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ABSTRACT. Delivery of zero-defect products to customers in due time is key to customer
satisfaction. This paper presents a new machine vision system for detecting the defects
on the air bearing surface of the head gimbal assembly (HGA). The paper presents two
contributions: a practical software implementation by using unified histogram equaliza-
tion, and a defect detection algorithm with a block matriz technique and texture analysis.
In order to test the algorithm with a real-time system, a high speed capsule conveyor was
built as a new, fast in-line conveyor for transporting capsules containing HGAs. Ac-
cording to the experimental results, the defect detection was drastically enhanced and the
performance of the proposed algorithm was satisfactory for use in a real assembly line.
In other words, the visual subsystem was successful at capturing moving parts during
image acquisition and at equalizing the acquired image. This new system can be used to
replace a slow-speed detection system in order to increase the unit per hour production
of an industrial assembly line.

Keywords: Histogram equalization, Supervisory system, Machine vision, Defect detec-
tion, Air bearing surface

1. Introduction. The air bearing surface (ABS) shown in Figure 1 is an important part
of a slider, which contains the read/write head (head disk) of a hard disk. The ABS
controls the flying height of the head disk over the magnetic disk. The flying height of
the slider over the magnetic disk in micro-inch scale is shown in Figure 2. A higher-
capacity HDD needs a lower and more precise flying height. The quality of the ABS has
a great impact on the quality of the disk drive. The defect on the ABS lowers its quality.
The best quality control is image processing, but major problems with image processing
are poor and inconsistent quality of the acquired image, such as its intensity, contrast,
and resolution. In order to cope with these problems, histogram equalization has been
introduced. Image information, such as intensity and contrast, can be extracted from an
image histogram. Many histogram equalizations have been proposed earlier. Different
equalization techniques are suitable for different kinds of histograms. For example, bi-
histogram equalization is suitable for an image in which the histogram is distributed in two
groups: dynamic histogram equalization is suitable for an image in which the histogram
is distributed in n groups; and a clipped histogram equalization is suitable for an image
with a noisy histogram. Our equalization system was designed with a rule-based method
in order to unify these and other techniques.

A histogram of an image describes the frequency of occurrences of all possible gray
levels (0-255 for 8-bit image) of an image. In order to enhance the brightness of an
image, software developers have commonly utilized histogram equalization (HE), which is
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based on the probability distribution of the gray levels of the image. HE improves image
brightness by redistributing the histogram frequency in the low dynamic range (LDR) to
the high dynamic range (HDR). HE can be classified into two main categories: global
histogram equalization (GHE) and local histogram equalization (LHE). Two drawbacks
of GHE are its inability to enhance the local information of an image and to preserve its
brightness. LHE, which uses a sliding window method, has been deployed and does not
have these problems, but it causes a blocking effect. Examples of histogram equalization
techniques are shown in Table 1.

Bi-histogram equalization techniques use different statistical threshold points to parti-
tion the histogram of an image into two sub-histograms. For example, BBHE uses the
histogram mean value for partitioning while DSIHE uses the histogram entropy. MM-
BEBHE, an extension of BBHE, calculates the absolute mean brightness error (AMBE)
for all possible threshold points before selecting the threshold point that yields the min-
imum MBE. With the selected threshold point, MMBEBHE equalizes the histogram in
the same manner as BBHE. One major drawback of MMBEBHE is the long processing
time since it needs to calculate the AMBE for every possible threshold point.

Recursive histogram equalization techniques partition the histogram of an image into a
number of 2% sub-histograms where R is the number of recursive loops. RMSHE uses the
mean value(s) of the histogram or sub-histograms as the threshold point(s) for histogram
partition, while RSTHE uses the cumulative probability density of 0.5 for doing so.

Multi-histogram equalization techniques partition a histogram into k-sub histograms by
different methods such as the following: 1) histogram specifications: DHS, DHE, BPDHE,
and BPDFHE; and 2) dynamic and adaptive methods: MHE, BPWCHE, DRSHE, and
AHSM. BPDHE divides a smoothed histogram into partitions by using its local maximum,
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TABLE 1. Examples of the histogram equalization techniques

. Proposed

Category Techniques Year

Global HE

Bi-HE Brightness Preserving Bi-HE (BBHE) [1] 1997
Dualistic Sub-Image HE (DSIHE) [2] 1999
Minimum Mean Brightness Error Bi-HE (MMBEBHE) 2003
3]

2% Sub-HE Recursive Mean Separate HE (RMSHE) [4] 2003
Recursive Sub-Image HE (RSIHE) [5] 2007

Multi-HE Dynamic Histogram Specification (DHS)[6] 2005
Multi HE (MHE) [7] 2007
Dynamic HE (DHE) [8] 2007
Brightness Preserving Dynamic HE (BPDHE) [9] 2007
Brightness Preserving Weight Clustering HE (BP- 2008
WCHE) [10]
Dynamic Range Separate HE (DRSHE) [11] 2008
Brightness Preserving Dynamic Fuzzy HE (BPDFHE) 2010
12
Adaptive Histogram Separation and Mapping (AHSM) 2010
13]

Clipped-HE Gain-Controllable Clipped HE (GC-CHE) [14] 2008
Bi-HE Plateau Limited (BHEPL) [15] 2009
Quadrants Dynamic HE (QDHE) [16] 2010

Adaptive Image Enhancement based on Bi-HE 2015
(AIEBHE) [17]

