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ABSTRACT. A new adaptive controller is designed based on immersion and invariance
for TCSC. Compared with the available adaptive results in the literature, the proposed
adaptive approach does not invoke certainty equivalence, nor requires a linear parame-
terization and allows for prescribed dynamics to be assigned to the parameter estimation
error. By choosing an appropriate target dynamics and manifold, an adaptive state feed-
back controller has been synthesized constructively to ensure all signals of closed-loop
system are globally bounded.
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1. Introduction. Maintaining power system stability is one of the main concerns in
power systems. The design of an advanced control system to enhance the power system
stability margin so as to achieve higher transfer limits is one of the major problems in
power systems, which has attracted a great deal of research attention in recent years [1,2],
and the references therein.

Improvements in the power electronics technology and in the new area of flexible AC
transmission systems (FACTS) have considerable potential to enhance power system’s
transient stability [3]. Thyristor controlled series compensation (TCSC) is an important
member of FACTS family. It is installed in long-distance transmission systems for rapid
adjustment of the effective value of a capacitor in series with transmission line by making
use of the short-time over-load capability of the capacitor [4].

Usually, there are uncertain parameters that cannot be measured accurately in power
systems [5]. Recently, in [6] a robust adaptive modulation controller (RAMC) for TCSC
in interconnected power systems to damp low frequency oscillation is proposed. In [7],
the immersion and invariance (I&I) strategy has been used to stabilize the nonlinear
swing equation model of SMIB using a CSC. The method of I&I for stabilization of
nonlinear systems originated in Astolfi and Ortega [8] and was further developed in a
series of publications that have been recently summarized in [9]. The I&I method in [8]
was extended to adaptive I&I in [10]. The method relies upon the notions of system
immersion and manifold invariance and, in principle, does not require the knowledge of
a Lyapunov function. The resulting adaptive control schemes counter the effect of the
uncertain parameters adopting a robustness perspective. This is in contrast with some of
the existing adaptive designs that treat these terms as disturbances to be rejected [11-13].
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This paper studies the control problem of TCSC system by 1&I method. The damping
coefficient uncertainty of TCSC is considered to enhance the transient stability. The
adaptive 1&I controller is designed to achieve stability of rotor angle, speed, and voltage.
This paper is organized as follows. Section 2 gives an outline of immersion and invariance.
In Section 3, the model of the power systems is described as well as the problem statement.
In Section 4, we give main result to illustrate the performance of the proposed adaptive
control scheme. The simulation plot is given in Section 5. We wrap up the paper with
concluding remarks in Section 6.

2. Adaptive Stabilization via Immersion and Invariance. The main stabilization
ideas in Astolfi and Ortega [8] can be used to design adaptive stabilizing controllers for
classes of nonlinear systems with parametric uncertainties. To this end, consider the
system

= f(x,u,b), (1)
with state z € R", control v € R™, unknown parameter # € RY with an equilibrium
point x, € R™ to be stabilized, and define the augmented system

b= f(z,u,0), 0=w, (2)

where 0 € RY, and w € RY is a new control signal. The adaptive stabilization problem
can be posed, informally, as follows.
Find (if possible) a state feedback control law described by equations of the form

wzw(m,é),u:v(x,é), (3)
such that all trajectories of the closed-loop system (2)-(3) are bounded and
lim z (t) = 2. (4)

t—00

Note that, since f () is only partially known, it is not required that # converges to any
particular equilibrium, but merely that it remains bounded. The major result of [10] that
constitutes the basis of the paper is the following theorem.

Theorem 2.1. Consider the system (2) and a point ., € R*. p <n, £ € RF, ( € R"?P
and z € RY. Assume we can find mappings
a(§0) = Rrr, w(0) >R, c(0) =R, B(z) =R,
¢ (x,0) > R P, wu(x,(,z+0) = R™ w(x,(,z+0) = R,
such that the following hold.
(H1) (Target system) The system

{=al((,h), (5)
with state & € RP, has a globally asymptotically stable equilibrium at £ € RP and x* =
7 (£, 0).

