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ABSTRACT. In this paper, we address the problem of synthesizing static antiwindup com-
pensator for a linearized model of a high speed network TCP/IP router. Theorectically,
the class of systems considered are input saturating linear systems with known and con-
stant time delay in both the input and the states. The synthesis of these antiwindup
compensators is carried out on an LMI-based framework whose development is based on
the use of a Lyapunov-Krasovskii functional, a generalized sector condition, and a negli-
gibly constrained usage of Finsler Lemma. In practical terms, high speed networks need
routers with the ability to quickly return the packet queue size to the predetermined steady
state level, otherwise, quality of service criteria might be compromised. In this sense, we
perform the active queue management of a TCP/IP router on a high speed network in
order to improve its speed on returning to steady state levels of queue and transmission
rate. We compare our results by computing the minimization of the L2-gain upper bound
of the disturbances for which the time function of the queue length and TCP congestion
window size are assured to be bounded.
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1. Introduction. Since early 60’s researchers have been proposing techniques to com-
pensate the effects of the saturation on control systems. An extensive review can be
seen in [1]. In this sense, antiwindup compensation has been researched intensively but
only recently over time delay systems. It is well known that time delays are present
in many control applications and are also source of performance degradation and even
instability (see [2]). When a time delay plant saturates, the effects can be magnified
given the presence of time delays. This justifies the research of antiwindup techniques for
such systems. They can be grouped according to where the plant is time delayed: input,
states or output. In [3, 4], for instance, plants present input and/or output delays. In
[5-7], plants have only state delay. As far as we know, in [8] that it started to consider
plants delayed both in input and states. This combination of delay is likely to occur in
specially distributed systems with a remote saturating input. We have been researching
precisely this category, mostly motivated by its application on TCP/IP congested routers
(see [9-11]). From a theorectical perspective, all the cited works on antiwindup synthesis
for time delay systems are based on Lyapunov-Krasovskii functionals [14] and LMI condi-
tions [15], for they are efficient ways to determine the stability of the closed loop system.
Also, there are some peculiarities among these works. For instance, [8] does not consider
any type of disturbances on the plant. This prevents any direct comparison with [9-11],
where the antiwindup compensators are synthesised in order to minimize the Lo-gain of
the disturbance to the plant output. Nonetheless, our works have always been driven
towards reducing the conservativeness of the conditions that ensure both the existence
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of an antiwindup compensator as well as the closed loop stability of the whole system.
Specifically in this, present work outperforms the previous ones.

In practical terms, our work proposed a novel technique for active queue management
(AQM) of TCP/IP routers in high speed networks (HSN). It invites extension of the best
practices in this matter, which nowadays consists of a Random Early Detect (RED) [18]
technique consisting in making the packet discard probability a direct function of the
queue size. Out of it, as a default policy, most of the routers use drop tail, a technique
which has a similar performance to RED excepting that the router queue average size is
higher. We are looking forward to implementing our results in real routers for getting a
more indepth understanding of its benefits.

The paper is organized as follows. Section 2 states the problem investigated on a
theoretical approach. Section 3 presents the main development resources. Section 4
presents the results in forms of theorem. Section 5 casts an optimization problem of
interest for deriving the antiwindup compensator. Section 6 applies the result on the
AQM model of a TCP/IP router on an HSN. Section 7 comprises the concluding remarks.

Notation: For two symmetric matrices, A and B, A > B means that A — B is
positive definite. AT denotes the transpose of A. A(; denotes the " line of matrix
A. x stands for symmetric blocks; I denotes an identity matrix of appropriate order.
A(P) and A(P) denote the minimal and maximal eigenvalues of matrix P, respectively.
C. = C([-7,0], R") is the Banach Space of continuous vector functions mapping the
interval [—7,0] into R with the norm || ¢ ||.= sup || ¢(¢) [|. || - || refers to the

—7<t<0

Euclidean vector norm. C? is the set defined by C¥ = {¢ € C;;|| ¢ ||c.< v,v > 0}. For
v € R™, sat(v) : K™ — R™ denotes the classical symmetric saturation function defined as
(sat(v))u) = sat(vy)) = sign(ve)) min(uey, [ve ), Vi =1,- -+ m, where u,;) > 0 denotes
the ith magnitude bound. blockdiag(---) is a block diagonal matrix whose diagonal blocks
are the ordered arguments. He{A} = A + A”.

