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ABSTRACT. Although the modern coding technologies such as Turbo codes and low-
density parity-check (LDPC) codes have better correcting error performance, they do not
have enough theory basic on encoding and decoding. While polar codes have rich algebra
structures and excellent analysis properties because of using sequence mutual information
stream rules. In this paper, we summarize fundamentals of polarization and analyze the
reason that the polar codes can achieve the optimum performance, and also list some
new research direction of polar codes. These analyses and conclusions can provide theory
basis and new train of thought on current and proposed work.
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1. Imtroduction. Constructing of coding systems which performance are close to Shan-
non limit with low complexities of encoding and decoding algorithms is the central topic
in academic circles of the channel coding for many years. Polar coding is a new technique
introduced by Arikan [1] based on a phenomenon called channel polarization. Polar codes
are the first known codes that theoretically achieve the symmetric capacities of the binary-
input discrete memoryless channels (B-DMCs) with an explicit construction method and
low-complexity encoding and decoding algorithms. The well-established LDPC and Turbo
codes are also capacity-achieving codes with low-complexity encoding and decoding al-
gorithms, however, there is no rigorous proof of this fact for arbitrary B-DMCs. Despite
these nice asymptotical properties of polar codes on complexity and performance, it is
not yet clear if polar codes will have an impact on the practice of error-correction cod-
ing, where the performance at nonasymptotic regime is important. Another limitation of
polar codes to date is that their performance at short to moderate block lengths is dis-
appointing. There are two possible culprits: the codes themselves are inherently weak at
these lengths, or the successive decoder employed to decode them is significantly degraded
with respect to maximum likelihood decoding performance. These two possibilities are
complementary, and so both may occur.

In this paper, we first summary fundamentals of polarization, the construction method
of polar codes, the decoding technique using successive cancellation (SC) algorithm and
the reason that the polar codes can achieve the optimum performance. Then we review
and analyses the existing work on polar codes, and also we present some new research
direction of polar codes. These analyses and conclusions will provide theory basis and
new train of thought on current and proposed work.
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2. Channel Polarization and Polar Codes. Let W denote a B-DMC with input
alphabet X = {0, 1}, arbitrary output alphabet Y, and transition probabilities W (y|x),
x € X,y €Y. Let WY denote N independent uses of W.

2.1. Two important parameters. In [1], there are two channel parameters of sym-
metric B-DMCs which are defined as: the mutual information and the Bhattacharyya
parameter.

Definition 2.1. The mutual information of a B-DMC with input alphabet X = 0,1 is
defined as

W (ylz)
sW(y[0) + W (y[1)

1) = 3057 W) tog 1)

yeY zeX

Since that the capacity of a symmetric B-DMC equals the mutual information between
the input and output of the channel with uniform distribution on the inputs. I(W) is
a measure of rate in a channel. It is well-known that reliable communication is possible
over a symmetric B-DMC at any rates up to I(W).

Definition 2.2. The Bhattacharyya parameter of a channel is defined as

ZW) = VW (y0)W(y[1), (2)

yey

The Bhattacharyya parameter is a measure of the reliability of a channel since Z (W)
is an upper bound on the probability of maximum-likelihood (ML) decision error for
uncoded transmission over W.

Furthermore, note that the relation between I(W) and Z(W) is quantified as follows.

Proposition 2.1. For any B-DMC W, we have
w) >

2
log HT(W) (3)

(W) < /1= Z(W. (4)

From Proposition 2.1, it can be seen that the smaller value of the parameter Z (W),
the more reliable of the channel is. Furthermore, these two parameters are used jointly
to prove that channel polarization occurs.

2.2. Channel polarization. Channel polarization is an operation which produces N
channels {W](Vl) : 1 <4 < N} from N independent copies of a B-DMC W such that the
new parallel channels are polarized in the sense that symmetric capacities approach the
poles of capacity limits, i.e., either go to 0 (completely noisy channels) or 1 (perfectly
noiseless channels). The channel polarization operation consists of two phases: channel
combing and channel splitting.

