Generation of ET rules applicable to definite clause set. We can make new
ET rules that are useful for bringing two definite clause sets into a closer form. For
example, state sio shown in Table 1 applies rule r3. We can attempt to make rules like
rule r3 or the following rule:

ro :app(X, [Y], Z), app(P, [V], X), {isolated(X)} = app(P, [V, Y], Z).

Rule rg describes a procedure for folding app atoms without using variable X', and it can
be made from the following LE:

V(3xylapp(X, [Y], Z2), app(P, [V], X)} < {app(P, [V, Y], Z)})

The proposed method can prove the correctness of the above LE; thus, rule r9 can be
made by a generator that incorporates the proposed method.
Let us now look at the transformation of a definite clause set with state sio by rule rq.

s12 : {ans([A, B|, B) «
ans([C, D | E™*], F) < app(H, [C], I), app(G, [D], H), rev(E™*, [F|G])}

Rule rq is applied to two app atoms in the clause set; as a result, the clause set with state
s19 is transformed into the following set:

¢ : {ans([A, B], B) «
ans([C, D | E™*], F) « app(G, [D, C], H) ,rev(E™*, [F | G])}
By applying the following rule to state ¢;, state si5 is obtained from ¢;.

T : app(A, [B, C], D), {isolated(D)} = list(A).
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7. Concluding Remarks. This paper defined a new class £S for LEs and proposed a
method of proving the correctness of the LEs therein, thereby, expanding the provable
range of the correctness of LEs. The proposed method can prove correctness that cannot
be proven by the methods proposed in past studies [12, 14], and so we believe that this
paper has expanded the provable correctness range. Important features of the proposed
method are having introduced (1) a bidirectional search and (2) the generation of ET rules
in a method for proof of correctness. The method uses feature (1) to prove correctness
based on equivalence of the declarative meaning of two definite clause sets, and uses
feature (2) to generate new ET rules that can be used in the proof.

7.1. Application to program generation. Methods for generating programs are an
important area of research for program synthesis. Researchers such as Harada et al.
[6], Tkeda et al. [9], and Lu et al. [11] have proposed methods for generating C, C++,
and Java programs from specifications. C programs can be generated from ET rules,
and we have already developed a system for generating C programs. If ET rules can
be automatically generated from specifications, then C programs can be automatically
generated (indirectly) from specifications via ET rules. Therefore, methods for making
ET rules, such as the LE-based method [13], are very important. The method proposed
in this paper is closely connected to the methods for making ET rules. In particular, the
method is very useful for guaranteeing the correctness of ET rules made via the LE-based
method.

Methods for proving the correctness of logical formulas have been proposed before
[7, 8, 16]. However, these proposals were not focused on its application to program
generation, so the methods are not closely connected to program generation. As a result,
the proposals cannot be applied to problem settings such as those dealt with in this paper.

7.2. Comparing with current methods. The method proposed in this paper can
prove the correctness of more LEs beyond those that are provable by current methods.
Current methods guarantee the correctness of LEs by proving unsatisfiability of atom
sets [12]. The unsatisfiability of an atom such as & A —.A is proven for guaranteeing the
correctness of an LE Vi(35,&1 > 35,€:) using these methods. An atom set A is made from
a set & of atoms. To prove unsatisfiability, -.4 must be computed using ET rules. In
conventional studies, provable LEs are confined to LEs in the forms V(€ <> {eq(z,y) }UE)
and V5(€ < {false}), in which =4 does not become complex. The LE treated in this
paper has an existential quantifier on both sides. In addition, the right-hand side of the
LE is composed of a set of arbitrary atoms.

In the LE-based method, one ET rule is made from one LE. We surveyed four hundred
and eight (408) important ET rules written by students in programming education to solve
constraint satisfaction problems. The results of the survey indicated that the correctness
of LEs that link to one hundred and seventy-nine (179) rules, representing forty-four
percent (44%) of the total rules, can be proven by the proposed method. In contrast,
conventional methods can only prove the correctness of LEs that link to eighty-four (84)
rules. Thus, this paper has expanded the range of provable LEs and demonstrated that
many important ET rules can be made from LEs that can be proven by the proposed
method.
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