2. Problem Statement. Consider the following plant model

&(t) = Ax(t) + Agz(t — 7) + Bu(t — 7) + Byw(t)

y(t) = Cya(t) (1)
2(t) = C,x(t) + D,u(t)

where vectors z(t) € R", u(t) € R™, w(t) € N9, y(t) € NP, 2(t) € R! are the plant state,
input, disturbance, measured output and regulated output, respectively. The time delay
7 is assumed to be known and constant. Matrices A, Ay, B, B,,, Cy, C,, D, are of proper
dimensions.

The plant inputs are supposedly bounded.

—Upy S UG < Uggyy, Uoy >0, i=1,...,m (2)

The disturbance vector w(t) is assumed to be limited in energy, that is, w(t) € L,. Hence,
for some scalar 6, 0 < % < 00, one has

1

ol = [ w0l < ; ®)
0
In order to control system (1), we assume that the following controller has been designed

for stabilizing the system disregarding the control bounds given in (2)

i.(t) = Aze(t) + Apagxe(t — 7) + Bou,(t) .
Ye(t) = Cozo(t) + Deou(t) (4)
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where z.(t) € R, u.(t) € R and y.(t) € R™. Matrices A, A.q, B, C., D, are of proper
dimensions. The nominal interconnection of the controller (4) with the plant (1) is given
by u.(t) = y(t) and u(t — 7) = y.(t — 7). In consequence of the control bounds, the de
facto control signal to be injected in the system is

u(t — 1) =sat(y.(t — 7))
To mitigate the effects of saturation, we inject in the states of the controller an anti-

windup signal

Te(t) = Acwe(t) + Acgre(t — 7) + Beue(t) + Ep(ye(t)) + Fep(ye(t — 1)) (5)
Ye(t) = Cexe(t) + Deue(t)

where () = sat(-) — ()
Comment 1: This paper regards for antiwindup synthesis, so we are not concerned with
the computation of controller (4). We assume it has been previously computed and it

would ensure the global asymptotic stability of system (1) if u(t — 7) = y.(t — 7).
A:{ A 0],Ad:[Ad+BDC BC’] {

B,
B.C, A, 0 0

i:[lo],Dz:Dz, C.=[C.+D.D.C, D.C.], K=[DC, C.]

3. Preliminaries. Through the following matrices

=lvy

closed loop system (1), (5) is represented as follows

E(t) = AE(t) + Agl(t — 7) + 1B (ye(t)) + (B + IE)(ye(t — 7)) + Bow(t)
Z(t) = ng(t) + Dz"vb(yc(t))

where £(t) = [ 2(t)" z.(t)" |" and yo(t) = KE(t).

Initial condition of system (6) is denoted by function ¢¢, defined in the interval [—, 0]

T
¢e(0) = [ ()" ()" ]
= [ 6a(0)7 6. (0)T ", VO € [=7,0], (to, pc) € RF x
Let G, G, € R™(™+7¢) and the sets
S(uo) = {f(t) € §Rn+nc; (K(i) + G(i))f(t” < uo(i),z' € [1, m]}
(uo) ={&(t — 1) € R""; |(Ky) + Gry St = 7)| g, i € [1,m]}

over which the following lemma is stated.

Lemma 3.1. Generalized Sector Condition [12]: If £(t) € S(u,) and £(t — 1) € S;(u,)
then the relations

(6)

Y(ye(t) T (Y(ye(t) — GE(1) <0
Y(ye(t — 7)) Tr (V(yelt — 7)) — GoE(t — 7)) <0

are true for any positive diagonal T, T, € R™*™,

Lemma 3.2. Jensen Inequality [13]: For any scalar T > 0, positive definite matriz () €
R™™ and function x : [0,7] — R™ so that the integral is definite, and the following

inequality holds:
T/UTx(H)TQ:E(Q)dH > </07x(9)d9>TQ </0Tx(9)d9>
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Lemma 3.3. Finsler Lemma [15]: If there exists a matriz My € R™™  q vector z(t) €
R™ and a matriz B € RP*™ such that z(t)"Myz(t) < 0, Va(t) # 0| Bz(t) = 0 is verified,
then there exists a matrizx F € R™*P so that

M, +FB+ B"F" <0
In other words, both statements are equivalent.