Exposure based Sub Image HE (ESIHE) [18] 2014
Median-Mean based Sub-Image Clipped HE (MM- 2014
SICHE) [19]
Average HE (AVHEQ) [20] 2015
Recursive Exposure based Sub-Image HE (RESIHE) [21] 2015
Plateaus HE Double Plateaus HE (DPHE) [22] 2011
Adaptive Double Plateaus HE (ADPHE) [23] 2012
Local HE
Non-Overlapped Contrast Limited Adaptive HE (CLAHE) [24, 25] 1994, 1998
Sub-Block
Spatially Adaptive HE with Temporal Filtering [26] 1998
Overlapped Sub- Partially Overlapped Sub-block HE (POSHE) [27] 2001
Block
Extension GHE Bi-HE with Neighborhood Metrics (BHENM) [28] 2010
with LHE

while BPDFHE divides a fuzzy histogram by using its local maximum also. Two MHEs
have been proposed by Menotti: minimum within-class variance MHE (MWCVMHE) and
minimum middle-level square error MHE (MMLSEMHE). BPWCHE creates a number
of initial clusters and assigns each non-zero bin to a unique cluster and then reduces
the number of these clusters by merging neighboring clusters according to three criteria
based on the following characteristics: cluster weight, weight ratio, and the width of the
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two neighboring clusters. For DRSHE, the weighted average of absolute color difference
(WAAD) was applied to the original image in order to create a more uniform histogram
distribution. The histogram was partitioned into k sub-histograms and redistributed to
the targeted dynamic range. AHSM is an adaptive image enhancement method with the
adaptive histogram separation unit (AHSU) as its key element. AHSU initially partitions
the histogram of an image into two sub-histograms and then repartitions recursively until
a stop condition is met.

Clipped HE methods have an advantage of noise reduction. For example, GC-CHE
clips the gray-level occurrence frequencies beyond a clipping threshold that depends on a
clipping rate which, in turn, depends on the mean brightness. QDHE was developed to
deal with low-contrast images by first partitioning the histogram of an image into four
sub-histograms based on the image median and then clipping them based on the image
mean and equalizing them individually. AIEBHE extends Bi-HE by taking advantage
of clipping noise reduction. ESIHE divides the input image into sub-images of different
intensities and then clips them based on the average number of occurrences of each gray
level before integrating them into a complete image. RESIHE is a recursive version of
ESIHE in which the number of recursions depends on the exposure difference between
successive iterations. MMSICHE partitions the histogram based on median intensity and
then divides each of the sub-histograms based on mean intensity. AVHEQ uses channel
stretching and histogram averaging — channel stretching restores color information while
histogram averaging recovers lost information.

Plateaus HE is suitable for processing infrared images that have low contrast but highly-
bright background in general. In this group, DPHE uses an upper threshold to prevent
over-enhancement of background noise and a lower threshold to prevent loss of details.

Local HE partitions an image into a number of tiles or sub-blocks. An example of local
HE is a spatially-adaptive histogram equalization method with temporal filtering that
uses overlapped sub-blocks. Non-overlapped sub-blocks are used by POSHE and CLAHE.
CLAHE in particular equalizes the histogram of sub-blocks to achieve a specified shape.

BHENM is an extension of the bi-histogram equalization method. BHENM uses a
neighborhood matrix to improve local contrast. The matrix sorts identical intensity pixels
into different sub-bins according to the intensity information of the neighboring pixels.

There has been no unified system that can select the best method for processing a
particular kind of image. This paper aimed to address this lack. We propose a unified
histogram equalization system that unifies several of the mentioned algorithms based on
supervisory rules and selects the best method for an image adaptively and automatically.
The algorithms unified by our system include basic-HE, BHEPL, BBHE, DSIHE, BPDHE,
BPDFHE, RSTHE and RMSHE but exclude those not suitable for real-time detection.

The organization of this paper is as follows: Section 1 is the introduction; Section
2 briefly reviews major histogram equalization techniques; Section 3 details five image
quality measurement functions for the evaluation of pre- and post-equalization images;
Section 4 presents the proposed unified histogram equalization (unified HE) and the visual
capsule system for defect detection; Section 5 reveals the defect detection performances
with and without the unified HE system; and Section 6 provides a conclusion.

2. Histogram Equalization Techniques. This section gives a brief review of the con-
cept of each histogram equalization method. The objective of the presentation is to
provide an overview of each technique to the reader regarding the terminology used in
the subsequent sections.
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2.1. Basic histogram equalization [29, 30]. Let X = {X (i,7)} where X is a given
image consisting of L discrete gray levels of { X, X1, Xo,..., X1 1}, where X (i, 7) is the
image intensity at spatial location (7, j). For the given image X, the probability density
function (PDF) is calculated by below Equation (1):

Nk

p(Xk) = N (1)

where ny is the quantity of intensity, in which £ is the intensity in image X (i.e., k =
0,1,2,...,L — 1), and N is the resolution of the image, e.g., N = 65,536 for a 256x256
image. The cumulative density function (CDF) can be calculated from the following
Equation (2):

c(Xy) = ip (Xk) (2)

By definition, ¢ (X;_;) = 1. Histogram equalization is a scheme that maps the input
image into the dynamic range [Xg, X7 _1] using CDF as transform function f (x), which
can be expressed as:

FX) = Xo+ (X1 — Xo) ¢ (Xp) (3)
The output image, Y = {Y (i, 7)}, of the basic HE can be written as,
Y = f(X)={f (X (7)) VX (i j) € X} (4)

Figures 3(a) and 3(b) respectively illustrate a sample histogram and its ideal equalized
histogram using the basic HE.

p(\x) p(\x)

(a) (b)

FIGURE 3. Basic histogram equalization: (a) a sample histogram, and (b)
an ideal equalized histogram

2.2. Bi-histogram equalization techniques. The BBHE, DSIHE, and MMBEBHE
are in this HE group. The three techniques differ in the methods of threshold selection.
BBHE relies on the mean value for histogram partition, DSIHE uses the gray-level, which
is the first CDF value that is higher than the entropy value of the image information as
the threshold point, and MMBEBHE selects the threshold that produces the minimum
brightness error. Figures 4(a) and 4(b) respectively depict the sample histogram and its
ideal equalized histogram using BHE.

