International Journal of Innovative
Computing, Information and Control ICIC International ©)2014 ISSN 1349-4198
Volume 10, Number 6, December 2014 pp. 2209—2220

A WORKFLOW FOR DATABASE REFACTORING

MARCIA BEATRIZ PEREIRA DOMINGUES, JORGE RADY DE ALMEIDA JUNIOR
WILIAN FRANGA COSTA AND ANTONIO MAURO SARAIVA

Polytechnic School
University of Sao Paulo
Av. Prof Luciano Gualberto, Trav.3, n.158, Sao Paulo, SP, 05508-010, Brazil
{ marciabeatrizcp; wilianfc }@gmail.com; jorge.almeida@poli.usp.br; saraiva@usp.br

Received December 2013; revised April 2014

ABSTRACT. The development and maintenance of a database are significant challenges
due to frequent changes and requirements from users. To follow these changes, the data-
base schema suffers structural modifications that, many times, negatively affect its perfor-
mance and the results of queries, such as unnecessary relationships, primary and foreign
keys created and strongly attached to the domain, with obsolete attributes or inadequate
types of attributes. The literature on Agile Methods for Software Development suggests
the use of refactoring for the evolution of database schema when there are requirement
changes. A refactoring is a simple change that improves the design, but it does not alter
the semantics of the data model or add new functionalities. This workflow has signif-
icant differences in relation to that proposed by Amblers, and its use brings significant
advantages in the maintenance of complex databases with large amounts of data. As a
case study, a relational database, used by an information system for precision agriculture,
was used. This system is web based and needs to archive data, retrieve information, and
respond to large geospatial queries.

Keywords: Evolutionary databases, Database refactoring, Database schema, Query
performance, BPMN

1. Introduction. The difficulty of giving support to the schema’s evolution has been
recognized as one of the main obstacles to updating information systems [10]. Studies
show that these difficulties have increased with the use of Web systems, where the changes
happen more frequently, and there is very little tolerance to errors and unavailable services.

Refactoring a database requires more work than refactoring an application’s source-
code; however, according to Fowler et al. [10], it can follow the same premises. It is
necessary to be concerned with all steps of the applications that use the database, to
perform changes without disregarding the user’s requirements, to preserve the existing
data, and to not make any changes to the semantics of the actual schema and maintain
the database integrity.

The techniques for code refactoring were proposed by Flower et al. [10] in the Agile
Methods for Software Development literature and were adapted for database by Ambler
and Sadalage [1,2]. Ambler and Sadalage defined refactoring as a small change to the
schema that improves its design but does not add functionalities or alter its informational
or behavioral semantics [2].

However, not all changes fit into that refactoring definition. The necessity of implement-
ing large changes in databases is very common. It implies choosing a set of refactoring
that represents the desired database final schema, providing the opportunity to achieve
the necessary planning to perform a large change. This set of refactoring requires previous
knowledge of the actual database, as well as its limitations and objectives. Ambler has

2209

2210 M. B. P. DOMINGUES, J. R. ALMEIDA JR., W. F. COSTA AND A. M. SARAIVA

shown which refactorings are possible as well as their tasks; however, he considers that
the planning of the execution of these refactorings should be performed in a sequential
manner. Although, if said refactoring were executed in a workflow, we can see that many
tasks could be performed in an independent manner, in parallel and combined with similar
refactoring tasks.

The main objective of this work is to propose a new workflow that applies to a set
of refactoring tasks in a database schema. The case study exposed here reinforces how
difficult it is to abstract the domain of the database model. This dependency of the
domain damages the model design and leads to problems that can negatively affect the
query performance. The database refactoring workflow applied in the case study aims at
the query performance gain and design improvement, but the objective of the case study
is to validate each activity of the workflow to show that it is correct and secure to apply
in any database schema.

The case study uses a relational database employed by an information system for pre-
cision agriculture. This system is web-based and needs to perform large data transfer to
graphics with geo-referenced information [13]. This database has many modeling prob-
lems in its schema, which suggests a refactoring process to improve query performance.
Here, we present some phases of the refactoring process, as well as its positive impact on
time consumption during query execution.