Remark 3.1. Note that in case G = G, = =K, S(u,) = R"™™ and S, (u,) = R,

4. Main Results. Now we derive a synthesis framework for globally stabilizing static
antiwindup compensator based on a Lyapunov-Krasovskii candidate

V(t) = ()T PE(t) / £(0)"RE(0)do + / 05 (B)TQE(B)dBdo (7)
-7 Jit+

where P=P" >0, R=R" >0, Q = QT > 0 € R(ntne)x(ntne),

can be stated.

The following theorem

Theorem 4.1. If there exists symmetmc positive definite P, R, Q € R(ntne)x(ndne) g
trices Fia, Fyo, Fap, Fip € Rvtne)xnine) " po, Foo. G, G, € Rmxine) | Fr, € Roxnine),
scalars v, o and structured matrices Fii, Fyy, Fy, Fn € Rtne)x(ndne) = Fo €
gmx(ntne) phere

Flla 0 o F21a 0 o F31a 0 o F41a 0
Fu = [ Fip aInC:| P = [ Faup bfnc] o= [ Fsup Clnc:| Fn = [ Fuy dfnc]
F51 - [ F51a 6Im><n.3 ] ) F61 = [ F61a fIanC ] ) F?l = [ F?la quXnC ]

and parameters a, b, ¢, d, e, f, g are determined a priori, such that the following LMIs
are verified

[0 B B3 B ]<0 (8)

TQ F11 — F11 *
P~ Fy + (A +A)TFT - F}, < T(LAFﬁ: (ﬁ‘d;}%‘f)_ F],;%? )
—F3 + FL F31(A+ Ay) — Py + FL
21 = —F41 _AgFIS_'_FIE F41(A+Ad)—F42—A§F£+F2€
—Fy5, + ETITF ~TK + F5 (A + Ay) — Fsy — ETITF]
—Fy + (B+1IF)TFL Fo(A+ Ay — Feo + (B+1E)TF
—Fy +BLFY Fr(A+ Ay) — Fry + BUEL
0 C,
_ N N -
* *
—R + F32 + F?g *
5, Fy — ATFL + FL —1Q — FuAq+ Fyp — ATF] + Ff,

Fy, + ETITF]

Fry +BLF]
0

~T.K + Fgs + (B+1F,)TF}

—Fy Ay + Fyy + ETITF41
—FAq+ Feo + (B+1F)TF]
—FrnAg+ Fro + BTF]

0
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* *
* *
* *
* *
Y=\ o7 4 By iE, + ETTTFT «
FolE. + (B+1F)'FL 2T, + Fs /(B +1F) + (B+1F)TF]
FnlE. + BTF] Fn(B+1F,) + BLF]
D, 0
) . L
* *
* *
* *
Y= * *
* *
—CYIq +F71Bw —f—BZ;F% *
i 0 =1

then a static antiwindup compensation, E., F. € R"*™ as defined in (5) ensures that

1. when w(t) # 0, the trajectories of the closed-loop system remains limited for all
de(0) € C at any initial conditions;

2. [[z() 113 < YV(0) + yellw(®)|3;

3. ifw(t) =0,Vt >t >0, &(t) converges asymptotically to the origins.

Proof: Assuring that closed loop origin of system (6) is globally asymptotically stable,
through a Lyapunov-Krasovskii functional, implies in ensuring that V £(¢) # 0, V(t) > 0,
V(t) < 0. By construction, we ensure V(t) > 0, ¥ £(t) # 0. It remains to ensure V(t) < 0,
V &(t) # 0. Therefore, we define

Then, if J(t) < 0, it follows that

/T T(#)dt = V(T) - V(0) — a/Tw(t)Tw(t)dt 421 /Tz(t)Tz(t)dt <0 ()

v

Hence, from (7) the satisfaction of (9) implies that &(T)"PE(T) < V(T) < p~!, that
is, for all T > 0 the trajectories of the system do not leave the set (P, u~")
Rrtne ()T PE(t) < pt} for all w(t) satisfying (3). Moreover, for T — +oc (9) yields
12(1)||5 < yer||w(t)]|2 + ¥V (0), thus, finite.