Let X7 € {Xo, X1, Xo,..., X 1} be the threshold value of the image X. The BHE
partitions the input image X into two sub-images or sub-histograms (i.e., X = X U Xy)
where

X, = {X (4,§)|X (i,§) < Xr,VX (i,§) € X} (5)
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X, X‘r X Xy X
(2) (b)

FIGURE 4. Bi-histogram equalization: (a) a sample histogram, and (b) an
ideal equalized histogram

and
Xy ={X (4,5) |X (4, 7) > X, VX (1,5) € X} (6)
The sub-histograms X; and Xy are composed of {Xg, X1, Xs,..., Xy} and
{X7:1, X719, X713,..., X 1}, respectively. The respective probability density functions
of sub-histograms X, and Xy can be expressed as:

pr (X)) = “BE - here k=0,1,...,T (7)
nr,
and n
o (X)) =25 where k=T+1,T+2,...,L—1 (8)
ny

where nr and ngyy are the respective numbers of X in Xz and Xy, respectively, and
ny and ny are total numbers of samples in X and Xy, respectively. By definition,

m L—-1

ng =Y. nLk y = », nygand n =ng +ny. The CDFs of X, and Xy are written
k=0 k=m-+1

as:

e (X0) = 3 pr (X0) (9)

L-1

cr (Xe) = D pu(Xe) (10)

k=m+1

Note that, by definition, ¢;, (X,,) =1 and ¢y (X 1) = 1.
Similar to the basic HE where CDF is the transform function, the transform functions
of BHE, which also utilizes CDF, can be expressed as:

fr (X) = Xo + (X7 — Xo) er (Xy) (11)
fo (X) = Xr1 + (X1 — Xrja) e (X) (12)

Using Equations (11) and (12), the sub-histograms are equalized independently and the
output of BHE is the combination of the independently-equalized sub-histograms. The
output of BHE, Y, can be expressed as:

Y ={Y (i,7)} = fr (Xz) U fr Xv) (13)
where

fu(Xp) ={fL (X (i,7)) VX (i,j) € Xp} (14)
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fo Xy) ={fo (X (i,7)) VX (i,)) € Xu} (15)

fr (X1) equalizes the sub-histogram X, in the range (Xy, X7) and fiy (Xy) equalizes the
sub-histogram Xy in the range (Xyy1, X1_1) if 0 < ¢, (Xi) and ¢y (X) < 1, respectively.
The input image X is equalized over the dynamic range (X, X;_1) with the constraints
that the samples less than the input mean are mapped into (Xy, X7) and that the samples
greater than the input mean are mapped into (X711, X7_1).

2.3. 2B sub-histogram equalization techniques. This technique works on the prin-
ciple of the recursive bi-histogram technique, e.g., RMSHE and RSIHE. RMSHE is the
recursive version of BBHE, and RSIHE is a recursive technique that uses the cumula-
tive probability density as the threshold to divide the histogram. The generalized output
histogram for a recursive level of r = n is as follows:

r=0 E(Y)=Xg
r=1 E(Y)= (Xr+Xg)/2

= 2 BE(Y) = (3Xr + X¢)/4 (16)

r=n  E(Y) . (2" —1) Xp + X¢)/2
= Xr+ [(XG - XT)/QTL]

where X7 is the partitioning threshold of the histogram. X7 is the mean value when
RMSHE is used and is the gray value with a cumulative probability density of 0.5 when
RSIHE is used. Figures 5(a) and 5(b) respectively illustrate the sample histogram and
its ideal equalized histogram using the 2" technique and r = 2.

p(x) p(sc)

> X i 1 ! i » X
X X X KXot X X X,
(b)

Xm
(a)
FIGURE 5. 2% sub-histogram equalization: (a) a sample histogram, and (b)
an ideal equalized histogram

2.4. Multi-histogram equalization techniques. Multi-histogram equalization tech-
niques refer to dynamic histogram equalization techniques, e.g., dynamic histogram spec-
ification, brightness preserving dynamic histogram equalization, brightness preserving dy-
namic fuzzy histogram equalization, and adaptive histogram separation and equalization.
The multi-histogram equalization techniques originated from either dynamic histogram
specification (e.g., DHS, DHE, BPDHE, BPDFHE) or dynamic and adaptive histogram
equalization (e.g., AHSM). Figures 6(a) and 6(b) respectively illustrate the sample his-
togram and its new dynamic ranges using the multi-histogram equalization technique.
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FIGURE 6. Multi-histogram equalization: (a) a sample histogram, and (b)
the new dynamic range

2.4.1. Dynamic HE (DHE). DHE consists of three steps: partitioning the input image
histogram, allocating new gray level ranges, and equalizing sub-histograms independently
to the new ranges.

Histogram Partition

DHE partitions a histogram into multiple sub-histograms using local minima. The
partitioning of a sub-histogram continues until a normal distribution is achieved. If the
frequency between (u — o) and (p+ o) of a sub-histogram constitutes more than 68.3
percent of the total frequency, the distribution of the sub-histogram is normal. Otherwise,
additional sub-histograms are continually partitioned at (¢ — o) and (u + o).

Gray level allocation

DHE re-allocates the i'" sub-histogram from the previous step by

factor; = span; x (log F;)" (17)

where span; is the dynamic range used by sub-histogram 7 in the input image and defined
by span; = m;—m,_1, where m; is the 7*" local minimum in the input image histogram, F}
is total frequency in the i*" sub-histogram, and = determines how much emphasis should
be placed on Fj. In the case of non-enhanced images, the dynamic range is low, so using
span = 0 is sufficient. In other cases, « should be given some value. In [8], the value of
0 < x < 5 is sufficient. The dynamic range of the gray level for the i*" sub-histogram in
the output image is determined by

factor;

range; = x (L —1) (18)

"~ factory
where L is the total number of available gray levels (normally 255 for 8-bit gray scale). If
sub-histograms of output image are assigned in [start;, end;], then the first sub-histogram
is [0, range;] and next sub-histograms can be allocated with Equations (19) and (20)

i—1
start; = Z;ﬂ rangey + 1 (19)
end; = Z;_l rangey, (20)

Finally, DHE independently equalizes the sub-histograms to the new dynamic ranges
using the basic HE.
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2.4.2. Brightness preserving dynamic HE (BPDHE). In an ordinary image, the variance
of its histogram is typically high and certain gray levels fail to appear on the image. This
renders determination of the histogram’s local maxima difficult. An extension of DHE,
BPDHE reduces the variance effect using the Gaussian filter in Equation (21).