Materials and methods. A spatial database of an existing Precision Agriculture
Information Portal System was used to test the database’s refactoring workflow. A Post-
GIS extension was used to provide spatial objects for the PostgreSQL database in order
to store and query the information about location and mapping. The refactorings called
“Introduce Surrogate Key”, “Merge Column”, and “Introduce Index” were chosen from
Ambler’s Database Refactoring Catalog. In the proposed experiment, the costs and time
consumed for the queries were considered to compare the performance between the orig-
inal model and the refactored model. The tests performed included new codes in the
database function language (plpgsqq) for data insertion, selection, and cascade delete
operations of geographic data through geospatial queries.

Paper organization. Section 2 presents the research related to database refactoring,
database evolution and limits of the existing solutions. Section 3 presents the proposed
workflow. Section 4 is dedicated to show how an existing PA Information Portal System
was refactored to improve query performance and time results. Section 5 shows the results
of the experiment, and Section 6 presents our conclusions and final remarks.

2. Related Work. Ambler wrote a catalog of refactoring with 49 types of refactoring
divided into 4 types: architectural, structural, data quality and referential integrity [1,2].
Ambler discusses for each refactoring the motivations, implications and cautions for its
operation, showing the steps for the possible changes on the database. These steps were
adapted in this paper in order to develop the Refactoring Workflow. Some refactoring
from Ambler’s catalog require data replication. Ambler proposed a synchronous solution,
whereas Domingues et al. [8] proposed an asynchronous one.

On Ambler’s and Domingues’s techniques, there are limitations to automatize a group
of refactoring, once their process had only been tested on singular refactoring processes,
thus, their work did not foresee grouped tasks.

The tool developed by D’Souza and Bhatia [9] adopts a template design pattern to
make the database independent of the method. In this model, D’Sousa developed a tool
called “The Metadata Manipulation Tool”, which uses metadata to acquire the actual
data schema, including its primary and foreign keys. D’Sousa emphasizes the limitation
of working with generic databases and databases that answer to multiple applications.

DATABASE REFACTORING 2211

Boehm et al. [3] also used metadata to develop a tool called Squash (SQL Query Ana-
lyzer and Schema EnHancer), which visualizes the actual schema and analyzes modeling
problems that can be solved with the tool, followed by the development of queries in SQL
to be applied in the correction of the schema. The entire schema’s representation was
based in XML (eXtensible Markup Language). The tool measures queries execution times
after refactoring the schema and adding indexes. The work does not consider other types
of refactoring, but the developed tool is a good option for data schema analysis.

Chang et al. [5] proposed a database refactoring framework that analyzes the changes
to the database schema and the impact of these changes on the queries. The framework
defines a logical model of changes and tries to find and solve the model’s inconsistencies
and modeling problems. This work is a recommended step for the process of automation of
database refactoring. Chang formalizes the database refactoring problem using Predicate
Logic and emphasizes the necessity of amplifying the refactoring process to make it capable
of making decisions and to be more independent and uses the proposed process in a more
visual language.

Curino et al. [7] presents a tool called PRISMA, which helps DBAs (database admin-
istrators) to predict and evaluate the effects on the applications due to changes to the
database. It also executes the changes selected by the DBAs and saves all the changes
registries. Curino emphasizes the positive effects of refactoring on the database for queries
performance and the necessity of database evolutions using workflows.

Among the free and commercial tools, Liquibase [12], written in JAVA, works in any
database to track, manage and apply the changes on the database. All changes are stored
in a way that is easy to read and to track in a version controller. This tool is constantly
updated by the free software community to answer to new versions of databases; however,
there are still limitations for this tool in the case of geographic databases.

Table 1 compares the presented related works. None of the works presents a workflow
to execute a large change in a database. Two works from Ambler and Curino present

TABLE 1. Comparison of researches for database refactoring

Ambler | Domingues| D’Souza | Boehm | Chang | Curino | Liquibase

Automation No No No No Limited | No No

Generic databases | Yes Yes Yes Yes Yes Yes Yes

Concurrency control | Yes Yes No No No No No

Number of

refactoring Limited | Limited Limited |Limited |Limited|No No

per process

Data Replication Yes Yes No No No No No
Database

Tool No Evolution |No Squash |No Prisma | Liquibase
Manager

Language and JAVA JAVA

Strugctu%e No No Metadata XML No XML XML

Improvmg Database Yes Yes No Yes Yes Yes No

design

[mproving query’s No No Yes Yes Yes No No

performance

Changes’ history No No No No No Yes Yes

Workflow Yes No No No No Yes No

Refactoring Yes No No No No No No

Suggestion

2212 M. B. P. DOMINGUES, J. R. ALMEIDA JR., W. F. COSTA AND A. M. SARAIVA

a workflow, but both are limited and the workflow of Ambler presents many problems,
which we have solved. The advantages of our workflow against Amblers will be detailed
in the next section.