(1) Channel Combining

In this phases, copies of a B-DMC are combined in a recursive manner in n steps to
form a vector channel Wy, where N = 2". The basic transformation used in channel
combining is shown in Figure 1. Two individual channels W are combined to create a
new super channel Wy with inputs uq, us, outputs y, y2, and transition probabilities

Wo(yi, yolur, uz) = W (yi|x)W (yalz2) (5)
= W(y1|ur & uz) W (y2|us). (6)
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FIGURE 2. Recursive construction of Wy from two copies of Wy,

Since the linear transform between (U, Us) and (X, X5) is a one-to-one mapping the
following equality holds

I(UDUQ;}/I)}/Z) :I(XlaXZ;}/l;}/é) :2[(W) (7)

It is possible to combine two independent copies of W5 in a similar way to generate a new
channel Wy, two copies of W, to generate Ws, and so on. For any N = 2" n > 1, in
general, the channel combining operation can be expressed as a recursive transformation
as shown in Figure 2 that yields a channel Wy from two independent copies of Wy/,. The
channel Wy : XV — y% is defined as

Wy (YN|UY) = Wy (VYUY @ UY)
= Wx2(Yayort [USYWja(yn ol v o) (8)
N/2
= Wiy ulle ® ullo) W (yNyo full).

The input vector ul¥ to Wy is first transformed into s with sy; | = ug; 1 ® uy; and
Soi = Ug;, @ = 1,...,N/2, which is further transformed into v = (s7,,s7,). The vector
vy becomes the input to the two copies of Wy/,. For more details please refer to [1].

(2) Channel Splitting _

In the second phase, the vector channel Wy is split back into N channels W](VZ) :{0,1} —

yN x {0,1}*"1, 1 < i < N. In the basic case of N = 2, by using chain rule of mutual
information, the left hand side of Equation (7) can be written as

I(UDUQ;}/I;}/?) :I(Ub}/l;}/v?)_FI(UIJS/l;S/?aUI) (9)
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where I(Uy;Y1,Ys) can be seen as the mutual information of the channel between U; and
Vi, Yo, I(Us; Y1, Ys,Uy) is the mutual information of the channel between U, and the
output given that U; is known. Let W~ and W denote the two channels respectively.
The transition probabilities of W and W™ can be written as

1
W™ (y1, yolur) = B Z W (yilur ® ug) W (y2|ua) (10)
uz€4{0,1}
and )
W (y1, y2, ur|ug) = §W(yl|ul © uz) W (y2|uz) (11)

In other words, the combined channel W is split into two channels W and W ™. Further-
more, the following two properties [1] for these channels created by the above operations
hold

IWH) +I(W™) =20(W), (12)

Z(W) < 22(W) = ZW),  Z(W*) = Z(W)". (13)

In general, we can obtain N channels W#52 5, € — +, 1 <4 < n by splitting

the channel Wy. Alternatively, we represent these channels by W]E;), 1 <4< N. The
splitting operation is defined through the chain rule

N
I yN) =Y 1 v, Ui, (14)
i=1
The term I(Uy; Y,N,Uj™") corresponds to the channel between U; and (Y;V,U; ™). The
transition probabilistic of these channels by the above splitting operation are given by

7 i— 1
WO ) = o Y Wl ). (15)

uﬁi—le(oﬁl)N_i

To analyze the behavior of these channels, a random process to represent them is defined
in [1]. Let B, : n > 1 be a sequence of i.i.d. Bernoulli random variables with probabilities
equal to %, and F,,n > 1 be the o-algebra generated by B™. Define a tree process as the
following

| w, itB,=0,
Watr = { W it By=1.

In [1], the behavior and properties of the random processes I(W,,) and Z(W,,) are shown
that
A.1 The sequence I, F;,,n > 0 is a bounded martingale.

A.2 The sequence Z,, F,,,n > 0 is a bounded super-martingale.
A.3 The sequence I, converges almost surely to a random variable I, and

(16)

1 wp (W),
loo = { 0 wp.l— I(W). (17)
A.4 The sequence Z,, converges almost surely to a random variable Z,, and
1 wpl—I(W),
Zoo = { 0 w.pI(W). (18)

This implies that as the length gets larger almost all the channels WIE;) get polarized to
either clean channels or noisy channels. For obvious reasons, the channels with mutual
information close to 1 are good channels and the remaining channels are bad channels.
Hence, we can obtain the following proposition.
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Proposition 2.2. (Theorem 1 in [1]). For any B-DMC W, the channels W](Vi) polarize
in the sense that, for any fized 6 € (0,1), as N goes to infinity through powers of two,
the fraction of indices i € {1,..., N} for which I(W](VZ)) € (1—0,1) goes to I(W) and the
fraction for which I(W]E;)) € [0,0) goes to 1 — I(W).