2

G (z) = exp (%) (21)

In determining the local maxima of the smoothed histogram, if BPDHE first identifies
the fluctuations in any three consecutive signs from the first derivative of the smoothed
histogram, the fluctuations are removed by changing (+ — +) to (+ 4+ +) and (— + —) to
(— — —). A local maximum is the middle point between the eighth positive sign and the
first negative sign (i.e., ninth in the order) in a sequence of eight positive signs followed
by four negative signs, i.e., (+ + + + + + + + — — —). BPDHE partitions the histogram
using the local maxima and maps the sub-histograms into new dynamic ranges based on
the DHE technique before equalizing each sub-histogram independently. Finally, BPDHE
normalizes the output brightness using Equation (22).

oo = (37 ) F o (22)

where f (z,y) and ¢ (z,y) are input and output images, and M; and M, are the means of
input and output images, respectively.

2.4.3. Brightness preserving dynamic fuzzy HE (BPDFHE). BPDFHE is the extended
version of BPDHE. In [12], the authors proposed BPDFHE, which was improved using
the fuzzy histogram computation technique. BPDFHE partitions a histogram using local
maxima. A fuzzy histogram is a sequence of real numbers: h (i), i € {0,1,...,L — 1},
where h (i) is the occurrence frequency of the gray levels around 4. Considering the gray

value I (z,y) as a fuzzy number I (z, y), the fuzzy histogram was then defined by Equation
(23).

RO )+ 303t €l (23)

where pj, ; is the triangular fuzzy membership function defined as:

| (z,y) — i
Wiz = MAX <0, Y (24)

and [a, b] is the support of the membership function.
Fuzzy statistics are able to handle the inexactness of gray values better than the classical
crisp histograms and thereby produce a smooth histogram.

2.5. Local histogram equalization (LHE). The local histogram equalization tech-
niques refer to local equalization techniques, e.g., the contrast limited adaptive histogram
equalization and partially overlapped sub-block histogram equalization.

2.5.1. Contrast limited adaptive HE (CLAHE). CLAHE is improved adaptive histogram
equalization, which was originally developed for medical imaging application [25]. CLAHE
partitions an image into contextual regions before equalizing independently. The imple-
mentation of CLAHE requires undertaking the following four steps.

First, acquire the inputs, i.e., image, numbers of regions by row and column, num-
ber of bins for the transform function (dynamic range), and clipped limit (normalized
within [0, 1]). Next, pre-process the inputs by determining the real clipped limit from the
normalized limit, padding the input image, and splitting the image into pre-determined
contextual regions by row and column. Then, each contextual region is extracted. Each
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region’s histogram is clipped according to the real clipped limit and equalized according
to the pre-specified bins prior to generating a transform function for each region. Fi-
nally, the gray levels should be mapped into the output image by extracting the cluster of
four neighboring mapping functions, processing the partially-overlapping image regions,
extracting a single pixel, applying the four mappings to that pixel and interpolating be-
tween the results in order to obtain the output pixel. The last step is repeated over the
entire image.

2.5.2. Partially overlapped sub-block HE (POSHE). POSHE is an LHE technique utilizing
partially-overlapped sub-blocks. Due to the complexity of the local HE, POSHE employs
the non-overlapped sub-block technique for the complexity reduction. Nevertheless, the
non-overlapped technique induces the blocking effect (shape different), which is reduced
by the implementation of a low-pass filter (LPF). In order to create partially-overlapped
sub-blocks, each sub-block is shifted by half the sub-block size (step size) to overlap the
adjacent sub-blocks. The basic HE then equalizes all of the pixels in the sub-blocks.

The implementation of POSHE requires undertaking the following six steps. First, a
zeros matrix is generated as an output image with an equal size to the input image. Sec-
ond, the sub-block size (m X n) is assigned by dividing the input image size by a multiple
of two. Third, LHE is performed on each individual sub-block and the equalization result
is transferred to the zeros matrix. Fourth, shift the sub-block horizontally one step size
and repeat the third step prior to subsequent shifts until reaching the final sub-block of
the row. The process continues to the subsequent row (vertical step size) and ends once
POSHE covers the entire input image. Fifth, each pixel value in the output image array
is divided by the occurrence frequency of each sub-block. Finally, the blocking-effect is
lessened by the blocking effect reduction filter (BERF).

2.6. Clipped histogram equalization (CHE). The problem of noise amplification
usually occurs in the image enhancement process, a phenomenon which degrades the
image quality. In order to address this problem, clipped histogram equalization (CHE),
a noise reduction method, is normally utilized. CHE re-allocates parts of the histogram
that are beyond the upper limit to the dynamic range, as illustrated in Figures 7(a) and
7(b).

2.6.1. Bi-histogram equalization plateau limited (BHEPL). BHEPL is a bi-histogram-
based clipped histogram equalization technique. Similar to BBHE, BHEPL calculates
the histogram mean, which is subsequently used as its partitioning threshold, into two

p(x) pg\x)

Actual

Clippi
Nominal [mgpmg
Cflpplﬂg A P P g % I
level
. Redistributed Clipped pixels .
Xy X, XL—]
(a) (b)

FIGURE 7. Clipped histogram equalization: (a) a sample histogram, and
(b) a clipped histogram
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sub-histograms, h; and hy. The plateau limits of sub-histograms 77, and Ty can be
respectively calculated by Equations (25) and (26).

