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ABSTRACT. This paper is concerned with the robust stability of uncertain neutral-type
Lur’e system with interval time-varying delays and sector-bounded nonlinearities. By use
of augmented Lyapunov-Krasovskii functional (LKF) and delay-partitioning techniques,
delay-dependent robust stability criteria are proposed in terms of linear matrix inequalities
(LMIs) without using the general free-weighting matriz method. The criteria are less
conservative than some previous ones. Numerical examples are presented to show the
effectiveness and merits of the proposed approach.
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1. Introduction. The stability analysis of dynamic systems with time-delays has been
one of the important issues since time-delay frequently appears in many physical and
industrial systems such as biological systems, chemical systems, electronic systems, and
network control systems [1]. It is well known that time-delay is often attributed as the
major source of poor performance and instability. Therefore, the stability analysis of
delayed linear systems has been widely investigated by many researchers [2,3], and many
effective methods have been developed to derive less conservative delay-dependent sta-
bility criteria [4,5]. However, most systems are nonlinear in practical engineering, so it
is necessary and significant to consider the stability problems of delayed nonlinear sys-
tems. And it is well known that many certain nonlinear systems such as Chua’s circuit
and Lorenz systems can be modeled as Lur’e systems [6], which consist of a feedback
connection of a linear dynamical system and a nonlinearity satisfying the sector bounded
condition. The stability for this type of nonlinear systems was first introduced by Lur’e
[7], and has been considered extensively in [8]. On the other hand, many practical sys-
tems such as the water pipes, population ecology, and chemical reactors are modeled in
the neutral time-delay system which contains delays in both its states and its derivatives
of the states. Delay-dependent stability criteria for nominal and uncertain neutral-type
Lur’e systems with constant time delays and sector bounded nonlinearities were presented
in [9]. However, the delay-range of the time-varying delay associated with the state vec-
tor is assumed to vary from zero to an upper bound. In actual practice, however, the
delay-range may have non-zero lower bound, and such systems are referred to as interval
time-varying delay systems. For Lur’e systems with interval time-varying delay, a new
robust stability criterion is presented in [10]. In checking the conservatism of stability cri-
teria, an important index is to get maximum delay bounds guaranteeing the asymptotic
stability of time-delay systems. Therefore, how to choose an LKF, augmented vectors and
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derive the derivation of a stability condition from the time-derivative of such a functional
plays key roles in enhancing the feasible regions of stability criteria. In this regard, new
cross-term bounding technique [11], parameterized neutral model transformation method
[12], free weighting matrices technique [13] had contributed to enhancing the feasible re-
gions of stability criteria for systems with time-delays. Recently, in order to reduce the
conservatism of stability criteria for time-delay systems, some remarkable results [14,15]
have been presented. Another popular technique in reducing the conservatism of stabil-
ity criteria is delay-partitioning one. Since Gu [16] firstly proposed this method, it is
well recognized that delay-partitioning approach can increase the feasible region of sta-
bility criteria owing to the fact that this method can obtain more tighter upper bounds
obtained by calculation of the time-derivative of LKF, which leads to less conservative
results. However, when the number of delay-partitioning increases, the matrix formula-
tion becomes more complex and the computational burden and time-consumption grow
bigger. Therefore, it is strongly needed that some new methods should be studied in
applying delay-partitioning approach.

Motivated by this discussed above, in this paper, we contribute to the robust stability
for a class of uncertain neutral-type Lur’e systems with interval time-varying delays and
sector bounded nonlinearities. As a tradeoff between time-consumption and improvement
of the feasible region, a new augmented LKF, which fractionizes the delay interval into two
subsections, is constructed. By utilizing Wirtinger-type inequality [17] and reciprocally
convex approach [18], new delay-dependent robust sufficient stability criteria are derived
in terms of LMIs which will be formulated as convex optimization algorithms which are
amenable to computer solution [19]. Finally, three numerical examples are included to
show that the proposed approach improves existing methods and gives better results for
stability than those reported earlier.

2. Problem Statement and Preliminaries. Consider the following uncertain mixed
neutral and Lur’e system with interval time-varying delays and sector bounded nonlin-
earities:

(t) — Ci(t —7(t) = (A+ AA)z(t) + (A1 + AAy) z(t — h(t)) + (B+ AB) f(o(t)),
o(t)=H"z(t), Vt>0, (1)
x(s) = ¢(s), i(s)=9(s), s & [~max(h,7),0],
where z(t) € R", o(t) € R™ denote the state and output vectors of the system, respec-
tively. ¢(s) € R™ is a continuous initial function specified on [—max(h, 7), 0] with known

positive scalars h, 7. f(o(t)) € R™ is the nonlinear function in the feedback path, which
is given by:

[Fle@)] = [f(o1(1) faloa(t)) -+ faulom®)]", (2)
where o;(t) is the i-th component of the output vector o(t), and each term f;(o;(t))
(1=1,2,...,m) satisfies the finite sector condition:
filoi(t)) € Kiog) = {fi (0:(1)) | £:(0) = 0,0 < 0(t) f; (0:(t)) < kio} (1), 03(t) # 0}, (3)
with known positive scalars k; (i = 1,2,...,m), or the infinite sector condition:

fi(oi(t)) € Kooo) = {fi(0:(t))[£i(0) = 0, 03(t) fi(@i(t)) > 0, 03(t) # O} . (4)
A, Ay, B, C and H are real constant matrices with appropriate dimensions, and AA(t),
AA;(t) and AB(t) denote real-valued matrix functions representing parameter uncertain-
ties, which are assumed to satisfy:

AA() AA(t) AB(H) = DF@)[E B, E) (5)
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where D, FE,, E,;, and Ej, are known constant matrices with appropriate dimensions, and
F(t) is an unknown matrix with Lebesgue-measurable elements and satisfies:

FYt)F(t) <I, Vt>0. (6)

The time-varying delays h(t) and 7(¢) are continuous-time functions and are assumed to
satisfy the following conditions:

0<h <h(t)<hg ht)<hg 0<7{)<7, T(t)<T4<1, ¥t>0. (7)

The purpose of this paper is to investigate robustly asymptotic stability criteria for system
(1) satisfying conditions (3) (or (4)), (5)-(7). In order to realize the purpose, the following
lemmas are required.

Lemma 2.1. [18] For given scalar « in the interval (0,1), n X n-matriz R > 0, two
matrices Wy and Wy in R™™ for all vector & in R™, the function ©(«, R) is given by:

1 1
O(a, R) = agTWIT RW € + EgTWQT RW,¢.

Then, if there exists a matriz X in R™ ™ such that [ ]:L )]; ] > 0, the following inequality
holds:

: wiel"[R X[ Wi
o= e | [T % it

Lemma 2.2. [17] For a given matriz R > 0, the following inequality holds for all contin-
uously differentiable function w in [a,b] — R":

/ O (5) Ro(s)ds > - L (0t - w(@) Rw(d) — w(a)) +

where Q = w(b) + w(a) — = f:w(s)ds.

b—a

Lemma 2.3. [20] Given matrices ', 2 and Q2 = QT the following inequality:
Q+TF(o)Z+Z"F (o)l <0
holds for any F(o) satisfying F*(c)F (o) < I, if and only if there exists a scalar € > 0
such that:
Q+e'T'T + 272 < 0.

3. Main Results.

3.1. Finite sector condition. In this section, we will give sufficient conditions un-
der which system (1) is robustly asymptotically stable. Firstly, the following theo-
rem offers a stability criterion for system (1) with a nonlinear function f(o(t)) satis-
fying the finite sector condition (3) and time-varying delays h(t) and 7(t) satisfying (7).
For convenience, we define e; (i = 1,2,...,11) as block entry matrices. For example,

=0 07000000 0 0] The other notations for some vectors and matrices are
defined as:

CT( [ ft . ft hi s)ds ftt he . } ’
&) = [:ET(t), ot — Iy), 2T (t — he), 2T (t — h(t)), 27 (t — hy,), ftt_hl x7(s)ds,

s o 2T (s)ds, =4 [ 2 (s)ds, [0 T (s)ds, £ (o(1),
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(- (1),
() :[xT(t), xl(t — Iy), 2T (t — he), 2T (t — h(t)), 2T (t — hy,), j;ihl 27 (s)ds,
et (s)ds, i S @ ($)ds, 5 S0 T ()ds, £ (o (8), 87 (= 7))
Qo=2a(t)+z(t—Nh) — h%ft—hl x(s)ds

O =a(t —he) +x(t —hy) — 2 tt:h’zc x(s)ds,

Qo =a(t — M) +z(t —he) — 2 tt :’ x(s)ds,

I} = [62T—64T eg+ef—267 el —el e4T+63T—268T],
12 = [e{—eg 61T+e§—,fleg el —el eg—l—eg—%eg],
H%: [eg—ef e§+e4T—QGg 64T—eg €Z+€g—2€g],
H%— [elT—ezT 6{—1—6%—}%6% eg—e?’T eQT—i—e?;—%e?],
L= [ b (h(0) = m)el + (he = ht)e] ],
Do=[ef el e (h(t) = ho)el + (hu — h(t))el]

v = [TIT 6{—65 eg_eg eg_eg]v @:€2Q12e3_€3Q1265+6{HKS€10,
D=[D" 000, 7n=[A00A4,00000BC],E=[E,00E, 00000 Ej; 0],

¢ = Q3+h?Ro+;L2(R1 +R2)+%?Zo+h§1Z1+h§2Z2, A= Q1+Q2+hl2W0+iL2(W1+W2)7
G = diag {Aa Q11 — Q1, Q2 — Qu1, (hd - 1)@27 —Q22, —14,0,0,0, =5, (Td - 1)@3}

— (el — el) Zo (ler — es).
Now, we have the following theorem.

