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ABSTRACT. This paper presents two fast decoupled sliding-mode controllers with hybrid
sliding surfaces for a class of under-actuated mechanical systems. The proposed method
not only exhibits a simpler structure compared with the existing decoupled control meth-
ods, but also eliminates the need for using fuzzy rules without degradation in performance.
A cart-pole system and translational oscillations by a rotational actuator (TORA) system
are simulated, and experiments on cart-pole system are carried out. Simulation results
and experimental results have shown a considerable improvement of the proposed method
in terms of a faster dynamic response as compared with the existing decoupled sliding
mode control methods.

Keywords: Sliding-mode control, Decoupled sliding-mode control, Fast terminal sliding-
mode control, Hybrid sliding surface

1. Introduction. Under-actuated mechanical systems such as cart-pole system, pen-
dubot and TORA are systems with fewer inputs than degrees of freedom. Under-actuated
mechanical system control is a challenging task in engineering practice, and many existing
control methods can be applied, such as sliding mode control [1-9], passivity based control
[10], fuzzy control [11, 12] and optimal control [13, 14]. Recently, a decoupled sliding-mode
control (DSMC) has been proposed for a class of under-actuated systems, and provides a
simple way to decouple a class of fourth-order systems into two second-order subsystems.
The auxiliary subsystem can be successfully incorporated into the main one via a two-
level decoupling strategy [2]. For controlling three-stage cart-pole system and one-stage
cart-pole system, an experience-based decoupling method with some mediate variables
is applied [1]. To avoid singularity, Bayramoglu and Komurcugil propose a nonsingular
decoupled terminal sliding mode control (NDTSMC) method [15], the convergence of the
two subsystems to their equilibrium points in finite time can be guaranteed, and this is the
same as TSMC [16]. However, the justification of the auxiliary sliding surface convergence
has not been further studied. In the field of chaos control problem, a decoupled adaptive
neuro-fuzzy sliding mode controller is studied [4]. For the TORA system, a decoupled
self-tuning fuzzy sliding-mode controller design approach is proposed. Simulation results
show that the states response converges faster than the previous reports [5]. Furthermore,
an alternative decoupling approach termed as single-input decoupled fuzzy-logic control
(SIDFLC) is also proposed as an improved version of the DSMC method [17].

In this paper, based on three given hybrid terminal sliding surfaces, a new fast decoupled
terminal sliding-mode control (FDTSMC) scheme is presented, and singularity problem is
eliminated by the carefully designed control law. Motivation of this work comes from the
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fact that many other past-proposed controllers usually use the same sliding surface in the
decoupled system design. Moreover, fuzzy rules are often employed in the time-varying
sliding surfaces design to obtain faster convergence, and it is not an easy task to get a
fine-tuning rule base [5]. In this paper, we remove the rule base and use the new hybrid
sliding surface to get a faster convergence. Furthermore, convergence speed of the main
sliding surface depends heavily on the auxiliary decoupled sliding surface’s convergence
speed; thus a fast reaching time sliding surface should be adopted to facilitate the overall
convergence speed. The proposed FDTSMC has following advantages. (1) It controls a
class of under-actuated systems well. (2) The convergence rate of the controlled system
is faster than NDTSMC by using hybrid sliding surfaces. (3) Fuzzy rules are no longer
needed in the FDTSMC design scheme; for the cart-pole system and TORA system, better
results can be obtained. (4) The simulations and experimental results are done under the
restriction that control input is bounded by 40 (N) for cart-pole system, and settling time
for states of TORA should be less than 30 (s) while the control input and the settling time
are not explicitly presented in the existing literature. The newly proposed fast decoupled
terminal sliding-mode controller may have potential application in many under-actuated
systems, for example, micro aerial vehicles such as quadrotor helicopter [24], vertical
takeoff and landing aircraft [23] and automated laboratory equipments’ controller design.