This is illustrated in Figure 3 for a binary erasure channel (BEC) with erasure proba-
bility € = 0.5.

200 400 600 800 1000 1200
Channel index N=1024

1 F .'rfr ‘P
A e :.; ~ s Mea
08} . S
c e . o ]
a " .t * .
| '. .. " .
E 06} * . ' .. .
£ * . -. . "ut )
[ LI .
- . - .
g 04r - . :'.. . .
5 .t - L] * ']
E . :.. 'l....'
0.2 wlTon, -
sl aa ¥l ogmae
U-Mb F
0

FiGurE 3. The polarization of effect with N = 1024 and ¢ = 0.5 over BEC

2.3. Polar codes. Using the idea of channel polarization, polar codes are proposed as a
new coding technique. Namely, a polar code (N, R) of block length N and rate R send
information bits only through the | NR] channels for which mutual information I (W]E;))
are near 1.

(1) Polar Encoder
Let Gy denote the generator matrix for the channel combing operation of order N

GN == BNF®n (]_9)
where
10
P10 -
and F®" denotes the n-fold Kronecker product of F with itself, By is a bit-reversal
N

permutation matrix, and all operations are performed over GF(2). Let the vector x]
denote the input sequence of the N independent copies of the initial channel W. The

input sequence x is computed from
) =u)Gy. (21)
Depending on the polarized direction of the channels, indices of the data sequence u} =
u1,...,uy are split into two sets before transmission. The first one includes the indices

of the data to be transmitted on the good channels, and is referred as the information
set A. The remaining one is the set A® of which indices are corresponding to the frozen
bits to be transmitted on the bad channels. Let Gx(A) denote the matrix constructed by
taking the rows of Gy whose indices are in A. Then Equation (21) can also be written as

Y = u Gy (A) ® useGy(A°). (22)

The above encoding operation can be illustrated in Figure 4.
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FI1GURE 4. Encoding operation of the 8-bit polar code

(2) Polar Decoder

Arikan considered successive cancellation (SC) decoding in order to achieve capacity
with low complexity. Let the row vector u) denote the input data sequence. In SC
decoding, decoding results for the non-information bits are set to 0. The information
bits are decoded sequentially in the ascending order of their indices. More precisely, the
SC decoder generates an estimate @ of u by observing the channel output y¥. The
decoder takes N decisions for each u;. If u; is a frozen bit, the decoder will set 4; to zero.
If u; is an information bit, the decoder computes the following likelihood ratio (LR) after

. . . . i—1
estimating all the previous bits u]

W& N, i~ o)

LY 4y ") = Ayt (23)
W i)
and generates its decision as
f; = 0, if L%)(z{{vaazfl) > 1 (24)
1, otherwise.

which is then sent to all succeeding decision elements. The SC decoding algorithm succes-
sively evaluates the LR value of each bit #;. Arikan showed that these LR computations
can be efficiently performed in a recursive manner by using a data flow graph which re-
sembles the structure of a fast Fourier transform. That structure, shown in Figure 5, is
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FiGurE 5. SC decoding process of polar codes with length N =8
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named a butterfly based decoder. Messages passed in the decoder are LR values. It can
be seen that this is a single-pass message passing algorithm, with no revision of estimates.
This makes it analytically tractable and vital for theoretical proofs. However, this decod-
ing method also leads to error propagation and possibly cause the mediocre finite-length
performance of polar codes.

Let P.(N, K, A) denote the block error probability when using the (N, K, A) code under
SC decoding, averaged over all choices of u,e. Using SC algorithm, Arikan established
the following results on the block error probability of polar codes.

Proposition 2.3. (Proposition 2 in [1]). For any B-DMC W and block length N the block
error probability averaged over a uniform distribution of the frozen symbols satisfies

PUAU) <Y Z(W (25)
i€EA
Proposition 2.3 gives a hint as to how A should be selected. The construction of polar
codes are by choosing A in a way that minimizes the above sum. In, principle, Z(W]E;))
can be calculated explicitly. In practice, this calculation has forbiddingly high complexity
except for BEC.