Theorem 3.1. System (1) satisfying conditions (3) and (7) is robustly asymptotically

stable for given scalar values of hy, hy, hq, 74 < 1, ky > 0 (I = 1,2,...,m) and there

exist positive-definite matrices P = [Pijlaxa, Q1, Q2, Q3, Ri, Wi, Z;, (i = 0,1,2),

Q = Q*H 812 , and positive definite diagonal matrices S = diag{si,S2,...,Sm},
22

A =diag{Ai, A, ..., A}, and scalars €, > 0 (r = 1,2), and any matrices X, Y such that
the following LMIs hold:

S+ Sym {@ 0, PUT e’{OAHTn} gT® TyPDT + eyAHTD & ET

* —-® oD 0 <0, (8)
* * —81] 0
* * * —e1l

1+ Sym {@ L1 PUT e’{OAHTn} 7T® TyPDT + et gAHTD & ET
* —d dD 0 <0, (9)
* * —81] 0
* * * —e1l
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S + Sym {@ 4 TyPUT 4 elTOAHTn} 0T® ToPDT + etgAHTD £, ET

* —® dD 0 <0, (10)
* * —eqol 0
* * * —eol |

S + Sym {@ Dy PUT 4 elTOAHTn} 0T® DoPDT + eiogAHTD £,ET

* —d dD 0 <0, (11)
* * —eqol 0
* * * —&al |

where B B .
~ R, X Ry O ~ e T —Z e
o 1 1T 2 o o7 72| €1 1 1 1
S-e-m | 0 om0 g Jr-e [0 [ ][

- T >
_ [ he; } { Ty —Zo } [ hey ] — h?elWieg — el Wieq,

€9 * Lo €9
~ ~ T
- R X Ry 0 =5 | e Z1 —Z e
Tt 1 1T 2 o L or 72| €1 1 1 1
e L A L PR | b

~ T 7
h Ly —1Z h 7 w.
. [ €1 ] { 2 2 ] [ €1 ] - thfwlw — eg 2€9,

~ ~ ~ T ~
= Ry Y Ry O he AR/ he
_ 717l 2 4 1T _ 172 0 3 2T 1 1 1 1
e P S A L N A S I
T
—52[21 [? _ZZ;}[Z]—e?Ww?—ﬁQengeg;
~ ~ ~ T ~
Ry Y Ry O he AR he
— Y _ 717l 2 1 1T _ 172 0 U 2T 1 1 1 1
-eom| g Jreom [ g - [T 2 )
T
—il2 |: 2; :| |: Z*2 _Zf2 :| |: 2; :| - €$W167 - E26:8FW268,

Ty =[el el hel el], Ty=[eT el hel el],

Dy=[ef ef ef hej), To=[ef ef ef hefl,

oo Ro 0 oo Rl 0 D RQ 0
RO_{ 0 3R0}’R1_{ 0 3R1]’R2_{ 0 332}
Proof: Choose a Lyapunov functional candidate as

5
V=>V, (12)
=1

where

Vi = (H(6)PC(t )

v2—2ZA Y

"= / | x(ﬁ% } Q| ey s+ /ttth(s)W(s)ds
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/ Qﬂ)@+/ 7 (5)Qui($)ds

= / (s)Wox(s)dsdd + h/ / s)Wix(s)dsd
t+6
+h / / $)Waa(s)dsdf + hy / / s)Rot(s)dsdd
—hy Jt+0 h; Jt+60
- 7hl - hc
h / / i7(s) Ryi(s)dsd + T / / i7(5) Ry (s)dsdf),
t+0 +9
/ / / $)Zoi(s dsdﬁd0+h51/ / / s)Z1i(s)dsdBdo
hy t+3 t+3
1 hao / / / $) Zoir(s)dsd3do.
t+8

hithe - ha h2 - 2 h2 — b2
hc_ 9 ah'_ 92 7hsl_ 9 7h'82_ .

Here, we will consider the time-derivative of V' for two cases, by < h(t) < h. and h, <

h(t) < hy.
Case I: hy < h(t) < h.. From V; and V3, we have their time-derivative as:
Vi = 2T () PC(t) = 267 ()0, P (\DT + DTF(t)E> & (), (13)
Vy = 22)\ifi (0i(t)) hi (1) = 267 (H)efpAHT (7 + DF(t)E) & (). (14)
i=1

Also, we obtain Vj as follows:

T T
VE;S&T(t){{e?} Q{ez ] - {63] Q{Zi ] +ef (Q1+ Q2)er — e3 Qe

€3 €3 €5

— (1 — hq)eg Qoes — (1 — Td)elefSell}gl(t) + &" () Qs (1) (15)

By calculation of Vj, we get
Vi = h2aT () Wox(t) + R22T () (W, + Wo)a(t) + h2aT (t)Roi(t) + h2iT (t)(Ry + Ro)a(t)