The organization of this paper is given as follows. In Section 2, the systems and
some preliminaries are presented. In Section 3, a fast decoupled terminal sliding mode
control (FDTSMC) scheme for a class of under-actuated mechanical system is presented.
Then, based on three different terminal sliding surfaces, two fast decoupled sliding mode
control methods are proposed and some properties are studied. In Section 4, the proposed
methods are used to control a cart-pole system and TORA system; simulation results are
presented and compared with the NDTSMC. Experimental results are also employed to
verify the effectiveness of the two fast decoupled terminal sliding-mode controllers. Finally,
the conclusion is provided in Section 5.

2. Problem Statement and Preliminaries. Consider the following system

T = T, (1)
iy = fi(x,t) + by(x, t)u(t) + di(t), (2)
T3 = Ty, (3)
Ty = fo(x, 1) + ba(x, t)u(t) + da(t), (4)

where x = [z1,To, 73, 74]7 is the state vector, fi(x,t),bi(x,t), fo(x,t) and by(x,t) are
nonlinear functions representing system dynamics, u(t) is the control input, d;(t) and
ds(t) represent external disturbances, |di(t)| < d,|d2(t)| < d and d > 0. Models of this
type can describe a great variety of systems. Most of them are under-actuated systems,
to name a few, under-actuated robot manipulators [21], translational oscillator with a
rotational actuator (TORA) [22], cart-pole system [1], the vertical takeoff and landing
(VTOL) aircraft [23], ball and beam system [25], and quadrotor helicopter [24].
System (1)-(4) can be partitioned as the following subsystem A

i‘l = X9, (5)

Ty = f1(x, 1) + bi(x, t)u(t) + di (1), (6)
and subsystem B

T3 = Ty, (7)

G4 = fo(%,1) + bao(x, u(t) + da(t). (8)
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The main target is to stabilize subsystem A (or B), it is also important to consider the
information from subsystem B (or A) as secondary, and a mechanism is needed to reflect
this information between subsystem A and subsystem B. Like the strategy proposed by
Zhang et al. [1] and Lo and Kuo [2], an intermediate variable z is utilized to achieve
this target. In this way, the subtarget of B (or A) is embedded to the main target
through the intermediate variable z. Both primary and secondary targets can be achieved
simultaneously.

3. Fast Decoupled Terminal Sliding Mode Control. To demonstrate the fast con-
vergence performance of the above mentioned fast decoupled sliding surface, we consider
the following three sliding surfaces:

s1 =%+ ANisig" (x — z) + Aesig”(x — 2) =0, (9)
So=d+x—z+ Msigh(x—2z) =0, (10)
§3 =@ + Aasig"(x — z) =0, (11)

where \; (i = 1,2) are positive coefficients, v; > 1, 1 < v < 2, sig”i(z; — 2) = |x; —
z|Yisgn(zy — 2), sgn(-) is the signum function, and z is an intermediate variable.

Example 3.1. The fast decoupled terminal sliding surface functions designed by (9) are
described in the following form.:

o1 = Ty + Misig" (x1 — 2) + Aasig”? (1 — 2), (12)
09 = T3 + A35197% (x4) + Agsig" (x4), (13)
where z is an intermediate variable and will be defined later, \; (i = 1,2,3,4) are positive
coefficients, 1 < ~; = Z—z (1=1,3),1<y= Z—i < 2(i = 2,4), where py, pa2, ¢1, g2 are odd

numbers, and z is a bounded oscillatory signal decaying to zero.

Remark 3.1. Let z = 0, the newly proposed sliding surfaces are an extension of sy =
&4 Aisig" (x) + Aasig?(x) and so = & + x + Aysig" (z) which are named as FTSM by
Yang and Yang [19], and the sliding surface sz is adopted from Bayramoglu [15]. (9)-(11)
are the modified version which can be obtained by incorporating an intermediate variable
z into the sliding surface, respectively.

Remark 3.2. By solving the differential equation oq =0, x1 — z will be reached in finite
time which is given by

|2 (0)] 1 EXO It
T, = dr, = 22 )\71
! /0 )\1(.1'1 — 2)71 + )\2(.1'1 — 2)72 1 !