X
1 m
T, = hr(k 2
L Xm+1; (k) (25)
Xr1
1

Ty = ——"——— hy (k) (26)
U (L_l)_ka=Xm+1 U

The clipped histogram is defined by the following equations:

hCL (.CU) _ { hL (IL’) if hL (IL’) S TL

Tr elsewhere (27)

and
hev (2) = { Ty elsewhere (28)

Similar to BBHE, the respective probability density functions of X; and Xy can be
defined as:

hr

pr (Xg) = , where £k =0,1,...,m (29)
M,y
and
J— hU7k J—
pU(Xk)_V’ where k=m+1,m+2,...,L—1 (30)
2

where hrj and hyy, are the respective numbers of X, in clipped X and Xy respectively,
M, and Ms are the total numbers of samples in hey, and hey, respectively. By definition,

Xm Xr-1
My = > hep (k) and My = >, hep (k). The CDFs of X, and Xy are defined as:
k:X() ]{):Xm+1
cr (Xp) =Y pr (X)) (31)
=0
-1
cv (Xe) = D v (X)) (32)
j=m+1

By definition, ¢, (X,,) =1 and ¢y (X)) = 1.
Similar to the basic HE and BBHE, where CDF is transform function, the transform
functions exploiting CDF can be defined as:

fu(X) = Xo + (X — Xo) - [er (x) = 0.5py, (7)] (33)

fo (X) = X1 + (X2t — Xint) [ev () — 0.5py ()] (34)
Consistent with BHE, the output of BHEPL is an amalgamation of equalized sub-

histograms, as expressed in Equation (13). Examples of plateau limits using Equations
(25) and (26) are shown in Figure 8.

3. Image Quality Measurement. The statistical parameters that are commonly
adopted to gauge the quality of enhanced images are the mean brightness error (MBE),
absolute mean brightness error (AMBE), mean structural similarity index (MSSIM), and
peak signal-to-noise ratio (PSNR).
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X,
(b)

X?ﬂ
(a)
FIGURE 8. BHEPL process: (a) determination of plateau limits of sample
histogram, and (b) the clipping of the histogram by the plateau limits

3.1. Mean brightness error (MBE) and absolute mean brightness error
(AMBE). MBE and AMBE are defined as the difference between the means of the orig-
inal and enhanced images. AMBE is the absolute version of MBE and can be expressed
as:

AMBE = |E (X) — E(Y)| (35)

where FE (X), E (Y) are the average intensities of the original and enhanced images,
respectively. The average intensity of the enhanced image is identical to that of the
original image for AMBE approaching zero, indicating that equalization has no effect on
the original image’s mean.

3.2. Mean structural similarity index (MSSIM) [31]. The structural similarity in-
dex (SSIM) is a function for comparing the quality of two images, e.g., images X and Y.
The first image, X, is the original (reference) image with its image quality assumed to
be perfect, and the second image, Y, is the enhanced image. SSIM compares the quality
of both images with regard to luminance, contrast, and structure. Luminance quality
is judged based on the mean intensity, u, determined by Equation (36), and contrast is
decided using the standard deviation, o, defined by Equation (37). The quality in terms
of structure is determined by comparing the statistical value in regard to the structure of
image X, S;, against that of image Y, S,, both of which are expressed in Equation (38).
SSI can be calculated by Equation (39).

=1 - (36)

7o = (7 S - o))

(37)
Oy = \/(ﬁ Zz]\il (vi — :uy)Q)
X — flo y —
Sx = o, y Sy = Tyy (38)
§SI(z,y) = PHatly ¥ C1) (0 +C) (39)

(25 + C1) (0305 + Co)
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where ji,, 11, are the means of the original, X', and enhanced images, Y, respectively; o,, o,
are the standard deviations of the original, X, and enhanced images, Y, respectively; oy,

is the square root of covariance of images X and V', 0,y = w1 Sony (5 — f12) (yi — 11y),
and C7, Cy are the constants determined by C| = (KlL)2, Cy = (KQL)Q, where L is the

dynamic range of pixel values (L equals 255 for 8-bit gray scale) and K is a very small
constant. The mean SSI is:

M
MSSI(X,Y) = % > " SST (wi,y5) (40)
i=1

where X and Y are the original and enhanced images, x;, y; are the image contents at
the ' local window, and M is the number of local windows of the images.

3.3. Peak signal-to-noise ratio (PSNR). Generally, PSNR is deployed to measure
the signal quality using the ratio of signal power to noise. In order to apply PSNR to
measuring the quality of an enhanced image, let us assume an original image, X (i, j),
with M x N pixels and its enhanced image, Y (4,j). The mean square error (MSE) of
the enhanced image is computed, as expressed in Equation (41). PSNR in decibel is then
calculated by Equation (42).

Zz]\il Z;V:I |X (27]) _Y(17])|2

MSE = — (41)
o
PSNR = 20log,, <%) (42)

where RMSE is the square root of MSE. Note that max (Y (4, j)) is normally 255.

4. The Proposed System. This section presents the test bed equipment shown in
Figure 9. The HGA is contained in a capsule as an input which arrived at Position
A. The capsule is then sent pneumatically to Position B for inspection and is then fed
to Position C. With this new pneumatic conveyor tube, the inspection productivity is
double that used with the conventional conveyor. However, the incompletely-stopped of
the capsule affects yields of a blurred image. Hence, a visual enhancement is needed to
cope with the poor defect detection. In doing so, a unified HE technique is used for
selection of the best image acquisition. The flowcharts in Figure 10 are self-explanatory.
The main flowchart in Figure 10 describes the criteria for how to select the best HE

FiGURE 9. The designed capsule conveyor as real-time test equipment
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FiGUrE 10. Flow chart of the unified HE system

technique presented in Section 2, corresponding to image quality measurement provided
decision parameters presented in Section 3.