3. Proposed Workflow. This workflow starts from the original database schema, in
which the user needs to improve the query performance or the database’s design model.
The workflow receives information defined in this work as modeling problems as well as
information to execute changes according to the user’s requirements. Figure 1 shows the
workflow’s context transforming the initial schema in the final one, starting from the
users’ requirements and collected problems.

Ambler proposed the refactoring schema presented in Figure 2. To execute a set of
refactoring and to solve many problems from the previous workflow, we developed the
workflow presented in Figure 3. Below we describe each activity of our workflow.

1. Save original schema: Before all refactoring, it is necessary to back up the schema
that will be changed. This is necessary in any environment (development, test or
production). Even in the development environment, it is important to make a backup
in order to recover the changed schema.

2. Suggest a set of refactoring: The start of the process is the grouping of the user’s
requirements and a list of the problems identified in the production environment.
Both have to be translated to a refactoring list; this task has to be done by the
database administrator that knows the structure and the business’s domain. The
mapping of a requirement or the solution of a problem in a refactoring has great
influence from the database administrator, but the process makes it possible for an

Modeling problems and
User's requirements

Original
Schema

Ficure 1. Workflow transforming the original schema into the final schema

Write a Unit Test Run the tests

Verify that a ~ _Yes Choose the Right Deprecate the Original
refactoring is need ™ Refactoring Schema (Optional)
No
l Fail
" i Pass ™,
Fun the tests L DG Migrate the source data Mo o b d
access programis) schema
Fail J\ Pass i
}{ Version :\:1)|:Lr:1| your H Announce the refactoring }—’?

FIGURE 2. Ambler’s workflow

Ambler's Refactoring Process

DATABASE REFACTORING 2213

Refactoring Process

Select a

| " refactaring
[3]
f

Suggest a set of
refactoring

\,r‘_::—.‘ Save Original Schema H

J '| Identify the Entities]\‘

Frecute query before

Save query time before

| Choose the best
Entities arder

refactoring

H

refactoring

}

Execute a AN Fai
refactoring

Return the

original Schema

Success

{ Save all change history H

Execute query after
refactoring

H

is there refactoring yet to do? J(no

yes Show Refactaring Y.
\'\ Report

Save query time after
refactoring

FiGURE 3. The new workflow

administrator without much experience to make a refactoring task and verify if the
result was the one he expected.

. Select a refactoring: The administrator has to start by selecting a refactoring

task from a list of pre-selected refactoring tasks. The administrator only has to
make sure that the chosen refactoring task has all the necessary pre-requirements.
It is not necessary, at first, to choose the best execution order because the best order
will depend on the environment, on the database, and on the type of requirement or
problem that is being solved. Because the refactorings are executed in the environ-
ment (development, test, and production), the administrator will gain experience to
re-order the refactoring to save time.

. Identify the entities: Many refactorings require changes in different entities. In

those cases, the administrator, knowing the application, must list all entities involved
in the refactoring, and to execute the next task, also document the dependencies
between them.

. Choose the best entities order: At this moment, it is necessary to order the

entities that will be changed during the refactoring. The best order is the one that
allows all entities to be altered without losing their integrity, their data, and their
references.

. Execute query before refactoring: For each entity involved in the refactoring,

it is necessary to write queries that bring the data from their tables and also from
parent and child tables (the ones that refer and the ones that are referenced). One
possibility to automatize this task is to collect from the database manager log, for a
representative period, all queries made to the database. Identify the most common
and the most complex one that should be used in this task.

. Save query time before refactoring: Even if the refactoring does not have the

objective of improving the database performance, it is important to collect and
save the queries execution time before any refactoring is applied. The objective is to
measure the impact of the refactoring on the databases performance. If the objective
is not to improve the performance, it is still important to not make the databases
performance worse.

2214

8

10.

11.

12.

13.

M. B. P. DOMINGUES, J. R. ALMEIDA JR., W. F. COSTA AND A. M. SARAIVA

. Execute a refactoring: This task will change the original schema of the database
toward the expected result. Each refactoring will demand a very specific group
of actions. Thus, the administrator must read very carefully all the instructions
available on Ambler’s [2] refactoring catalog or Domingues’ [8] reorganized catalog,
in Portuguese. In BPMN, this activity is a subprocess of Figure 3.