F (1, nol ool —AQAfllxz(0)|”2‘71> ,
1= 72 1= 72

where x,(0) is the initial value of T — z at t = t, in the fast terminal sliding mode, F(-)

denotes Gauss Hypergeometric function [20], and the conditions of A1, Ay, 71, 72 induce

that F(-) will guarantee convergence. The results can also be verified by computer algebra

systems.

(14)

Now, setting the derivative of (12) to zero, it results

d’l = i‘Q + (5\1|1‘1 - Z|71_1 + 5\2|!L’1 - Z|72_1)(1‘2 - Z) = 0, (15)
where \; = \y; (i = 1,2). Substituting i, = fi(x,t) + by(x, t)u(t) into (15) and solving
for u(t), it yields

1 - -
ﬂ(t) = - fl(X,t) — ()\1|1‘1 - Z|71_1 + )\2|!L’1 - Z|72_1)(1‘2 - Z) . (]_6)
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Note that a switching control action is also needed to move the system states from an
initial point to the sliding surface. Therefore, the control input in terms of equivalent
control and switching control can be written as

u(t) = a(t) — kioy — kesig?(o1), (17)
where k; > 0,k >0 and 0 < p < 1.

Remark 3.3. Note that |x; — 2| > |x1 — 2| when the state x1 — z is far away from
zero. In this case, (12) can be approxzimated by sy = xo+ Nysig"(x1 —2). As x1— 2z closes
to zero, the dynamic is dominated by sy = xo + Misig" (xy — 2), from (15), we obtain

1.‘2 + 5\1|l‘1 — Z|71_1!L’2 = 5\1|!L’1 - Z|71_IZ.. (18)
The solution of (18) is given by
x2(t) _ 67X1f|$1fz\71_1dt (1‘2(0) + 5\1 /65\1f|a:1z71—1dt|x1 _ Z|7112dt> , (19)

where x5(0) is the initial value of xo(t). Apparently, xo(t) decays to zero if and only if
ry =z and z=0.
Remark 3.4. We can also define
01 =29+ 21 + )\gSig72(l'1), (20)
0y = x4 + (23 — 2) + A3s197% (23 — 2) (21)
as another sliding surfaces for subsystem A and subsystem B.
Fast decoupled terminal sliding mode control with hybrid sliding surfaces. In
Figure 1, we notice that both s; and sy have faster convergence rate than s;3. The usual
decoupled terminal sliding mode controller uses the same sliding surface in the subsystem
A and subsystem B. For example, the sliding surface s = A\ +x5 [5], and the nonsingular

terminal sliding surface defined in (11) [15]. Motivated by this, we adopt two different
sliding surfaces to implement the fast decoupled terminal sliding mode control scheme.

5,0
. 5,0
\ — - 5,01

time (sec)

FIGURE 1. Comparison of s; (y1 = 21/19,v2 = 7/3), s2 (71 = 21/19), and
s3 (y1 = 21/19) when 2 =0, Ay =1 and Ay =3

The fast decoupled terminal sliding surface functions with s; and s, (FDTSMC12) are
described in the following form:
o1 =9 + M\isig" (zy — 2) + Aasig” (zq — 2),

. 22
09 =x4 + A35197% (23) + g3, (22)
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where v > 1, 1 < A\ < 2 and 73 > 1. Consider a Lyapunov function

1
V= 50%. (23)

By Lyapunov theorem, we know that the system trajectories will be driven and attracted
toward the sliding surface and remain sliding on it until origin is reached asymptotically
if V' is negative definite. We have

V = 0'1(5'1
== 0'1(5,%2 + (5\1|1‘1 - Z|71_1 + 5\2|l‘1 - Z|72_1)(IL’2 — Z)) (24)
= 01 (f1(x, 1) + bi(x, u(t) + di(t) + (Mo — 270+ Xolay — 271 (29 — £)).

It can be easily shown from (24) that if u has the following form, V can be negative
definite:

u=10— Ksat(o1b(x,t)/P1), K > d/|bi(x,1)], (25)
where
~ ]‘ 3\ - \ - :
T kD [fl(x, t)+ (Ml — 27 4 Aofay — 27 (25 — 2)
+ ko + k2|01|p3i9”(‘71)} ) (26)
_ [ sign(@), iflal>1
sat(z) = { z, iffo| <10 27 Soto2/®:),

and @, is a positive design parameter.