—hl/tthle(s)Wox(s)ds—ﬁ/tt:l T(s)Wyx(s / §)Wox(s)ds

— /tth i7(5) R (s)ds — T /tthhl T () Ry (s / & ) Raii(s)ds. (16
When by < h(f) < ho. we have C
[ W) < - €006 Wt 1), )
st <o [ 0 T[] [ Jao
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Using Lemma 2.1 and Lemma 2.2, we have

_hl/t_h iT(s)Roi(s)ds < — (x(t) — 2(t — W) Ro(z(t) — z(t — b)) — 3QT Ry,  (20)

i L fth _ pt—h(t)
i /t_h i (s) Ryi(s)ds = — /t_h(t)j;T(3> Rui(s)ds — /t_h (6 Ru(5)ds
< - &I { ]j:l g ] 7€, (t), (21)
_ pt—he
_h/t_h i7(s)Roir(s)ds < — (2(t — he) — 2(t — hy)) T Ra(x(t — he) — 2(t — hy))
— 3Q] RSy, (22)

where X is any matrix satisfying [ }il }%{( } > 0.
1

From Equations (16)-(22), an estimation of V; can be

Vi <€) <61T [13Wo -+ B0y + W) €1 — X Woeo — el Waey — I} { X } ni
[ - [ [ ][] s
+ T () [hl?Ro 4R (Ry + Rg)] i(t). (23)

By calculation of Vi, we get

T
Vs < i (t) (%?Zo + 127+ h§222> i(t) - fi”(t){ [ e } [ - 7 ] { e }

i he; g Z —Zy —Z hel
(h(t) — hl)€7 ] [ * Zl Zl [ (h(t) — hl)e? ]
| (he = h(t))es k4 (he = h(t))eg

L7 -
BT 2 e
If the nonlinear function f(o(¢)) in the feedback path satisfying the finite sector conditions
(3), for any s; > 0,7 =1,2,...,m, it follows from (3) that

sifi(oi(t)) [kl z(t) — fi(o:(1))] =0, i=1,2,....m,
which is equivalent to
2[z" () HKSf(a(t)) = [ (a(1)Sf(a(t))] >0, (25)

where S = diag{si, so,...,sm}, K = diag{ky, ko,..., kn}.
Then, it follows from inequalities (13)-(15), (23)-(25) that

+

V< sz- +2 [T HKSf(o(t) — fF(o(t)SFe)] <L OTi& 1), (26)

where

T =% + Sym {@ YT, P (\IJT + DTF(t)E> el AHT (5 + DF(t)E)}
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+ (n+ DF(t)E)'®(n+ DF(t)E),
~ ~ ~ T ~
77l R, X 1T _ 772 Ry 0 2T hey Zy —Zs hey
=G4 [ * Rl } th I 0 RQ I €9 x Uy €9
T
. |: (h(t) — hl)€7 :| |: W1 W1 :| |: (h(t) — hl)€7 :| _ egW2€9

(he — h(t))es « Wi || (he—h(t))es

il@l g Z =241 —4 izel
— | (h(t) — hi)er *  Z1 4 (h(t) — hy)er
(he = h(t))es x k7 (he — h(t))es

If T, < 0, then V < 0, and system (1) is robustly stable. By Schur complement Y < 0
is equivalent to
T | T AT T
{ El + Sym {@ -+ FiP‘IJ + eloAH 77} 77_§ :| + J1F<t)E + ETFT@)JlT < 0, (27)
. T
where J, = [DPFlT + DT HAey Dch] .
It follows from Lemma 2.3 that Equation (27) holds if and only if there exists positive
scalar £; > 0 such that the following matrix inequalities hold:
{ 51+ Sym {0 + T PUT + el AH T} 7" ®

. "o } +er WL+ ETE <. (28)

By Schur complement Equation (28) is equivalent to
S+ Sym {6 + T PYT + el AHTy} nT® T41PDT + eyopAH'D & ET
* - dD 0
* * —e1d 0
* * * —e1l

< 0. (29)

The left side of the above inequality is affine and consequently convex, with respect to
h(t) € [hi, he], so Equation (29) is equivalent to Equations (8) and (9). Therefore, if
Equations (8) and (9) hold, then system (1) is robustly stable for h; < h(t) < h..

Case 1I: he < h(t) < h,,.