. Return the original schema: This activity will only be executed if there is a
problem in the execution of the refactoring. To guarantee the safety and the integrity
of the data, the entire process will be canceled, regardless of how many successful
refactorings had been made.
Save all change history: All scripts executed in the database should be saved to
make their execution possible in other environments. In addition, it is important
to save all scripts to make an audit possible in the case of a future problem. The
complexity of this task can vary accordingly with its necessity. It can simply be an
act of protection from the database administrator. Thus, this task means to save
the script in a code version manager (e.g., SVN or Git). On the opposite extreme, it
can be necessary that before the previous task is executed (executing a refactoring)
to follow a change process in the company.
Execute query after refactoring: After the refactoring, the entire group of queries
to the database should be executed. The successful execution of this task means that
the refactoring was performed according to plans. It is possible that a specific query
fails due to the changes, but its execution is important. The error in this query
means that the refactoring has been made, causing the error. A group of errors,
at the end of the process, can be used to exemplify what the developers cannot do
anymore in their applications.

Save query time after refactoring: For those queries that were successful, it is

necessary to collect the execution time or any other measure system (e.g., execution

plan) to make it possible to verify the impact on the performance of the database.

Show refactoring report: This activity is executed when the whole set of refac-

toring defined on the workflow has been executed. The objective is to compile all

existing information in the workflow to write a report. The main information that
should be part of this report are:

e List of all refactorings made and their order;

e The scripts that changed the database;

e Scripts that have all the queries executed before and after each refactoring;

e Time consumed before and after those queries;

e A list of observations, comments and alerts of the problems that were found.

The objectives of this report are to make an analysis of the impact of the workflow,
to document everything that was done and to communicate the new database schema
to all involved in the process.

Advantages of the proposed workflow. The proposed workflow (Figure 3), offers

the
1

following advantages.

. It works with a large change, once it is concerned with the definition of a set of
refactorings and the execution of all of them. The previous model does not concern
itself with this aspect, even though it is documented that many refactorings depend
on others to make their execution possible.

The first task of the new process is to back-up the schema that will be changed. In
the previous process, this concern is defined in another moment, considering if the
environment is of production or not. The new process makes this task necessary in
all environments.

DATABASE REFACTORING 2215

3. Deals exclusively with the tasks of the database administrator, not with the appli-
cation developer, such as “modifying the external access program(s)”.

4. Instead of a generic task called “write a unitary test”, the new workflow considers
it is necessary to write a group of queries for all entities involved in the refactoring.
This group of queries can be obtained from the logs of the database manager.

5. The task collects the time consumed by a group of queries before and after the
refactoring. This concern with time consumed is very important to all databases.

6. Unifies the tasks “modify the database” and “migrate data” into a single task named
“execute the refactoring”. The refactoring documentation will inform if it is impor-
tant to worry about the migration of the data and the available options. This process
is important because only 20% of the refactorings demand data migration, according
to Domingues [8].

7. The generic task “announce a refactoring” is replaced by a well-defined task, which
is “divulge a refactoring report”. This report will be the basis for the decision if
the process was successfully executed and if it is viable to continue the refactoring
process in another environment.

8. The new workflow was written in BPMN, which makes it possible to validate, eval-
uate, improve, and automatize. These are characteristics that offer safety to the
process, because it is important to assure that everything executed in one environ-
ment can be repeated in another.

9. Concerns itself with the order of the involved entities. A practical problem of any
database change that involves more than one entity is which entity should be changed
first. This relevant question should be solved before the refactoring is executed.

10. Lastly, because the back-up was made at the beginning of the process and a large
set of refactoring could be executed, if any refactoring from this group fails, or any
problem that could affect the process occurs, there is the task of recovering the
previous schema and finalizing the process.

4. Case Study. A spatial database of an existing Precision Agriculture Information
Portal System (PA System) was used to test the database refactoring methods. For this
domain, Information Systems can improve farm management, helping to make the best
decisions based on all available information; maintaining, controlling, and optimizing
resources and returns; and preserving the natural environment [11]. Management and
decision support systems should be designed to meet the specific needs of the farmers [4].
Crop analysis is usually performed considering the specific characteristics of each plant
population, soil, crop and the climate conditions [14].