4.1. Camera subsystem. In this section the capture system used for capturing the im-
age during the inspection process is introduced. Since the contaminations are very small,
high quality device is important in order to obtain high-quality images. Thus an indus-
trial CCD camera was used. The main features for selecting the camera were minimum
resolutions and lens focal length. The minimum resolution was calculated according to
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the size of the smallest contamination that needed to be detected by Equation (43).

d
#pivel = 2 x ;Z; (43)

where #pizel is the minimum resolution, droy is the width or height of the field of view
(FOV), Res is the smallest size of contamination that needs to be resolved. In this case
the dimension of ABS was around 1 x 0.8 mm?, and the Res was around 1 micro-meter.
According to Equation (43) the minimum pixels dimension of the camera that can be
used had to be at least 1600 x 2000 pixels. According to the value of the minimum pixels
dimension calculated from Equation (43), it was met by a commercially-available 5 MP
industrial CCD camera, the specification of those cameras was 2048 x 2594 for the pixel
dimension and 5= inch (5.70 x 4.28 mm?) in the physical size.
Secondly, the focal length of the lens was calculated by Equation (44).

dSBTLSOT‘ X WD
f —

dFOV + dsensor
where f is the focal length of the lens, dsepnsor is width or height of CCD size (the width
was used in this work), and WD is the distance from the lens to target ABS. For this
system, W D was initialized with 50 mm and then the focal length of lens was equal to
42.537 mm. This specification was matched to the commercial lens with a focal length
50 mm. However, there was image distortion. In order to reduce this distortion from
the capture system, a macro lens was used, whose magnification was calculated using
Equation (45).

(44)

d
Mag — sensor (45)
drov
where Mag is the maximum magnification. According to the given information, the mag-

nification of lens was not over than 5.7x, so the selected lens was 4x magnification macro
lens with —0.073489% distortion. This extended magnification with 5 mm extension ring
was 4.3X.

4.2. Selector subsystem. As can be seen in Figure 10, the selector was designed to
choose a suitable HE technique based on the first screening of the histogram’s peaks. If
it had only one peak, then it would determine SNR of the image. If the SNR was high,
it could be used with no need to run the HE. If it was not, then the BHEPL technique
was the best choice in this case. Similarly, when the histogram had two peaks, the Bi-HE
techniques were activated and the process then followed Track 1. For multiple peaks,
the selector had to determine whether or not the number of peaks was in the category
of the power of 2. If not, the procedure then followed Track 2. If this was so, the
procedure followed Track 3. Figure 11 shows the sample ABS image with a single-peak
histogram and the equalized image with the suggested method in the proposed unified
system. Figure 12 shows the sample ABS image with a double-peak histogram and the
equalized image with the suggested method in the proposed unified system.

4.3. Contamination detection. The procedure for contamination detection is proposed
as follows.

4.3.1. Extraction of region of interest (ROI). The ABS image was captured from the
camera of the machine vision system. For background removing, first, the referent pixels
were selected. Second, the tolerance for the ROI extraction was defined using the standard
deviation of the referent pixels. Third, the binary mask was generated by scanning the
image with the specified referent pixels and tolerance. Finally, the ROI was extracted
with a generated mask.
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FIGURE 11. Sample image of ABS with single-peak histogram and the
suggested method for HE: (a) original, (b) HE, (¢) BHEPL, (d) BBHE, (e)
DSIHE, (f) BPDHE, (g) BPDFHE, (h) RMSHE, (i) RSTHE
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FIGURE 12. Sample image of ABS with double-peaks histogram and the
suggested method for HE: (a) original, (b) HE, (c) BHEPL, (d) BBHE, (e)
DSIHE, (f) BPDHE, (g) BPDFHE, (h) RMSHE, (i) RSIHE



UNIFIED HE FOR DEFECT DETECTION ON ABS 17

4.3.2. Generation of block matriz. A two-dimension array was generated using a block
matrix from the tilling process. The tilling process divides the M x N image into m x n
image blocks of size p x ¢. Each member in the m x n image is represented by the average
intensity of each sub-block, calculated by Equation (46).

p(i+1)=1q(3+1)—
= > 2: (46)
k=pi l=qj
1 if0<Y(ij) <X -10
B(i,j) = 2 f X-10<Y(5,j) < X+10 (47)

3 if X +10<Y(i,j)
where Y'(4, j) is a tile image generated with a block of size p X ¢, B(i, j) is the m x n block
matrix, and X is the mean intensity of the input image.
By using Equations (46) and (47), the input image was resized by tilling process into
the block matrix. Moreover, the tilling process had a greater advantage in terms of noise
removal since the average intensity of block was used to represent the value of the block.

4.3.3. Detection of defect. The defects on the ROIs were detected by the characteristics
of the block matrix, which was generated from the previous step. The feature of the
processed ROI was the actual defect region ratio (ADR), calculated by Equation (48).
The defect was detected according to the Euclidean distance function between the average
ROI feature value of training set which was containing only the good ABS and the testing.
For determining the defective or non-defective ROI, the threshold was selected from the
ROI training set which had a minimum error, as shown in Equations (49) and (50). The
technique for detecting the defects in this paper was the parallel architecture proposed
herein. The algorithm was simple, as the name implies that the image was a partition into
N sub-ROI regions and then the procedure in Subsections 4.3.1 and 4.3.2 was repeated.
The search for the defects in each sub-ROI ran in parallel and synchronizes all sub-ROI
between processing. The procedure used for the defect detection was texture analysis.

. #ADR blocks
ADR_ratio = 18
ravo #total blocks 8)
T = min (e; + e3) (49)
Non-defect ||d|| < T (50)
Defect otherwise

5. Result. This section describes the experimental results of using the proposed sys-
tem for real-time defect detection. First, the proposed unified HE supervisory system
is discussed. Figures 11 and Figure 12 show a region in two different ABS images that
have different histogram properties. Figure 11 shows the region with a single-peak his-
togram that could be equalized either by basic-HE or BHEPL, but our unified system
selected BHEPL because it was able to reduce the fluctuation of the histogram that ap-
peared around the intensity value 40-50. On the other hand, Figure 12 shows the region
with a three-peak histogram equalized by BPDFHE, selected because the histogram was
multi-peak and did not meet the condition of the recursive techniques.