For this case, the time-derivatives of V; and V5 are:

Vi = 2T (t)P((t) = 26X ()T, P (\I/T + DTF(t)E) &(t), (30)
Vy = 2ZAifi(0i(t))hiT¢(t) =26, ()eAH (1 + DF (1) E)é(t). (31)

We can now obtain the calculation result of V3 as follows:

T T
v‘ss&?(t){[ﬂ Q{ﬂ— {3} Q{Ei]w?@w@)el—eg@l@

€3 €3 €5

— (1= hq)e; Qeq — (1 — Td)61T1Q3€11}§2(t) + &"(4) Qs (1) (32)

By calculation of Vj, we get

Vi = Rt () Wox(t) + 22T () (Wy + Wa)a(t) + h2aT (1) Roi(t) + h2iT (t)(Ry + Ro)a(t)
t—hy t—he

'y /t thle(s)WOm(s)ds —h /t B 2T (s)Wha(s)ds — h / 2T (8)Wa(s)ds

t—hy
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t t—hy _ pt—he
— hl/t—h i (s)Rot(s)ds — ﬁ/t 7 (s)Ry2(s)ds — h/ 7 (s)Roi(s)ds.  (33)

—he t—hy,

When h, < h(t) < h,, we have

—hl/ o7 ()Wo(s)ds < — &1 (t)el Woeska(t), (34)
t—hy
t—hy
—iL/ . o7 ($)Win(s)ds < — & (t)el Wies&y(t), (35)
t—hc

A, e < —go [(05 0 T [ ] [6 5 o
(36)

Using Lemma 2.1 and Lemma 2.2, we have

_hl/t—h iT(s)Roi(s)ds < — (x(t) — x(t — b)) Ro(a(t) — z(t — hy)) — 3L RoQo,  (37)

_B/t () Ru(s)ds < — (a(t — ) — (1 — o)) Bale(t — ) — a(t — o))

—he
— 30T R, (38)
_ pt—he _ pt—he _ pt—h(t)
i / i7(s) Roii(s)ds = — T / 7 (s) Roit(s)ds — b / 7 (5) Ryt () ds
t—hu t—h(t) t—hy
R, Y
<-gom| ™ 1 mrao, (39)

where Y is any matrix satisfying [ R;Q }; ] > 0.
From Equations (33)-(39), an estimation of V; can be

Ry 0 }HST

v, < el (t) <elT [hfWo FRA(W, + Wg)} e1 — eI Woes — X Wyeq — 112 { N

[ P E - [0 T ][ 6 ] Jae

+ T (1) [h,?Ro 4 R2(Ry + R2)} i(t). (40)

By calculation of Vi, we get

L B _ mer 17T 2o —2 h
Vs < i'(t) (leo+h§121+h§222> B(t) — &3 (t) <[ é?} { 0 Zoo] { é?}

Zy —Zy —Zs he
+ | (A(t) — he)es « Iy Z ] {(h(t)hc)egl
| (hu = R(t))eg x  x Iy (hy — h(t))eg

][22 ])so “

T

iLel
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If the nonlinear function f(o(t)) in the feedback path satisfies the finite sector conditions
(3), for any s; > 0,7 =1,2,...,m, it follows from (3) that

which is equivalent to
2[a"(HESf(o(t)) = f1(o(t)Sf(a(t)] =0, (42)

where S = diag{s1, S2,...,Sm}, K = diag{ky, ks, ..., kn}.
Then, it follows from inequalities (30)-(32), (40)-(42) that

V<Y Vit 2 [ (HKSf(0(t) = [T(o(t)Sfo(t)] <& O al(t),  (43)

i=1

where

T, = X, + Sym {@ TP (qu + DTF(t)E> D AHT (1 + DF(t)E)}

+ (n+ DF(t)E)'®(n+ DF(t)E),
~ ~ ~ T ~
Tl Ry Y 1T 172 Ry 0 2T hey Zy =72y he;

L S L N A |

[ () ~ ho)es ]T { Wy W, ] { (h(t) = he)es ] e

| (hu — h(t))ey s Wy || (hy—h(t))eg
[ iL€1 ! Zy —Zo —Zo 7161
— | (h(t) = hc)es x  Zy 7 (h(t) — he)es
(hu — h(t))e % 2 (hy — h(t))eg

If Ty < 0, then V < 0, and system (1) is robustly stability. By Schur complement Ty < 0
is equivalent to

{ Yo+ Sym {© + ToPUT + e, AH T} 7T @

N "o ] + LEHE+ ETFT(t)J] <0, (44)

_ T
where J, = [DPFZT + DT HAeyq Dch] .
It follows from Lemma 2.3 that Equation (44) holds if and only if there exists positive
scalar €5 > 0 such that the following matrix inequalities hold:

T T T T

By Schur complement Equation (45) is equivalent to

Sy + Sym {© + ToPUT + el AH Ty} nT® TyPDT + eigpAH'D e, BT
* ~ oD 0
* * —eol 0
* * * —eol

< 0. (46)

The left side of the above inequality is affine and consequently convex, with respect to
h(t) € [he, hu, so Equation (46) is equivalent to Equations (10) and (11). Therefore, if
Equations (10) and (11) hold, then system (1) is robustly stable for h. < h(t) < hy,.

The proof of Theorem 3.1 is completed.