A PostgreSQL database was used with the PostGIS extension to provide spatial data
type and functions in order to store and retrieve information about location and mapping.
This database and its programed functions on PostGIS were used as part of the solution
for the development of processing web-services, publishing and the dynamic visualization
of agricultural data through a map server [13].

The system needs to archive, retrieve, and process data for future analyses without
neglecting aspects of the entity-relationship model [6]. The original PA Information Portal
System database model is presented in Figure 4, where there are many relationships that
describe the analyzed crop cycle stages [13].

The original database model was built with composite natural keys. There is a strong
coupling between the database model and the Precision Agriculture business domain and
some primary key columns, such as farm id, plot id, and prod id, that are present in
almost all relations. Figure 5 shows the tables farm, plot, productivity and productivity

2216

recommendation

(1,n}

(a,m)

recommendation_poly

(1,1} @ (1,n}

recommendation_formula

M. B. P. DOMINGUES, J. R. ALMEIDA JR., W. F. COSTA AND A. M. SARAIVA

farm an A

{1,1)

has

lysi {1n)

has

user_farm

(1,1}

&

(L,n)

.1 Plok (1) o (L)

&

{1,n)

"t [, [

© ©

(L,n)

(1,n)

plot_grid

(L1)

&

(1,n)

analysis_lab

analysis_lab_poly

analysis_lab_interpolated

productivty

[{} 1) t,n

productivity_filtered

(1,n)

e

(1,1)

(1,1}
(1.1}

measurements

(Ln}

(1.n)

(1,1) (1,1)

{1.n}

& &

productivity_raw

(1,n)

productivity_interpolated_poly

FIGURE 4. Original database model

raw data from the original model before refactoring. These tables represent the most

important database relations that can be present as:

e Plot: A plot contour represents a parcel of the farm that is used as a crop field. This
entity must have a polygon associated due to the fact that this information is used
for geoprocessing methods (e.g., machine productivity filtering and interpolation

methods).

e Farm: Represent the set of plots used as agricultural crop fields. It can be represented

by multipolygonal geometry (not mandatory).

Farm

productivity _raw

farm_id: INTEGER [PK]

Farm_name; YARCHARL1S0)

Farm_geom: GEOMETRY(MUL TIPOLYGOM, 4326)

plot

plot_id: INTEGER [PK]
farm_id: INTEGER [PK]

plat_name; WARCHAR150)
plat_date: DATE

plot_geom: GEOMETRY(MULTIPOLYEON, 4326)

produckivity

prod_id: INTEGER [PK]
plot_id: INTEGER [PK]
farm_id: INTEGER [PK]

-
|
|
|
|

prod_name: VARCHAR(150)
prod_crops: VARCHAR(150)
prod_start_date: DATE

R

prod_end_date: DATE

prod_id: INTEGER [PK]
plot_id: INTEGER [PK]
farm_id: INTEGER [PK]
prod_point_id: INTEGER [PK]

prod_point_prod_drymat: REAL
prod_point_rioisture: REAL
prod_point_plat_width: REAL
prod_point_distance: REAL
prod_point_gearn: SEOMETRY(MULTIPOLYGOM,4326)
prod_point_mac_speed: REAL
prod_point_date: DATE
prod_point_direction: REAL
prod_point_timelength: REAL
prod_point_shift s REAL
prod_point_shift_y: REAL
prod_point_culture_Flow: REAL
prod_point_grain_termp: REAL
prod_point_prod_moist: REAL
prod_point_prodyvaol_moist: REAL
prod_point_prodyval_drymat: REAL
prod_point_productiviey: REAL
prod_point_round: INTEGER.
Latitude: Double