2.4. Encoding and decoding time complexity. The recursive structure of the chan-
nel polarization construction leads to low-complexity encoding and decoding algorithms
for polar codes.

Let Xg(N) denote the encoding complexity for block-length N. The recursive channel
combining operation shown in Figure 2 implies that

Xg(N)=N/2+2Xg(N/2). (26)
The above recursive relation implies
Xp(N) = N/2 4+ 2X5(N/2)
= N/2 + 2(N/4 + 2X 5(N/4))
= N/2 + 2(N/4 + 2(N/8 + 2X 5(N/8)))
=...=N/2log N
Therefore, the encoding complexity is O(N log N). While the complexity of SC decod-

ing is determined by the complexity of computing the LRs. The recursive relations for
computing the LRs are

(27)

1 + LSV)/2 ( N/2 ! a%e ! EB a%Zo 1) LSV)/2 (yN/27 ﬁ’?zo 1)

L ) = e
i N . . N
LSV)/2(y /2— 1 21 LS U’?ZO 1) 4 LSV)/2 (yN/27u%lo 1)
. . . S0 g\ 17202 i
LYYy, ad) = L), (yfv P @ ol 1) Y, (yN/z, ars . (29)

From Equations (28) and (29), it can be seen that each LR value {L (y1 ulrh) i 1<i <
N} in the palr (L( Dy a2, L(ZZH)(y1 ,43")) is computed with O(N) from the same
pair of LRs (L]\Z,/2 (y{w2 ! a%le tealh), LS\Z,)/Q (yN/Q, @3’,")). Thus, the calculation of all N
LRs at length N requires exactly N LRs at length N/2. If the N LRs at length N/2 are

split into two classes, namely
(L0, (W s o at) 1< i < N2

(4) 21 . (30)
{LN/2 (yN/2?ulo ) 1<i< N/2}
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each class in the above equation generates a set of N/2 LRs calculation requests at length
N/4, for a total of N requests. Using this reasoning inductively across the set of all lengths
{N,N/2,...,1}, we conclude that the total number of LRs which need to be calculated
is N(1+log N). So, the complexity of SC decoding can be reduced to O(N log N).

2.5. Polar codes are capacity achieving. The single step of channel transform moves
both the symmetric capacity and the reliability away from the center in the sense that

r(wg=") < (wh),) <1(wi”) (31)
Z2(Wi ") =z (wi,) = 2 (w) (32)

with equality iff I(WY),) = 0 or I(WY),) = 1, and iff Z(Wy),) = 0 or Z(Wy),) = 1
respectively. Since both quantities take values in [0, 1], intuitively one expects that, as
N is increased, I(W](VZ)) and Z(Wﬁ;)) will concentrate around 0 and 1. This behavior
is formalized and quantified in Proposition 2.1. However, it is also important to know
quickly this occurs with respect to /N. The following theorem turns out to be enlightening
in this aspect.

Theorem 2.1. (Improved version of Theorem 2 in [1]). For any B-DMC W with I(W) >
0, and any fired R < I(W) and constant < %, there exists a sequence of sets Ay C
(1,...,N), N e (1,2,...,2" ...). Such that |Ay| > NR and

> zwy) =o(27) (33)
I€EAN
Due to (25), the LHS of (33) is equal to P.(N, K, A). This leads to the following
theorem.

Theorem 2.2. (Improved version of Theorem 3, [1]). For polar coding on a B-DMC W
at any fized rate R < I(W) and any fized f < %

P.(N,K, A) = o(27"") (34)

To summarize, polar codes have a structured encoder and a lower-complexity SC de-
coding algorithm, and the probability of block error under SC decoding is exponentially
small in the block length.

2.6. Simulation results. In this part, we see the performance of polar codes using SC
decoder over different channels. The frozen set for the additive white Gaussian noise
(AWGN) are chosen using the estimates for Pe(W]E;)). These estimates are done using the
Monte-Carlo method described in [1]. From the simulation result, we can see that the
performance of polar codes is not very impressive in short block-lengths. Figures 6 and 7
show the performance of the SC decoder compared to the maximum likelihood decoding
(MAP) decoder over the binary erasure channel (BEC) and AWGN channel respectively.