Remark 3.1. By iteratively solving the LMIs given in Theorem 3.1 with respect to h,
for fized hy, T4, hg the mazimum upper bound of the time delay h, can be found for
guaranteeing asymptotic stability of system (1).
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Remark 3.2. Recently, the reciprocally convex optimization technique and Wirtinger in-
equality to reduce the conservatism of stability criteria for systems with time-varying delays
were proposed in [17]. Motivated by this work, the proposed methods of [17] were applied
to the delay-partitioning method as shown in Equations (20)-(22) and (37)-(39).

Remark 3.3. The robust stability criteria investigated in Theorem 3.1 remove free-
weighting matrices, which will make the computation quite complex. The stability criteria
involve much less decision variable than those in [21]. So, Theorem 3.1 may be more
useful than the theorem in [21].

Remark 3.4. If the nonlinear function f(o(t)) in the feedback path satisfies the infinite
sector conditions (4), for any s; >0, i =1,2,...,m, it follows from (4) that
sifi(os(t))hlz(t) >0, i=1,2,...,m,
which is equivalent to
227 () HS f(a(t)) > 0, (47)
where S = diag{s1, S2,...,Sm}-

3.2. Infinite sector condition. Nextly, when the nonlinear function satisfies (4), the
following corollary can be obtained.

Corollary 3.1. System (1) satisfying conditions (4) and (7) is robustly asymptotically
stable for given scalar values of hy, hy,, hq and 74 < 1, and there exist positive-definite
matrices P = [Plixs, Qu, Q. Qs o W, Zi, (i = 0,1,2), Q = {Q*” o2 |, and
22
positive definite diagonal matrices S = diag{si, S2,...,8m}, A = diag{ i, A2, ..., A},

and scalars e, > 0 (r = 1,2), and any matrices X, Y such that the following LMIs hold:

S, + Sym {é + T, PUT + elTOAHTn} nT® T.PDT + epAH'D & ET

* —-d oD 0 <0, (48)
* * —ed 0
* * * —el

[ 5+ Sym {é 4T PUT 4 elTOAHTn} 0T TyPDT + epAHTD &, ET

* —® oD 0 <0, (49)
* * —e11 0
* * * —el

[ 5%, + Sym {é 4 ToPUT 4 elTOAHTn} 0T ToPDT + epAHTD &,ET

* —d oD 0 <0, (50)
* * —eol 0
* * * —eol ]

[ $, + Sym {é LD, PUT 4+ elTOAHTn} 0T ToPDT + epAHTD e, ET

* —& ®D 0 <0, (51)
* * —eol 0
* * * —eol |

where (:) = 62@1263 — 63@1265 + G{Hselo, il, 21, 22, 22, fl, f‘l, fz and fg are deﬁned
in Theorem 3.1.
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Proof: The proof is similar to the proof of Theorem 3.1.
Next, we extend the obtained stability conditions to the nominal form of system (1)
without uncertainties:

@(t) — Ca(t — 7(t)) = Ax(t) + Ay (t))x(t — h(t)) + Bf(o(t)),
o(t)=H"z(t), Vt>0, (52)
o(s) = ¢(s), #(s) = o(s), s € [—max(h,T),0].
We have the following theorem.
Theorem 3.2. System (52) satisfying conditions (3) and (7) is asymptotically stable
for given scalar values of hy, hy, hg, 74 < 1 and k, > 0 (I = 1,2,...,m), and there
exist positive-definite matrices P = [Pijlaxa, Q1, Q2, @3, Ri, Wi, Z;, (i = 0,1,2),

A~ | Qu Q2
@ = * Qo

A = diag{\1, N, ..., A}, and any matrices X, Y such that the following LMIs hold:

, and positive definite diagonal matrices S = diag{si,S2,...,Sm},

[ < - T |, T AT T |

S+ Sym {@+F1qu el AH 77} e | 53)
L * _® m
[ ¢ : T T AT T |

S + Sym {@+F1P\If + el AH n} el (54
. * _@ -
[ < F T | T AT T |

S + Sym {@+r2qu el AH n} el (55)
L * _® m
[ ¢ r T T T T |

S + Sym {@+F2P\If + el AH n} ns -0 (56)

* _

where 21, 21, 22, 22, fl, f’l, f2 and fg are defined in Theorem 3.1.
Next, when the nonlinear function satisfies (4), the following corollary is obtained.

Corollary 3.2. System (52) satisfying conditions (4) and (7) is asymptotically stable for
giwen scalar values of hy, hy, hqg and 74 < 1, and there exist positive-definite matrices
P = [Pij]4><47 Ql; Q?; Q37 Ri} VI/Z'; Zi; (Z = 07172)7 Q = Q*ll g;z
definite diagonal matrices S = diag{si, S2,...,Sm}, A = diag{ 1, Ao, ..., A}, and any

matrices X, Y such that the following LMIs hold:

} , and positive

- ~ ~ T T T T 1

S+ Sym {@ + 1 PUT +efpAH 77} T g (57)
I * - i
ro. ~ ~ T T T T 1

Y1+ Sym {@+F1P\I’ +ejpANH 77} n e <0, (58)
I * —o i
- ~ ~ T T T T i

S + Sym {@ + Do PUT 4 ejgAH 77} U g <0, (59)

. _
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S + Sym {C:) + T,PUT + elTOAHTn} nt®
* —P

where é = 62@1263 - 63@1265 + €{HS€10, 21, 21, 22, 22, fl, fl, fg and fg are deﬁned
in Theorem 3.1.