Longitude: Double

FIGURE 5. Tables (farm, plot, productivity and productivity_raw) before

refactoring

DATABASE REFACTORING 2217

TABLE 2. Refactorings applied in the case study

Description Type Impact
Introduce surrogate | Multiple attributes to the primary Design and
Structural
key key performance
Add Foreign Key Guarantee that the attributed Referential Desion
Constraint values are preexistent Integrity &
Separate columns that together Design and
Merge Columns P . 08 Type 5
represent one information only performance
Introduce Index Enhance queries performances Architectural | Performance
farm_refact productivity_raw_refact
id: INTEGER [PK] id: INTEGER [PK]
farm_name: VARCHAR(150) prod_id: INTEGER. [Fk]
farm_geom: GEOMETRY [MULTIPOLYGON,4324) prod_point_prod_drymat: REAL
T rod_point_maistura: REAL
- _% prod_point_plat_width: REAL
prod_point_distance: REAL
plot_refact prod_point_geom: GEOMETRY (MULTIPOLYGON, 4224)
id: INTEGER [PK] prod_point_mac_speed: REAL
) prod_point_date: DATE
farm_id: INTEGER [FK] prod_paint_direction: REAL
plot_name: WARCHAR (1507 e orod_point_timelength: REAL
plot_date: DATE . . prod_paint_shift_x: REAL
nlot_geom: GEOMETRY (MULTIPOLYGON, 4324) orad_paint_shift_y: REAL

prod_point_grain_temp: REAL
prod_point_prod_moist: REAL
prod_point_prodvol_moist: REAL

productivity_refact

id: INTEGER [PK] prod_point_pradval_drymat: REAL

biot_id: INTEGER [FK] _'__J prod_point_productivity: REAL

brod_name: VARCHAR (150) prod_point_round: INTEGER
prud_crup .) VARCHAR (150 prod_geom: GEOMETRY (MULTIPOLYGON, 4328)

prod_start_date: DATE
prod_end_date: DATE

|
I prod_point_cultire_flow: REAL

FIGURE 6. Tables (farm, plot, productivity and productivity raw) after
refactoring

e Productivity: The productivity represents the harvest for a crop field. This entity
represents only the facts (e.g., harvesting start date). The real data points are
represented in the entities productivity raw and productivity filtered.

e Productivity_raw: The productivity raw entity has the data collected by the har-
vesting machine as obtained (i.e., without any type of data processing).

Based on the workflow presented in Figure 3 and all the problems of the original schema,
we have applied four refactorings described in Table 2.

After all refactorings of Table 2 have been completed, we have the final schema in
Figure 6.

5. Results. The refactoring called “Introduce Surrogate Key” was chosen from Ambler’s
Database Refactoring Catalog. In the proposed experiment, the time consumed for the
queries was used to compare the performance between the original model and the refac-
tored model. The tests performed included new codes in the database function language
(plpgsqq) for data insertion, selection, and spreading of deleted operations of geographic
data through geospatial queries.

To allow a direct comparison between original and refactored model, the consumed
time (ms) was measured. After the refactoring, the time consumed was, 15% shorter to
insert, 25% shorter to select, and 4% shorter to delete data for 189.730 rows, from both

2218 M. B. P. DOMINGUES, J. R. ALMEIDA JR., W. F. COSTA AND A. M. SARAIVA

original and refactored databases. In Figure 7 we highlight that the refactored database
performance was better than in the original, considering the time results.

In the present case study, we also performed the “Merge Column” refactoring in order
to merge the latitude and longitude columns of the product_raw table. To perform this
refactoring, a new geometry column, prod_geom, was introduced with the previous data
from the latitude and longitude columns.

The select operation after this merge was 20% better in terms of time consumed to
select the data operation than in the original model. The new merged column can be a
candidate to be indexed, but when “Introduce Index” refactoring was applied, the time
consumed to select the data increased by 3%. The results for “Merge Column” and
“Introduce Index” refactorings are shown in Figure 8.

Select Data Timings Insert Data Timings

55000
1

10000 11000 12000
|

50000
I

Time{ms)

9000
|

Time{ms)

45000
I

8000
o

40000
I
7000
|

T T T T
Original Refactored Qriginal Refactored

Model Model

FIGURE 7. Time results for insert and select data

Select Data Timings for Merge Column Refactoring Select Data Timings for Add Index Refactoring

Time(ms)
1150 1200 1250 1300
Time{ms)
1040 1060 1080 1100
L L
=]
m‘ |

1100
1
[+]

1020

1000
I

1050

J ——
T T T T
Original Refactored Original Refactored

p——

1000

Model Model

FIGURE 8. Time results for data selection after “Merge Column” and “In-
troduce Index” refactorings

DATABASE REFACTORING 2219

6. Conclusions. Database refactoring is a technique for restructuring an existing data-
base schema in order to respond to new system requirements, improve schema design or
improve query performance.

The present work aims to contribute to the existing research by proposing a new work-
flow for refactoring databases, which solves many of the problems of the previous workflow
and adds the possibility to execute a set of refactorings in the database.