It notices that there exists a considerable gap between the error probability of the SC
decoder and the MAP decoder. Therefore, an important question is that how to modify
the SC decoder such that this gap decreases while having low complexity.

2.7. Discussion. Polar codes are of very high theoretical interest and value, because they
are capacity achieving over many channels, as well as provably optimal for numerous other
applications, in the sense of optimality that pertains to each case. From an application
and implementation perspective, they have a number of desirable properties.

(A.1) Polar codes are a class of codes that 1) are explicitly defined by a construction



CHANNEL POLARIZATION AND POLAR CODES 2059

................

FER

I AP

1 0'3 i i i i i i i i
036 037 038 039 04 041 042 043 044 045
rate

FI1GURE 6. Performance of SC and MAP with N = 1024 and € = 0.5 over BEC

FER

H e = C1:5C
= === C2:MAP

25 3 35 4 45

FiGURE 7. Performance of SC and MAP with N = 256 over AWGN

rule, 2) provably achieve channel capacity on any symmetric B-DMCs, and 3) have low-

complexity encoding and decoding algorithms.

(A.2) Both the encoding and the decoding processes are inherently very structured.

Structure makes routing and control in hardware implementations much easier.

(A.3) For polar codes, rate adaptation can be carried out trivially and in a very fine-

grained way by simply altering the set A on the fly. While for LDPC codes, a different

rate usually requires a completely different code.

(A.4) Polar codes have a very low error-floor due to their large stopping distance [2].
Unfortunately, as the above simulation results shown, since sub-optimality of the SC de-

coding algorithm and low minimum distance of polar codes, the finite length performance

of polar codes under SC decoding is not very impressive. This motivates the exploration

of more sophisticated decoding algorithms.

3. Literature Survey on Polar Codes. Since polar coding is a new technique, there
are still many open questions about polar codes. In the following, we report a list of
the most recent publications investigating the polar codes and analyzing the current
deficiencies of these studies. Based on the above discussion, several interesting open
problems and some new research direction of polar codes are presented. These results of
researches can give us a new idea of further study polar codes.

3.1. Construction of polar codes. The construction of polar codes is one of the im-
portant concerns in using polar codes in practice. As described in Section 2.3, designing
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a polar code is equivalent to finding the set of good indices among the N polarized chan-
nels. In [1], Arikan proposed a criterion on which ¢ with small 7 (W,gl)) are chosen as
information variables in order to minimize the upper bound (25). However, unless W is

the BEC, the complexity of the evaluation of Z (WTEZ)) is exponential in the block-length.
In order to avoid the high cost of computation, a Monte-carlo method which estimates
Z (Wrgl)) by numerical simulation is suggested in [1]. However, polar codes constructed
by these methods do not provably achieve symmetric capacity. So computing the exact
transition probabilities of these channels seems to be intractable and hence we need some
efficient methods to “approximate” these channels.

In [3,4], Mori and Tanaka use density evolution tool to improve the code construction for
any B-DMCs. But this method requires large memory and high computation complexity
increasing with the code length, the implementation of density evolution is not tractable.
Another method using the idea of Gaussian Approximation is proposed in [5] under the
AWGN channel. Compared with the method base on density evolution, the computation
complexity is reduced. However, it seems that polar codes constructed by this method
have quite small minimum distance.

In [6], Tal and Vardy presented a method for constructing polar codes which controls
this growth. They approximated each bit-channel with a “better” channel and a “worse”
channel while reducing the alphabet size. They constructed a polar code based on the
“worse” channel and used the “better” channel to measure the distance from the optimal
channel. However, as mentioned in [6], the problem of constructing optimal degrading
and upgrading functions is still an open problem. Thus, one can change these functions
to produce a new approach. In fact, the real issue is the definition of optimal, but it has
not yet been addressed adequately. The development of a clear definition of optimality
and a measurement reference to compare different approaches would be very useful in
constructing new polar codes.

3.2. Coding scheme. To make polar codes more practice, concatenating inner polar
codes with outer linear codes is a promising path towards improving their finite length
performance while preserving their low decoding complexity.