<0, (60)

4. Numerical Examples. In this section, we give three examples to show that the
results proposed in this paper are less conservative than the existing ones.

Example 4.1. Consider the nominal neutral-type Lur’e systems (52) with

—2 0.5 1 04 —0.5 0.2 0.1 0.2
A:[o —1]’A1:{0.4 —1}’32{—0.75]’02{0.1 0.2]’H:{0.6]

The mazimum admissible upper bounds (MAUBSs) of h with different hy and T4 for the
nominal system (52) with values of Ko by using Corollary 4.1 along with the existing
results are listed in Table 1. From Table 1, it is found that the MAUBs obtained by
Corollary 4.1 are better than the previous results.

TABLE 1. The MAUBs for different hy; and 7; (Example 4.1)

Td Methods\ hy 0.2 0.4 0.6 0.8

[21] 29997 2.1012 1.7307 1.3359

T4 =0.1 [22] 3.0717 2.1171 1.7301 1.3367
Corollary 4.1 3.1495 2.1637 1.7502 1.7153

[21] 2.4563 1.8009 1.4823 1.1157

Ta = 0.5 [22] 2.5131 1.8146 1.4951 1.1168
Corollary 4.1 2.5706 1.8512 1.5423 1.5261

[21] 0.1130 0.1105 0.1105 0.1105

T4 = 0.9 [22] 0.1227 0.1197 0.1197 0.1197

Corollary 4.1 0.2968 0.2814 0.2734 0.2714

Example 4.2. Consider the Chua’s circuit example and the system equation is given by
i(t) = a(y(t) — h(z(1))),
y(t) = z(t) — y(t) + (1),

with nonlinear characteristic

h(x(t)) = ma(t) + 2 (mo — ma){|z(t) + ¢f = [(t) — ],

N | —

with parameters my = —%, my = %, a =9, 3 =14.28 and ¢ = 1. The system can be

represented in normal Lur’e system framework (52) with

—am;—1 « 0 —6.0029 0 O
A= 1 -2 1 |, A= —-13367 0 0 |,
0 -6 -1 2.1264 0 O
[ —a(my —mq) 1
B = 0 ,H=101|, C=0.
0 0

The feedback nonlinear function belongs to the sector [0, K| with K = 1. The dynamic
phenomena of the system are shown in Figure 1. The MAUBSs of h for different hy by
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FIGURE 1. The dynamic phenomena of Example 4.2

TABLE 2. The MAUB:s for different h; (Example 4.2)

Methods\ hg 0 0.3 0.6 0.9 >1
[21] 0.1745 0.1698 0.1698 0.1698 0.1698
[22] 0.1747 0.1710 0.1703 0.1703 0.1703

Theorem 3.2 0.1770 0.1722 0.1718 0.1718 0.1718

using Theorem 3.2 against the existing results are listed in Table 2. From Table 2 it is
clear that the proposed stability criterion is less conservative than the previous results.

Example 4.3. Consider the uncertain system (1) with following parameters:

(1)) = ma(t) + 5 (mo — ma)[(t) + | — () — ],

with parameters my = —%, my = %, a =9, 3 =14.28 and ¢ = 1. The system can be
represented in normal Lur’e system framework (52) with

-2 0 -1 0 —0.2 0.6
A:{o —0.9}”41:{—1 —1]’B:{—O.B]’H:[O.S]’CZO’

D=E,=E,= { 061 0(.)1 ] = { 061 1 Pl = { Sm(g(t)) Sin(g(t» } '

The dynamic phenomena of the system are shown in Figure 2. The MAUBs of h with
hg = 0 and 74 < 1 for different values of Ky, are listed in Table 3 by using Theorem
3.1 and Corollary 3.1 along with the existing criteria in [21,22]. We can found that the
proposed stability criterion is less conservative than the ones in [21,22].
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FiGURE 2. The dynamic phenomena of Example 4.3

TABLE 3. The MAUBS h for different K (Example 4.3)

K Methods h
21 5.1666
1() € Kpos %22} 5.3486
Theorem 3.1 5.9840
21 49731
F() € Kip,1o0 %22} 5.1828
Theorem 3.1 5.9377
. [21] 4.9431
f() € Kpp) [22] 5.1654

Corollary 3.1 5.9195

5. Conclusion. In this paper, some new stability criteria are proposed for a class of un-
certain neutral-type Lur’e systems with interval time-varying delays and sector-bounded
nonlinearity. The delay-dependent stability criteria are derived in the form of LMIs
without using the general free-weighting matrix method. By utilizing reciprocal con-
vex optimization approach and Wirtinger-type inequality which encompasses the Jensen
inequality, the proposed criteria are less conservative than some existing results. In the
future work, we will research variable segments instead of the equal partition. Finally,
some standard numerical examples are used to illustrate the effectiveness of the proposed
approaches and improve the existing methods.