Now, from Lemma 3.1, provided that £(t) € S(u,) and &(t — 7) € S;(u,) an upper
bound for J(t) becomes

T(t) < €T PE(t) + E&)TPE®) + E()TRE(E) — £(t — )T RE(E — 1) + TE(H) T QE(t)
— [ £O)"QE0)dI — aw(t) w(t) + %z(t)Tz(ﬂ — Yy ()" TKE(t)

t—1

- g(t)TKTT’QZ}(yc(t)) - 2w(yc(t))TT¢(yc(t)) - 77b(yc(t - T))TTTKg(t - T)
= &(t = 1)K T (ye(t — 7)) = 20 (ye(t — 7)) T (ye(t — 7))
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Applying Lemma 3.2 on the integral term on the right side of the above inequality and
defining fiT £(0)do = £(t) — &(t — 7), the following statement holds

" éwyroiman < —( t 5(9>Tde)T§Q( t é(e)cw)

t—r t—r t—7

Thus, one has

([ corw) Lo ([ com) = 0 e )" Latcw )
and J(¢) becomes bounded by
J(t) < EO)TPE() + () PE(E) + £(1)"RE(E) — £(t — 7)" RE(t — 7) + TE(1) " QE(t)
— (6() ~ €0~ M) ZQUE(D) — (1 — 7)) — aw(t) () + %z(t)Tz(t)
— (ye()) TKE() — £ K T(yelt)) — 20 (ye(t — 7)) Trib(yelt — 7))
— (Yot — 7)) TKE®E — 1) = £t = 7) K T (ye(t — 7)) = 20 (ye () T (we(t))

Define n(t) € R*(nHne)+2xm+da guch that

T

)= 07 €07 t-nT (GO —Et-7)" V)" byt —7)" wt)”

Since we want to ensure J(t) < 0, it suffices ensuring its upper bound as negative definite.
Once we can matricially represent it as n(¢)"M;n(t) < 0, we now look forward to ensuring
M, < 0. M; goes bellow.

[IQ 0 0 0 0 0 0 7
P IR 0 0 0 0 0
0 0 —irR 0 0 0 0 !
0 0 0 —-2Q 0 0 0 + (%) + =C/C,
0 -TK 0 0 -7 0 0 v
0o 0 -T.K 0 0 -7, 0
L0 0 0 0 0o 0 -2I,.

where C,=[0 C, 0 0 D, 0 0].

Clearly, we cannot achieve M; < 0, Vn(t). Thus, we apply Lemma 3.3, what shall
ensure M, < 0 only for the de facto trajectories of the closed loop system (6). We then
define matrix B as
g |1 A+AL 0 —Ay IE, B+1IF, B,

0 —TI I 1 0 0 0

and from Lemma 3.3 we now look forward to ensuring M; + FB + B'FT < 0.

Remark 4.1. The latter condition has not yet been cast in the related literature, and the
minimal constraining on the elements of F leads to potentially less conservative results.

We choose F to be
Fy F;
) ) ,1=1,...,7




CONTROL THEORY BASED AQM FOR HIGH SPEED NETWORKS 2031

with FB being

( )— Fia Fia —FiuAg+ Fip FII:EEC F11(B+! )
( )= Foy Fry —FyAg+ Fy F21!Ec F21(B+I )
( )= Fsy Fzy —F5A 4+ Fyy F31!Ec F31(B+I )
—Fn Fu(A+Ay) —Fp Fp —FuAg+Fyp F41!Ec Fy (B + IFC) FuBy,
( )= Fse Fsy —FsiAg+ Fy F51:!Ec F51(B+I )
( ) — Foo Foo —FeiAg+ Fip FﬁlIEc F61(B+I )
—Fn Fn(A+Ay) —Fry Frn —FnAg+ Fry FulE, F(B+1F,)

Let My = M, + FB + BTFT, with M, given by

[ 5Q — F1uy Fii(A+Ag) — Fiy Fio —Fi1Ag+ Fiy
P — Fy %R_F22+F21(A+Ad) Fao —Fo Ay + Fy
—F3 F5(A+ Ay — Fy —%R+F32 —F31 A+ Fyy
—Fu Fu(A+Ag) — Fi Fio —5Q+ Fp— FuAy -+
—F51 —TK—F52+F51(A+Ad) F52 —F51Ad+F52
—Fe1 Foi1(A + Ag) — Fyo =17 K + Fpo —Fs1Aq+ Fsy
| —Fn Fn(A+Ay) — Fry Fro —FnAg+ Fr
FL1E, F11(B+1F,) FB, ]
FylE, Fy (B +1F,) Fy B,
FyulE, F3 (B +1F,) Fy B,
. FulE, Fu(B+1F,) FuB, + (%) +2CIC,
~T + Fy1E, F5 (B +1F,) F;1 B,
FalE, -T.4+F4(B+1IF,)  F;B,
F1E, Fn(B+1F,) —2 4+ F;yB, |

Now, we apply Schur complement, spliting the term %CZTCZ. This leads us to LMI (8).
This concludes the proof of theorem.