(H2) (Immersion condition) For all £ € RP
on
f(ﬂ(f,e),c(f,e),e)28—50(5,9) (6)

(H3) (Implicit manifold) The set identity
{reR"[¢(2,0) =0} ={zeR"|r=n(0), {c R} (7)
holds.
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(H4) (Manifold attractivity and trajectory boundedness) All trajectories of
the system

0 <x,é) 0p <x,é)
C:Tf(x,u(m,g,z+9),9)+Tw(x,g,z+9), (8)
z'zw(x,(,z+9)+%f(x,u(m,§,z+9),9), 9)
i':f(xau(xJC7z+0)79)a (10)
are bounded and satisfy
lim ¢ (£) = 0, (11)
lim [ (x (1), 2 (1) +0) — 6 (= ()., 6)] = 0. (12)

Then all trajectories of the closed-loop system

:;E:f(m,u(m,qﬁ(éjLﬁ(x))A,éwLB(x)),9) (13)
92@(36,@5(@94-5(36)) ,9+B(x))
are bounded and satisfy (4).
Finally
Jim [z (t) =7 (£(2),0)] =0
and, ifqﬁ(x(()),é(())) =0, 0(0)— 60+ B(x(0) =0 and 2 (0) = 7 (£(0),6), z(t) =
7 (&(t),0), for allt > 0.

Definition 2.1. The system (2) is said to be adaptively 161 stabilizable with target dy-
namics (5) if (H1)-(H4) of Theorem 2.1 are satisfied.

3. Model and Problem Statement. Consider the following single-machine infinite-
bus system with TCSC shown in Figure 1. Let the generator be the constant voltage
source after the transient reactance. One-order inertial link being equivalent to the TCSC
dynamic process, the model of the system controlled by TCSC is expressed as follows [1]:

( (5 =W — Wy
. Wo . D
% w:ﬁ (Pm_Eq‘/;’thSCSIH(S_w_o(w_w0)> , (14)
\ ytcsc - _thsc (ytcsc — Ytcesco — U)

where ¢ is the angle and w is the relative speed of generator rotor; P, is the mechanical
power on the generator shaft; H is the inertial constant. Tj.. is the time constant of
TCSC; D and E, are damping coefficients and inner generator voltage, respectively; Vj is
the infinite bus voltage. ¥;csc = m is the admittance of the whole system. X
is the equivalent reactance of TCSC. X,y is the external reactance. u is the reactance
modulated input of TCSC. Other units without special instructions are standard per unit.
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FIGURE 1. A single-machine infinite-bus system with TCSC
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For SyStem (14)7 letting Ty = 5_50; Ty = W —Wo, T3 = Ytcsc — Ytescos where 50; Wo, Ytesco
are the initial value of corresponding variables, system (1) can be rewritten as follows:

1.‘1 = X9
: D w :
To = —EI‘Q + EO (Pm — Eq‘/; (IL’3 + ytcsco) Sin (IL’1 + (So)), (15)
by = o (5 + )
T3 = —T3 U
thsc
Usually, the damping coefficient D cannot be measured accurately in practical engineer-
ing applications [1]. Hence § = —D/H is taken as an unknown and/or uncertain constant

parameter that has to be estimated on-line in real time. Let k) = wo/H, ky = woE,V;/H,
and they are known constants. Then system (15) is readily transformed as follows:

.ft'l = T2

Ty = Oxo + k1 Py, — k2 (1‘3 + ytcsc()) sin (1‘1 + 60) (16)
h .

*s = T cse (_1‘3 * U)

4. 1&I-Based Adaptive Controller Design for TCSC.

4.1. Control objective. As mentioned earlier, x, denotes the operating stable equilib-
rium. We assume that x, is known to us and state the control objective as ‘to design a
control law u in order to make the system (16) asymptotically stable at x,, and to improve
the transient response of the closed-loop system’.

4.2. Controller design. We proceed to verify the H1-H4 of Theorem 2.1.
(H1) (Target system) The key idea is to immerse a low-dimensional system into a
high-dimensional one. Thus, we define the target dynamics as

Sr: {51 @ (17)
& = —l;sin (§1) S
where &1, & € R, l; > 0, I > 0 which are to be chosen. The target system (17) has an
asymptotically stable equilibrium at (0, 0).
(H2) (Immersion condition) Given the control objectives and our choice of target
dynamics, a natural selection of the mapping 7 is

.
&= & 1, (18)
\‘ 73 (67 9) J

where 73 (§,0) is a function to be defined. With this choice of 7 (£,0) and the target
dynamics above, Equation (6) becomes

3 1 0
06y + k1 P — K, (T3 + Yresco) sin (&1 +00) | = | 0 1 [ s
( ™ ™ —l; sin —1
7 (=73 4+ ¢ (,0)) 2 gg,e) 9 ggﬂ) 1sin (&) — 16

(19)
Next we choose 73 (£) and ¢ (&, 6) to satisfy the above equation as follows: the first row
of (11) is already satisfied. From the second row we have