Acknowledgment. This work is partially supported by the National Natural Science
Foundation of China (61503120), and the Natural Science Foundation of Hebei Province
(Grant Number F2016209382), and the Fostering Talents Foundation of North China
University of Science and Technology (Grant Number JP201511).



38

(1]

C. GE, H. WANG, W. LI AND X. WANG

REFERENCES

D. Zhang and L. Yu, H,, filtering for linear neutral systems with mixed time-varying delays and
nonlinear perturbations, J. Frankl. Inst., vol.347, no.7, pp.1374-1390, 2010.

E. Tian, D. Yue and C. Peng, Delay-fraction-dependent robust control for linear systems with delay
instate or input and its applications, Int. J. Syst. Sci., vol.43, no.5, pp.820-833, 2012.

H. Zhang and Z. Liu, Stability analysis for linear delayed systems via an optimally dividing delay
interval approach, Automatica, vol.47, no.9, pp.2126-2129, 2011.

X. Sun and W. Wang, Integral input-to-state stability for hybrid delayed systems with unstable
continuous dynamics, Automatica, vol.48, no.9, pp.2359-2364, 2012.

D. Yue and H. Li, Synchronization stability of continuous/discrete complex dynamical networks with
interval time-varying delays, Neurocomputing, vol.73, nos.4-6, pp.809-819, 2010.

J. Wang, Z. Duan, Y. Yang and L. Huang, Analysis and Control of Nonlinear Systems with Stationary
Sets, World Scientific, Singapore, 2009.

A. Lurie, Some Nonlinear Problem in the Theory of Automatic Control, H. M. Stationary Office,
London, 1957.

V. Popov and A. Halanay, About stability of nonlinear controlled systems with delay, Autom. Remote
Control, vol.23, no.7, pp.849-851, 1962.

Q. Han, A. Xue, S. Liu and X. Yu, Robust absolute stability criteria for uncertain Lur’e systems of
neutral type, International Journal of Robust and Nonlinear Control, vol.18, no.3, pp.278-295, 2008.
C. Yin, S. Zhong and W. Chen, On delay-dependent robust stability of a class of uncertain mixed
neutral and Lur’e dynamical systems with interval time-varying delays, J. Frankl. Inst., vol.347,
no.9, pp.1623-1642, 2010.

P. Park, A delay-dependent stability criterion for systems with uncertain linear state-delayed systems,
IEEFE Trans. Autom. Control, vol.44, no.4, pp.876-877, 1999.

O. Kwon and J. Park, On improved delay-dependent robust control for uncertain time-delay systems,
IEEE Trans. Autom. Control, vol.49, no.11, pp.1991-1995, 2004.

M. Wu, Y. He, J. She and G. Liu, Delay-dependent stability criteria for robust stability of time-
varying delay systems, Automatica, vol.40. no.8, pp.1435-1439, 2004.

Z. G. Wu, J. Park, H. Su et al., Robust dissipativity analysis of neural networks with time-varying
delay and randomly occurring uncertainties, Nonlinear Dynamics, vol.69, no.3, pp.1323-1332, 2012.
W. Duan and C. Cai, Delay-range-dependent stability criteria for delayed discrete-time Lur’e system
with sector-bounded nonlinearities, Nonlinear Dynamics, vol.78, no.1, pp.135-145, 2014.

K. Gu, Discretized Lyapunov functional for uncertain systems with multiple time-delay, International
Journal of Control, vol.72, no.16, pp.1436-1445, 1999.

A. Seuret and F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems,
Automatica, vol.49, no.9, pp.2860-2866, 2013.

P. Park, J. Ko and C. Jeong, Reciprocally convex approach to stability of systems with time-varying
delays, Automatica, vol.47, no.1, pp.235-238, 2011.

L. Ghaoui, E. Feron and V. Balakrishnan, Linear matrix inequalities in systems and control theory,
SIAM, Philadelphia, 1994.

I. Petersen, A stabilization algorithm for a class of uncertain linear systems, Syst. Control Lett.,
vol.8, no.4, pp.351-357, 1987.

K. Ramakrishnan and G. Ray, An improved delay-dependent stability criterion for a class of Lur’e
systems of neutral-type, J. Dyn. Syst. Meas. Control, vol.134, no.1, 2012.

W. Duan, B. Du, Z. Liu and Y. Zou, Improved stability criteria for uncertain neutral-type Lur’e
systems with time-varying delays, J. Frankl. Inst., vol.351, no.9, pp.4538-4554, 2014.