In a real-time defect detection system, the entire processing time and contrast of the
output image are overriding factors; for example, if the contrast between the defect and
the background is high, the defect is easily detected. However, improving contrast distorts
brightness, but brightness preservation is important for the preservation of image integrity.
All of the equalization methods that were included in our unified system were able to
enhance the contrast well and did not cause too much change in brightness. Table 2 shows
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TABLE 2. Comparison of the average brightness, average contrast, and
average processing time of the ABS sample set with different HE techniques

Brightness Contrast Time (sec)

Original 133.1269  29.6700 ref
HE 124.7298  72.5192 0.0997
BHEPL 158.2382  70.2361 1.1814
BBHE 151.1738  69.1628 0.0999
DSIHE 132.0459 61.1981 0.0497
BPDHE 122.5933 54.6771 0.0633
BPDFHE 133.0944  42.7095 0.0249
RMSHE 141.3422  52.2061 0.0230
RSIHE 145.8192  53.6280 0.2008
MMBEBHE 83.9992  51.0003 15.0227
DHE 121.3951  45.3871 0.0545
DRSHE 129.9189  88.6270 11.4636
HENM 254.1503 11.1609  111.2883
BHENM 132.4228 3.4576 54.8633
POSHE 98.0502  54.8353 10.3519
CLAHE 129.0389  49.0023 0.0650

TABLE 3. Average measurement of ABS images in database

AMBE PSNR MSSIM

HE 13.6875 13.2733  0.4760
BHEPL 12.4911 14.0829 0.6554
BBHE 10.5625 14.7083  0.6103
DSIHE 2.7321 16.0112 0.5918

BPDHE 13.8036 16.6971  0.6189
BPDFHE 8.9554 22.7124  0.7746

RMSHE 5.4732 19.0655 0.7024
RSTHE 9.0357 18.4202  0.6977
MMBEBHE 28.1339 13.0335 0.5299
DHE 12.7500 20.5498  0.7883
DRSHE 14.3304 10.0882  0.2215
HENM 63.4554 6.3058  0.6442

BHENM 12.7411 18.8999 0.7830
POSHE 25.0714 13.1695  0.4908
CLAHE 9.4643 18.7813 0.7658

the brightness, contrast, and processing time achieved by all HE techniques mentioned in
Section 2. The average contrast values of several sample ABS images equalized by all of
the HE techniques included in our unified system (above the horizontal line) were higher
than those of the original images, while the average brightness values were sufficiently
preserved and the processing times were very short. MMBE, DRSHE, HENM, BHENM,
and POSHE were not suitable for a real-time system because the processing times were
very long. Table 3 lists several measures of the output image quality. It can be seen that all
of the HE techniques included in our unified system were satisfactory. According to Tables
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2 and 3, CLAHE yielded unexpected results. The performance of the method in this case
was relatively remarkable. However, the reason why CLAHE was not included in our
proposed algorithm was that this method is an LHE method that may cause a mismatch
at the boundary of the global blocks in general. Even though the results turned out to
perform well in this case, more observation needs to be carried out. In our opinion, the
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TABLE 4. Two type of defect detection errors

Error Type Sample Quantity % Error
Type I without Unified HE Supervisory System 74 0 0
Type II without Unified HE Supervisory System 19 7 36.84
Type I with Unified HE Supervisory System 74 1 1.35
Type II with Unified HE Supervisory System 19 0 0
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good performance may have been due to the local homogeneity of the samples’ partitions
under testing. It is a topic to be investigated in future work. Figure 13 shows the poor
defect recognition results without the unified HE supervisory system, while Figure 14
shows clearly the better results with the system in place. Detection errors are reported in
Table 4. Type I and type II errors are, respectively, false rejection (rejecting non-defective
ABS) and false acceptance (accepted defective ABS). In industrial quality control, a type
IT error is the major problem; a good defect detection system must have near zero type II
errors because defective upstream parts cause defective downstream final products. It can
be seen in the table that type II errors are very high without the unified HE supervisory
system but extremely low with the system in place, with very small type I errors.

6. Conclusion. Major HE techniques were reviewed in the present study with an expla-
nation that different HE techniques are suitable for images with different characteristics.
Three image quality measurement functions were used to evaluate the performance of the
HE methods tested in this study: absolute mean brightness error for evaluating bright-
ness preservation; peak signal-to-noise ratio for evaluating noise measurement; and the
mean structural similarity index for assessing the similarity of image structures before
and after enhancement. Our proposed unified HE supervisory system was designed to
include suitable HE techniques for different kinds of images based on their satisfactory
performances in these quality measures. It was used as a part of a real-time ABS defect
detection system.

The real-time ABS defect detection system was designed and tested: suitable camera
resolution was calculated and a lens was selected for the image capturing hardware; the
unified system was used to pre-process the ABS image; the processed ABS image was
detected for defects by extraction of regions of interest, block matrix generation, and
defect recognition. It was found that this real-time ABS defect detection system worked
satisfactorily as demonstrated by good test results, especially regarding the drastically-
reduced false acceptance error.

Acknowledgments. This research was supported by DSTAR KMITL, HDDI-NECTEC
of NSTDA under grant HDD-01-53-03D. Special thanks go to Seagate Technology (Thai-
land).

REFERENCES

[1] Y. T. Kim, Contrast enhancement using brightness preserving bi-histogram equalization, IEEE
Trans. Consumer Electronics, vol.43, no.1, pp.1-8, 1997.

[2] Y. Wang, Q. Chen and B. Zhang, Image enhancement based on equal area dualistic sub-image
histogram equalization method, IEEE Trans. Consumer Electronics, vol.45, no.1, pp.68-75, 1999.

[3] S. D. Chen and A. R. Ramli, Minimum mean brightness error bi-histogram equalization in contrast
enhancement, IEEE Trans. Consumer Electronics, vol.49, no.4, pp.1310-1319, 2003.

[4] S. D. Chen and A. R. Ramli, Contrast enhancement using recursive mean-separate histogram
equalization for scalable brightness preservation, IEEE Trans. Consumer FElectronics, vol.49, no.4,
pp.1301-1309, 2003.