When o1 = 0 and 25 = —\;sig" (21 —20) —A2sig"? (21 —20), ¥1 will reach the setting point
2o in finite time, where zy = z(¢,) and ¢, is the moment when oy = 0. From the definition
of saturation function (26), we can infer that z = 0o = x4 + A35i¢”(23) + A\yx3 = 0 when
z < ®,. The sliding surface o9 will reach zero in finite time which can also be seen in
Figure 1; thus states x3 and x4 will go to zero.

From the discussion mentioned above, we can deduce the following theorem:

Theorem 3.1. For the under-actuated system (1)-(4), the subsystem A is given by (5)-
(6), and the subsystem B is given by (7)-(8). The fast decoupled terminal sliding surface
functions are defined by (22). By introducing an intermediate variable z, both o1 and oy
converge to 0 if the control input u is given by (25).

The fast decoupled terminal sliding surface functions with s; and s3 (FDSMC13) are
described in the following form:
o1 =9 + M\isig" (zy — 2) + Aasig™?(zq — 2),
09 =4 + A3sig" (x3), (27)
where 71 > 1, 1 < v < 2 and 1 < 3 < 2. Similar to the case of fast decoupled terminal
sliding surface functions with s; and s,, the control input of the FDTSMC13 is given by
u=1u— Ksat(o,b(x,t)/Py),
1
bi(x,1)

U = — (5\1|1‘1 —Z|71_1+5\2|.'L'1 —Z|72_1)(1‘2 —Z)

(28)
- k10'1 - k2|01|p8ign(01) — fl(X, t) , & = SCLt(O'g/q)Z).

Similarly, we also have the following theorem:
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Theorem 3.2. For the under-actuated system (1)-(4), the subsystem A is given by (5)-
(6), and the subsystem B is given by (7)-(8). The fast decoupled terminal sliding surface
functions are defined by (27). Sliding surfaces o1 and oy will converge to zero if the control
input u is given by (28).

Proof: The proof of Theorem 3.2 is similar to the Theorem 3.1, and we omitted here.

4. Simulation Study. In order to verify the theoretical considerations and show the
effectiveness of the proposed control schemes, a cart-pole system and TORA system are
adopted and comparisons between the proposed method and the existing decoupled meth-
ods are presented.

4.1. Cart-pole system. The dynamic behavior of cart-pole system is given by (1)-(4),
and

mygsinT; — m,,x%L sin x; cos 11

t) = 29
filx ) L(4m;/3 —my, cos? 1) ’ (29)
3cos Ty

b t) = 30

1% 4) L(4my — 3m, cos® z1)’ (30)

hx.t) —4/3m,Lx3sin x1 + mygsin(2zy)/2 (31)

X —_=
2 L(4my/3 — my, cos? x) ’
4
by(x, 1) = (32)

4my — 3my, cos® xp’
where x1(t) is the angular position of the pole from the vertical axis, xo(¢) is the angular
velocity of the pole with respect to the vertical axis, x3(t) is the position of the cart, z4(t)
is the velocity of the cart, and L is the half-length of the pole. Mass of the system is
m; = m. + m,, where m, is the mass of the pole, and m, the mass of the cart. The state
variables z; and x are used to form the subsystem A (secondary target) and the state
variables 23 and x4 are used to form the subsystem B (primary target). In the simulation
study, the system state is assumed to be xo = [—7/6, 0,0, 0]7 and the following parameters
are used for the cart-pole system

m, = 0.05kg, m, = 1kg, L = 0.5m, |d\| = |do| < 0.0873, g = 9.81m/s".