In [7], it is shown how the classical idea of code concatenation using “short” polar
codes as inner codes and a “high-rate” Reed-Solomon code as the outer code results in
improved performance with respect to the use of polar codes alone. In particular, code
concatenation with a careful choice of parameters boots the rate decay of the error prob-
ability to almost exponential in the block-length with essentially no loss in computational
complexity. However, this work assumed a conventional method of concatenation, which
required the cardinality of the outer Reed-Solomon (RS) code alphabet to be exponential
in the block length of the inner polar code, which makes it infeasible for implementation
in practical systems.

A scheme for concatenating binary polar codes with interleaved RS codes is considered
in [8], which can capture the capacity-achieving property of polar codes, while having a
significantly better error-decay rate.

3.3. Non-binary codes. The study of polar codes for channels with nonbinary input
was undertaken by Sasoglu et al. and Mori and Tanaka. In [9], it is shown that given
two copies of a ¢-ary input channel W, where ¢ is prime, it is possible to create two
channels W+ and W~ whose symmetric capacities satisfy I(W~) < I[(W) < I(WT),
where the inequalities are strict expect in trivial cases. This leads to simple proof of
channel polarization in the g-ary case.
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In [10], the authors calculate by numerical simulation the error probability of non-
binary polar codes constructed on the basis of Reed-Solomon matrics. It is confirmed
that 4-ary polar codes have significantly better performance than binary polar codes on
binary-input AWGN channels. The authors also discuss an interpretation of polar codes
in terms of algebraic geometry codes, and further show that polar codes using Hermitian
codes have asymptotically good performance.

3.4. Decoding strategies. In order to improve the finite-length performance of polar
codes, several decoding algorithms have been proposed.

Particularly, the authors in [11] proposed a belief propagation (BP) decoder and com-
pared the performance of polar codes with Reed-Muller codes. The BP decoder has the
advantage of good performance and soft outputs, at the expense of high memory and
complexity requirements. Therefore, the SC decoder remained an attractive choice for
low-cost decoding of polar codes. In [12], an SC list (SCL) decoder is proposed. Empir-
ically, the usage of L concurrent decoding paths yields a significant improvement in the
achievable error probability and allows to obtain an error probability comparable to that
under MAP decoding with practical values of the list size. Furthermore, they also showed
that if concatenated with a very high rate, cyclic redundancy check (CRC) code, polar
codes perform comparably to state-of-the-art low density parity check (LDPC) codes.
The performances are shown in Figure 8. Despite its good performance, the SCL decoder
increased the memory and processing requirement as compared to the SC decoder. Later
in [13], the authors showed that polar codes concatenated with CRC-24 codes can reach
0.25 dB away from the information theoretic limit at as low a block length as N = 2048.
However, they achieved this performance gain using an adaptive SC list (ASCL) decoder
of very large list size that may not be suitable for devices which memory is scare. Both
SCL and ASCL decoders, however complex, showed that polar codes concatenated with
other codes can be very effective.

Except for the above SCL decoding method, concatenated polar codes with Reed-
Solomn (RS) codes and LDPC codes are recently proposed respectively in [14] and [7]. In
[14], the authors also demonstrated that polar codes concatenated with LDPC codes can
reach lower error floors when compared to capacity-achieving LDPC codes, at the cost of
higher computation complexity and storage requirement incurred by the BP decoder used
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FIGURE 8. Performance of SC and SCL is with different L. The CRC used
was 16 bits long.
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FiGUrRE 9. Complexities of SC, SCL and our proposed scheme

for polar codes. Therefore, finding an SC decoder with low memory and time-complexity
is still an open problem.

In our work, we have mainly studied how to reduce the decoding complexity by using
the idea of partial list SC decoding under CRC-aided of polar codes. Figure 9 shows that
the complexities of our scheme, SC and SCL. It can be seen that the complexity of our
proposed scheme has the lower complexity with almost the same performance.