[5] K. S. Sim, C. P. Tso and Y. Y. Tan, Recursive sub-image histogram equalization applied to gray
scale images, Pattern Recognition Letters, vol.28, no.10, pp.1209-1221, 2007.

[6] C.C.Sun,S.J. Ruan, M. C. Shie and T. W. Pai, Dynamic contrast enhancement based on histogram
specification, IEEE Trans. Consumer Electronics, vol.51, no.4, pp.1300-1305, 2005.

[7] D. Menotti, L. Najman, J. Facon and A. A. De Araujo, Multi-histogram equalization methods for
contrast enhancement and brightness preserving, IEEE Trans. Consumer Electronics, vol.53, no.3,
pp.1186-1194, 2007.

[8] M. Abdullah-Al-Wadud, M. H. Kabir, M. A. A. Dewan and O. Chae, A dynamic histogram equaliza-
tion for image contrast enhancement, IEEE Trans. Consumer Electronics, vol.53, no.2, pp.593-600,
2007.



[9]
[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
31]

UNIFIED HE FOR DEFECT DETECTION ON ABS 21

H. Ibrahim and N. S. P. Kong, Brightness preserving dynamic histogram equalization for image
contrast enhancement, IEEE Trans. Consumer Electronics, vol.53, no.4, pp.1752-1758, 2007.

N. Sengee and H. Choi, Brightness preserving weight clustering histogram equalization, IEEE Trans.
Consumer FElectronics, vol.54, no.3, pp.1329-1337, 2008.

G. H. Park, H. H. Cho and M. R. Choi, A contrast enhancement method using dynamic range
separate histogram equalization, IEEFE Trans. Consumer Electronics, vol.54, no.4, pp.1981-1987,
2008.

D. Sheet, H. Garud, A. Suveer, M. Mahadevappa and J. Chatterjee, Brightness preserving dynamic
fuzzy histogram equalization, IEEE Trans. Consumer Electronics, vol.56, no.4, pp.2475-2480, 2010.
Q. Zhang, H. Inaba and S. I. Kamata, Adaptive histogram analysis for image enhancement, Proc.
of the 4th Pacific-Rim Symposium on Image and Video Technology, Singapore, pp.408-413, 2010.
T. Kim and J. Paik, Adaptive contrast enhancement using gain-controllable clipped histogram equal-
ization, IEEE Trans. Consumer FElectronics, vol.54, no.4, pp.1803-1810, 2008.

C. H. Ooi, N. Kong and H. Ibrahim, Bi-histogram equalization with a plateau limit for digital image
enhancement, IEEE Trans. Consumer Electronics, vol.55, no.4, pp.2072-2080, 2009.

C. H. Ooi and N. Isa, Quadrants dynamic histogram equalization for contrast enhancement, IEEFE
Trans. Consumer Electronics, vol.56, no.4, pp.2552-2559, 2010.

M. Aminzadeh and T. Kurfess, Automatic thresholding for defect detection by background histogram
mode extents, Journal of Manufacturing System, vol.37, pp.83-92, 2015.

K. Singh and R. Kapoor, Image enhancement using exposure based sub image histogram equalization,
Pattern Recognition Letters, vol.36, pp.10-14, 2014.

K. Singh and R. Kapoor, Image enhancement via median-mean based sub-image clipped histogram
equalisation, Optik, vol.125, pp.4646-4651, 2014.

S. C. F. Lin, C. Y. Wong, M. A. Rahman et al., Image enhancement using the averaging histogram
equalization (AVHEQ) approach for contrast improvement and brightness preservation, Computers
and FElectrical Engineering, vol.46, pp.356-370, 2015.

K. Singh, R. Kapoor and S. K. Sinha, Enhancement of low exposure images via recursive histogram,
Optik, vol.126, pp.2619-2625, 2015.

S. Yang, X. He, H. Cao and W. Cui, Double-plateaus histogram enhancement algorithm for low-light-
level night vision image, Journal of Convergence Information Technology, vol.6, no.1, pp.251-256,
2011.

K. Liang, Y. Ma, Y. Xie, B. Zhou and R. Wang, A new adaptive contrast enhancement algorithm
for infrared images based on double plateaus histogram equalization, Infrared Physics & Technology,
vol.55, no.4, pp.309-315, 2012.

K. Zuiderveld, Contrast limited adaptive histogram equalization, Graphics Gems IV, Academic Press
Professional, Inc., San Diego, 1994.

E. D. Pisano, S. Zong, B. M. Hemminger, M. Deluca, R. E. Johnston, K. Muller, M. P. Braeuning
and S. M. Pizer, Contrast limited adaptive histogram equalization image processing to improve the
detection of simulated spiculations in dense mammograms, Journal of Digital Imaging, vol.11, no.4,
pp.193-200, 1998.

T. K. Kim, J. K. Paik and B. S. Kang, Contrast enhancement system using spatially adaptive
histogram equalization with temporal filtering, IEFEE Trans. Consumer Electronics, vol.44, no.1,
pp.82-87, 1998.

J. Y. Kim, L. S. Kim and S. H. Hwang, An advanced contrast enhancement using partially overlapped
sub-block histogram equalization, IEEE Trans. Circuits and Systems for Video Technology, vol.11,
no.4, pp.475-484, 2001.

N. Sengee, A. Sengee and H. K. Choi, Image contrast enhancement using bi-histogram equalization
with neighborhood metrics, IEEE Trans. Consumer Electronics, vol.56, no.4, pp.2727-2734, 2010.
R. C. Gonzalez and E. W. Richard, Digital Image Processing, Addison-Wesley, 1992.

R. C. Gonzalez and E. W. Richard, Digital Image Processing, Prentice Hall Press, 2002.

Z. Wang and A. C. Bovik, Structural similarity approach, Modern Image Quality Assessment, Mor-
gan & Claypool Publishers, 2006.