The sliding surfaces for FDTSMC12 and FDTSMC13 are defined by (22) and (27), and
control laws are given by (25) and (28), respectively. In the simulation, the following
fine-tune specifications are used:

NDTSMC: G3 = G4 = 005, G5 = 5, Gg = 05, K1 = 6, kl = 2,
kg = 5,"}/1 = Y2 = 19/21
FDTSMC12 )\1 == 5, )\2 == 1, )\3 == )\4 == 0.5,K1 == 5, kl == 2, kg == 5,
(I)l = 5,(I>z = ]_0,’)/1 = Y3 = 21/19,’}/2 = 7/5,p: 5/7
FDTSMC13: )\1 == )\2 == 5, )\3 == 08, Kl == 5, kl == 10, k2 == 8, q)l == 5,
®, =10,y =3 = 21/19, 70 = 7/5,p = 5/7.

Comparing the control law of the NDTSMC, FDTSMC12 and FDTSMC13 for the cart-
pole system, the states of the cart-pole system are depicted in Figures 2(a)-2(d). Both
the convergence speed of FDTSMC12 and FDTSMC13 are faster than NDTSMC. As
we observed in Figure 3(b), the effort of FDTSMCI12 is a little bigger than NDTSMC,
and FDTSMC13 has some overshot. We can see the newly proposed methods obtain

better results even the fuzzy rule based approach is not employed. Here, we also need to
emphasize that all the simulation limits the control effort in the range —40 N to 40 N,
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since this is more applicable to the real practice. The sliding surfaces are shown in Figure

3(a).

4.2. TORA system. TORA system was introduced by Wan et al. [18], and has been
extensively used as a test bed for nonlinear controllers, mainly for passivity based ap-
proaches [10]. The dynamics of the TORA can be described as follows:

xr1 = T,

i‘Q = —x + ESiH$3 + Fd,
T3 = X4,

. €COS T3

Ty =

1 — €2cos? 25

(z1 — (1 + 23) sinzs — Fy) +

(33)
u
1 —€2cos?ay’

where € = 0.1, x3 is the rotation angle which is defined as our main target, F; represents
disturbance force acting on the cart and u is control input. The sliding surfaces for the
FDTSMC12 and FDTSMC13 are given as below respectively

01 = X9 + )\18Z.g71
09 = T4 + )\3Sig73

01 = Ty + A\ysig"
Oy = T4 + A3sig7?

. . . . .
0 10 20 30 40 50 60
time (sec)

(a) Response of states z1 and o

50
5,0

. . . . .
10 20 30 40 50 60
time (sec)

(c) Sliding surfaces of the subsystems A and B

NN SN

. . . . .
0 10 20 30 40 50 60
time (sec)

1) + Aoy,
Ty — 2) + \gsig"(z3 — 2).
‘Tl)a
T3 — 2) + \sig" (z3 — 2).
2 T T T T T
0
_ab x50
2(t)
o 10 20 20 20 50 60

(34)

(35)

time (sec)

. . . . .
0 10 20 30 40 50 60
time (sec)

(b) Response of states x3, z4 and the intermediate
variable z

u(t)
N

. . . . .
0 10 20 30 40 50 60
time (Sec)

(d) Control input

FIGURE 4. The NDTSMC control results for the TORA system



DTSMC FOR A CLASS OF UNDER-ACTUATED MECHANICAL SYSTEMS 2019
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FIGURE 5. The FDTSMC12 control results for the TORA system

The control input of FDTSMC12 and FDTSMC13 can be written as

(5\3|IL’3 — Z|73_1 + 5\4|.’L’3 - Z|74_1)1‘4 - fQ(X, t)

u=—
kiog + kosigf(o9)
- — Ksat(ogby(x,t), ®1), z = sat(o1/P,),
bQ(Xa t)
where
fo(x,t) = —ecoszi(z1 — (1 + x9)?) sinz, /(1 — € cos® 21), (37)
bo(x,t) = 1/(1 — €* cos® x1). (38)

Let the initial value of 2 be [1,0,7/6,0]T; the following fine-tune simulation parameters
are specified:

NDTSMC: G3 =G4 =0.05,G5 = 6,Gg = G7 = 0.05,Gg = 3,
Ki=2,0, =&, =1,7 =7 = 19/21.
FDTSMC12: Ay = A = 3,0 = 1, K = 0.8,k = ky = 0.5, &, = 1,
S, =1,y =7v3=21/19,7=5/3,p=3/7.
FDTSMC13: A\ = 6,0 = Ay = L, K = 1, ky = ky = 0.5,®; = ®, = 1,
Y =73 =21/19,7=7/5,p=5/T.
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FIGURE 6. The FDTSMC13 control results for the TORA system

Figures 4(a)-4(d) show the simulation results of the NDTSMC, Figure 4(a) shows that
the state xy can reach the zero at about 37 s, x3 can reach the zero at about 38 s, which
is shown in Figure 4(b). From Figures 5(a)-5(b) and Figures 6(a)-6(b), the states exhibit
faster response than NDTSMC. Figures 4(c), 5(c) and 6(c) show the sliding surfaces of the
TORA system. It is evident that the plots obtained by the FDTSMC12 and FDTSMC13
confirm the behavior of the sliding surface functions converging to zero in finite time. The
control input in 5(d) and 6(d) obtained by FDTSMC12 and FDTSMC13 are smaller than
that of NDTSMC which is shown in Figure 4(d).

4.3. Experimental results of cart-pole system. In this section, we present experi-
mental results obtained on a portable cart-pole system. The experimental apparatus is
shown in Figure 7 (left). The model parameters used are shown in Table 1.

TABLE 1. Parameters for the cart-pole system

Parameter Value Units
L 0.175 m
Me 0.411 kg
my 0.078 kg
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FIGURE 7. Portable cart-pole system (left) and experimental results of
FDTSMCI12 for the cart-pole system (right)
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The apparatus has a 500 count/rev encoder fitted to each axis. The controller was
implemented in Simulink with the RTBlock which can be downloaded from matlab central.
Angular rates were estimated by a first-order difference with no filtering. We verify the
newly proposed controller with initial state x, = [0,0,7,0]” and the disturbances and
friction are omitted. The pole is manually raised to the vertical position, and the fast
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decoupled terminal sliding mode controller is activated. Position of cart-pole system using
FDTSMC12 is shown in Figure 7(a). Angular velocity of cart-pole system is shown in
Figure 7(b). Position and angular velocity of cart-pole system using FDTSMC13 are
shown in Figure 8(a) and Figure 8(b), respectively.

We can see in the figures that both the FDTSMC12 and FDTSMC13 can stabilize
the cart-pole system successfully. Moving range of FDTSMC12 is relatively larger than
FDTSMC13, which is due to the fact that FDTSMC12 (with sliding surfaces s; and
s7) has a faster convergence speed than FDTSMC13 (with sliding surfaces s; and s3).
There exists a little chattering around the vertical position with both the FDTSMC12
and FDTSMC13 which are shown in Figure 8(a) and Figure 8(b). However, the chattering
is small.

5. Conclusions and Future Work. Two fast decoupled terminal sliding mode control
methods using hybrid sliding surfaces are proposed for a class of under-actuated non-
linear systems. Hybrid sliding surfaces are utilized to get a faster convergence speed.
Compared with the existing decoupled terminal sliding control methods, this approach
offers a simplified structure, easy implementation and high precision control scheme. The
approach eliminates the need for using fuzzy rules, and has no degradation in perfor-
mance at the same time. Simulation and experimental results of a cart-pole system
with the proposed control methods demonstrate that the dynamic response is faster than
other nonsingular decoupled terminal sliding control methods. In addition, the effec-
tiveness of the proposed methods is also verified by TORA system. However, since the
proposed method is based on using a two-level decoupling control strategy, it is difficult
for the existing decoupled methods to extend to the higher-order under-actuated systems
where the order is higher than four. The newly proposed approach has the potential
application in the higher-order terminal sliding mode control problem, since the sliding
surfaces can be modified to the higher-order case, the modified sliding surface will be
$1 =&+ A\sig" (x1 — 2z1) + Aasig? (x1 — 2z3), where z; and 2y are the intermediate variables
for the other two subsystems. Our future work is to study the stabilization and swing up
problems of higher-order under-actuated system such as double-inverted pendulum and
its experiment implementation.
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