5. Optimization: Minimization of Disturbance L,-gain. In this section we mini-
mize the Lo-gain upper bound of w(t) to z(¢). The initial conditions are null (¢¢(6) = 0,
Vt € [-7,0]). Hence, for a non-null positive bound on the Ly-norm of the admissible
disturbances £, the idea is to minimize the upper bound for the Ly-gain of w(t) on z(¢).
With § = 0, this can be obtained as follows

— min~, ; 10
y=miny, | min oo (10)

6. Application on the AQM of a TCP/IP Router on an HSN. In this section
we illustrate our methodology. We assume a TCP/IP router, whose model is given by
(1), has an AQM policy given by a PI controller, (4), borrowed from [16, 17]. To this PI
we add our antiwindup compensator, resulting in (5). The state variables are the TCP
congestion window and the router queue size. The input is the packet discard probability,
and the disturbance is User Datagram Protocol (UDP) traffic. Setup has an instantaneous
number of connections given by N = 6000, a maximum round trip time R = 0.2, a link
bandwidth capacity of C' = 375000, a steady state discard probability of py = 0.013, and
a queue size level of ¢o = 1750. For this setup, we assume u, = 0.987. Bellow it is given
the plant model explicitly.

_ _ -5 _
0.4000 6.6667 x 10 ] B= { 390.6250 ] B, = { (1) ]

A= 130000 x 10* -5 0
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4 _0,3000 _0'8001}’01’:@:[0 1], D,=0

A.=0, Acg=0, B.=1, C.=2.7654 x 1077, D, = 3.4567 x 107

For a specific time delay 7 = 0.1, corresponding static antiwindup compensator from (10)
is

E.=51373 x 10°, F,=2.4318 x 10°

The combination of parameters a, . . ., g was found by grid search, the obtained parameters
were ¢ = 0.50, b = 0.50, ¢ = 0.50, d = 0.50, e = —1.00, f = —1.00, g = 0, resulting in
Lo-gain of /ya = 0.2365, with v = 0.2421, a = 0.2311. The dynamic antiwindup from
[11] was unable to solve the plant proposed, so we could not compare the compensators.

In order to better visualize the results, we have performed a simulation where we apply
a step function with amplitude of 1 x 108, being applied to the plant in the interval
[5,15]. This shall be interpreted as a burst traffic of UDP packets 100Mbps, lasting 10
seconds. The response of the system is depicted in Figure 1 and is compared amongst
three different controllers: RED from [16], PI controller proposed in [17] and the same
controller along with the antiwindup compensator. The top graphic depicts the queue
size variation over the steady state level. The bottom graphic depicts the packet discard
probability variation over the steady state level.

Note that while the UDP traffic burst is happenning the queue size grows at uncontrol-
lable rates. The difference between the techniques manifests once the bursts ends, at 15s.
Then our method is more successful in reseting the queue level to its initial level, as well
as the discard probability. We can clearly see that the queue size tracks the steady state

Variation of a queue over average value

static AW
= = = without AW

30 40 50 60 70 80 90 100 110

Variation of discard probability over average value

P —— — ] — ——— Em mm o mmm

-1t i i i i i i i i i i o

0 10 20 30 40 50 60 70 80 90 100 110
Time [s]

FIGURE 1. TCP/IP router queue size X discard probability
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level much faster when our compensator is used. This encourages us to move forward on
our research as to make this available for router vendors as a firmware patch.

7. Conclusions. In this work we have presented a methodology for synthesizing static
antiwindup compensators for systems subject to time delays and input saturation. Condi-
tions in an LMI form have been proposed in order to compute an antiwindup compensator,
ensuring that the trajectories are bounded for Lo-norm bounded disturbances, while en-
suring the internal asymptotic stability of the closed loop system. We have applied the
results on a TCP/IP router model with AQM given by a PI controller and compared with
RED technique.
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