0%+ kP +lisin(&) + b6
- k, sin (&, + do) Yeosco:

(20)

3
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From the third row we have

877'3 (f, 9) 871'3 (g,g)
o6 T g

(H3) (Implicit manifold) The manifold is M implicitly described by M = {x € R3|
¢ (x,0) =0}, with

c(&,0) = Tyese [ (—lysin (§1) — &) | +ms(€,0). (21)

01‘2 —+ klpm —+ ll sin (.CUI) + l21‘2

csc0- 22
k, sin (z1 + dp) tiesco- (22)

¢($;9) =T3 — T3 <[$1,$2]T,9) = T3

(H4) (Manifold attractivity and trajectory boundedness) The off-the-manifold
coordinates are ( = ¢ (x, é), z=0—0+ p (1,22) and straightforward calculations show
that

(—III3 + u) wry + ((;9—511‘2 + ll sin (1‘1)) Tro + (g_:fsz + l2 + é + 6) 1.‘2

(= Trese k, sin (z1 + do)
[(é + 6) Ty + k1 Py, + [y sin (xq) + l2x2] cos (1 + 0p) T2
* K2 sin® (21 + do) (23)
Z=w+ g—flxg + g—i (Oxy + k1P, — K, (3 + Yresco) sin (x1 + dg))
Tr = T2
To = —k,(sin (z1 + dg) — [y sin (z1) — loxe — 225,

By choosing control laws u and w as follows, and § = %x%

éxQ + [y sin (1) @9
k, sin (z1 + dp)

U= I3 +Ecsc{

3 X .
<§x% + 1y + 0) ((9 + gxg) Ty + k1P — k, (23 + Yreseo) sin (21 + 50))

k, sin (z1 + dp)
[(é+ﬁ)x 4 ey Py + Ly si z 5 (24)
9 1P 4 g sin (x1) + lozo | cos (1 + &) 22 }
— oG

k3 sin? (21 + do)
0 = —vya? (é + %x%) — @y [k1 Py — K, (T3 + Yresco) sin (x1 + dp)]
37 o 5\
o=A+¢ ?x2+12+9 :
The system (23) can be rewritten as

(%x% + 1y + é) ToZ

(=06~ k, sin (21 + do)
5= —yx3z (25)
.i'l = T2

.’ifg = —k2CSiH (fL’l + 50) — ll sin (.’Iil) — lQ.’L’Q — 2ZX9.
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4.3. Stability result. Finally, we establish boundedness of the trajectories of the closed-
loop system (16) with the control law (24) and the off-the-manifold coordinate z.

From (17) and (18), we can obtain that states x;, x5 are bounded and converge to
equilibrium z1,, z9,. We know that the off-the-manifold coordinate ( is bounded and
tli)rglog(t) = 0 from (25). Next we have z3 = ( + 73, from (20) we have 73 which is

bounded, and hence we can conclude boundedness of z5.
The above discussion on the control synthesis can be summarized in the following
proposition which is one of the main results of this paper.

Proposition 4.1. The system (16) with the control law (24) is asymptotically stable at
Ty

Proof: From the derivations above it is clear that the proposition can be easily proved,
but omitted here for brevity.

5. A Practical Example. In this section, we use a practical example which is taken
from [1] to illustrate the effectiveness and merit of our result. Simulation comparison of
the proposed design method and adaptive backstepping in [6] has been carried out by
using Matlab software and the parameters of TCSC system are taken from [1]:

D=1pu., H=T7s, vy =0.995 p.u.,

E, =1.067 p.u., P, =0.9 p.u,,

Ticse = 0.05s, wyg=1 p.u.,

0o = 0.7854 rad, ¥scsco = 1.1991 p.u.,

A=2,e=1,1,=4,1,=0.8,y=5.

The initial states are set [z (0), 25 (0), x5 (0)] = [0.2,0,0], 6 (0) = 0.

As seen from Figure 2, we achieve faster convergence speed and smaller magnitude with
the proposed method, so we can say that the proposed adaptive I1&I controller has better
performance than adaptive backstepping controller.
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Ficure 2. Comparative result for different controllers
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6. Conclusions. In this paper, the nonlinear adaptive controller is designed for TCSC
using adaptive immersion and invariance. The proposed method does not need Lyapunov
function, and it deals with uncertain parameter in a robustness perspective. This is
different from some of exiting methods relying on certain matching condition which treat
these terms as disturbances to be rejected.
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