3.5. Asymptotic behavior and scaling laws. The authors of [15] consider the as-
ymptotic behavior of the polarization process for polar codes when the block length tends
to infinity. In [16], upper and lower bounds are provided on the escaped rate of the
Bhattacharyya process corresponding to polar codes where transmission takes place over
the binary erasure channel. In [17], some recent progress in studies on speed of channel
polarization are reviewed. Firstly, results on a code rate-dependent upper bound of block
error probability of polar codes with SC decoding are reviewed. Then an approach of con-
structing polar codes for non-binary input alphabets with asymptotic speed of polarization
much faster than previous approaches is briefly described. In [18], a rate-dependent upper
bound of the best achievable block error probability of polar codes with SC decoding is
derived. In [19], the authors make a Scaling Assumption that the probability Q(z) that
7, exceeds x is such that lim, ., N'/*Q(z) exits and equals a function Q(x). Under
this assumption, they use simulations to numerically estimate u ~ 3.627 for the BEC.
Using the small x asymptotics of Q () suggested by the numerical data, they predict an
upper bound on the block length as a function of the gap ¢ to capacity for the BEC. For
general channels, under the heuristic assumption that the densities of log-likelihood ratios
behave like Gaussians, an exponent of y ~ 4.001 is suggested for the Scaling Assumption.
However, to the best of our knowledge, it does not appear that one can get a rigorous
upper bound on block length N as a function of the gap to capacity via these methods.

3.6. Source coding. Just as channel polarization can be used to design capacity-achieving
codes, source polarization can be used to design lossless source codes that achieve the en-
tropy bound. In [20], it shows that polar codes with an SC decoder are also optimal for
lossy and lossless source coding as well as muti-terminal problems like the Slepian-Wolf,
the WynerZiv, and the Gelfand-Pinsker problems. The complexity of the encoding and
the decoding algorithm in both cases is also O(N log N).
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In [21], lossless compression with polar codes is considered. A polar encoding algorithm
is developed and a method to design the code and compute the average compression rate
for finite lengths is given. It is shown that the scheme achieves the optimal compression
rate asymptotically. In [22], it is shown that for binary sources, there exists a univer-
sal polar code which can compress any source of low enough entropy, without requiring
knowledge of the source distribution. While this result does not extend to g-ary sources,
it is shown that how it extends to g-ary sources which belong to a restricted family.

3.7. Wiretap channel. In the field of wireless physical layer security, polar codes are
widely utilized to help obtain the secrecy capacity of wiretap channels and to make sure
the information is transmitted both reliably and securely between the transmitter and
the legal receiver.

In [23], it is shown that polar codes asymptotically achieve the whole capacity-equivo-
cation region for the wiretap channel when the wiretapper’s channel is degraded with
respect to the main channel, and the weak secrecy notion is used. The proposed coding
scheme also achieves the capacity of the physically degraded receiver-orthogonal relay
channel. In [24], The provided scheme achieves the entire rate-equivocation region for
the considered model. In [25], polar codes are used to construct a coding scheme that
achieves the secrecy capacity of general wiretap channels. The construction works for any
instantiation of the wiretap channel model, as originally defined by Wyner, as long as
both channels defining the wiretap channel are symmetric and binary-input.

3.8. The design of efficient hardware architectures. Despite many desirable proper-
ties of polar codes, it requires a very large code block length in order to actually approach
the channel capacity (N > 2%°). Consequently, the practical interest of polar codes highly
depends on the possibility to design efficient encoders and decoders for large N values.

In [1], Arikan suggests to use a fast Fourier transform structure to efficiently reuse
computations. This first architecture requires N log,(N) processing elements (PEs) and
as many memory elements (MEs). In [26], a line architecture is implemented. It only
uses N — 1 PEs and as many MEs without affecting the decoding performance and the
throughput. In [27], it is shown that the number of PEs can be further reduced with
a negligible impact on throughput. Since SC decoding has a low intrinsic parallelism,
complementary works focused on increasing the throughput of SC decoders. In [28,29],
lookahead techniques are used to reduce the decoding latency while using limited extra
hardware resources. In [30], a simplification of SC decoding is proposed in order to reduce
the number of computations without altering error correction performance. Extra latency
reduction technique is investigated in [31] where maximum likelihood decoding is used to
further speedup the decoding process. However, these low latency decoders have not been
implemented yet.

4. Conclusions. Polar codes have received a rapidly growing attention in the literature
because of these nice asymptotical properties on complexity and performance. In this
paper, we describe this technique, and briefly discuss its recent publications to provide a
perspective on current and proposed work, then analyze the existing disadvantages of the
current work and also propose some several future study problems.
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