We used the new workflow in the case study to execute a set of four refactorings.
Comparing the original and refactored database performance, higher scores were obtained
by the refactoring tasks. For the “Introduce Surrogate Key” refactoring, the measured
time consumed (ms) to insert, delete, and select data was 15%, 4%, and 25% shorter,
respectively. The “Add Foreign Key Constraint” refactoring improved the data integrity
of the schema, and the “Merge Column” improved the selection performance by 20%.
Only the “Introduce Index” did not result in an improvement. That is why we discarded
this refactoring process for this case study.

The proposed refactoring database workflow has many advantages, and it was success-
fully executed in the case study. Because in this workflow, a set of four refactorings could
be executed, all the performance data were collected before and after each refactoring.
Three of the refactorings were applied in all the application environments.

Work contributions. Based on what has been presented, we can list some of this
contributions of this work for the study of database evolution using refactoring:

e This work presents a defined process in BPMN to perform refactoring in database.

e The process has important activities that were not well-described in Ambler’s refac-
toring process, such as back-up of the original system, time consumed in query
collection before and after the refactoring, and the orders the entities involved in the
refactoring.

e The workflow considers a set of refactorings and instead of isolated ones. This set is
named in the work as a large change on the database.

e The validation of the workflow was performed in a database with a large volume of
data that had all the requirements to perform a large change.

e The performed refactoring in the case study presents performance gains to the sys-
tem.

REFERENCES

[1] S. W. Ambler, Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process,
John Wiley and Sons, 2002.

[2] S. W. Ambler and P. J. Sadalage, Refactoring Databases: Evolutionary Database Design, Addison-
Wesley Professional, 2006.

[3] A. Boehm, D. Seipel, A. Sickmann and M. Wetzka, Squash: A tool for analyzing, tuning and refac-
toring relational database applications, in Applications of Declarative Programming and Knowledge
Management, D. Seipel, M. Hanus and A. Wolf (eds.), Springer Berlin Heidelberg, 2009.

[4] R. Bongiovanni and J. Lowenberg-Deboer, Precision agriculture and sustainability, Precision Agri-
culture, vol.5, no.4, pp.359-387, 2004.

[5] S.-K. Chang, V. Deufemia, G. Polese and M. Vacca, A logic framework to support database refac-
toring, in Database and Ezxpert Systems Applications, R. Wagner, N. Revell and G. Pernul (eds.),
Springer Berlin Heidelberg, 2007.

[6] P. P. Chen, The entity-relationship model — Toward a unified view of data, ACM Trans. Database
Syst., vol.1, no.1, pp.9-36, 1976.

[7] C. Curino, H. J. Moon and C. Zaniolo, Automating database schema evolution in information system
upgrades, Proc. of the 2nd International Workshop on Hot Topics in Software Upgrades, New York,
NY, USA, pp.1-5, 2009.

[8] H. H. Domingues, F. Kon and J. E. Ferreira, Asynchronous replication for evolutionary database
development: A design for the experimental assessment of a novel approach, Proc. of Confederated

2220

[10]
[11]
[12]
[13]

[14]

M. B. P. DOMINGUES, J. R. ALMEIDA JR., W. F. COSTA AND A. M. SARAIVA

International Conference on the Move to Meaningful Internet Systems — Volume Part 1I, Berlin,
Heidelberg, pp.818-825, 2011.

A. D’Sousa and S. Bhatia, Refactoring of a database, International Journal of Computer Science
and Information Security, vol.6, no.2, pp.307-315, 2009.

M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, Refactoring: Improving the Design of
Existing Code, Addison-Wesley Professional, 1999.

R. Khosla, Precision agriculture: Challenges and opportunities in a at world, The 19th World Con-
gress of Soil Science, 2010.

Liquibase, MS Windows NT Kernel Description, http://www liquibase.org, 2013.

E. Murakami, A. M. Saraiva, L. C. M. Ribeiro Junior, C. E. Cugnasca, A. R. Hirakawa and P. L. P.
Correa, An infrastructure for the development of distributed service-oriented information systems
for precision agriculture, Comput. Electron. Agric., vol.58, no.1, pp.37-48, 2007.

F. S. Santana, E. Murakami, A. M. Saraiva and P. L. P. Correa, A comparative study between preci-
sion agriculture and biodiversity modelling information systems, Proc. of the 6th Biennal Conference
of the European Federation of IT in Agriculture, 2007.

