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Abstract. This paper investigates the decentralized optimal control of the linear qua-
dratic Gaussian (LQG) problem in discrete-time stochastic multi-agent systems. The
state equations of the subsystems are uncoupled and the individual cost function is cou-
pled with the states of other agents. With the help of state aggregation technique and
the mean field structure, we get the decentralized optimal controllers that each agent only
uses its own state and an iterative function which may be computed off-line for the op-
timization of the individual cost function and the social cost function respectively. And
then, we prove that as the number of subsystems increases to infinite, the losses of the
decentralized controllers and the optimal cost function for the two optimal control prob-
lems will go to zero due to the approximation in the optimization. At last, an illustrative
example is given.
Keywords: Decentralized control, Mean field, Discrete-time system, Multi-agent sys-
tem, Linear-quadratic Gaussian

1. Introduction. In recent years, the analysis and control design of multi-agent systems
(MAS) have become very popular in the control communities due to the broad applications
in many fields. As a special type of MAS, large numbers of stochastic multi-agent systems
have many practical examples in the field of engineering, biological, social and economic
system, such as wireless sensor network [1], large scale robotics [2], flocking and swarming
in the biological system [3,4], and resource sharing and competing in the Internet [5].

Agents or subsystems in multi-agent systems usually are coupled in dynamic or cost
function. Agents have the ability of self-governed, but communication ability is limited.
Moreover, each agent cannot interact with all others and it is impossible that each agent
obtains all the states of other agents. Sometimes, the topological structure of the system
cannot be obtained, so the decentralized optimal control that each agent only uses its
own state is necessary for many practical situations. For the multi-agent systems, in
some social, economic, and engineering models, the individuals or agents involved have
conflicting objectives and it is natural to consider optimization based upon individual
cost function [8]; many authors [6-9] develop game theoretic approaches and get some
useful solutions. Huang et al. [8] consider the continuous-time LQG problems in large
population systems, where the agents evolve according to nonuniform dynamics and are
coupled via their individual costs. The state aggregation technique is developed to obtain
the decentralized controllers. This method establishes the stability property of the mass
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behavior and possesses an ϵ-Nash equilibrium property. And in other papers [10-13], they
study the social optimal LQG control problems in mean field for continuous-time systems
and get the centralized and decentralized optimal control and give the Nash certainty
equivalence (NCE) principle and social certainty equivalence (SCE) principle. The mean
field LQG control for leader-follower stochastic multi-agent systems is considered in [14]
and the ϵN -Nash equilibrium property for both leaders and adaptive followers is proved.

In those papers, they all study the mean field LQG control for continuous-time systems
and derive the centralized and decentralized control strategies. Many authors ([15-17]
and therein) consider the discrete-time multi-agent systems. You and Xie [15] study the
linear discrete-time multi-agent systems and get a necessary and sufficient condition for
consensusability under a common control protocol. And Ma et al. [16] also consider the
linear quadratic decentralized dynamic games for large population discrete-time stochas-
tic multi-agent systems. The paper [17] studies the linear quadratic regulation problem
for finite horizon linear discrete time-varying systems with delay in control input. In
the actual applications, discrete system with finite time is more practical and easy to be
realized by computer. Compared with [15-17], the decentralized optimal control of the
linear quadratic Gaussian (LQG) problem in discrete-time stochastic multi-agent systems
with finite horizon are considered, where reference [15] only considers consensus problem
for multi-agent system, [16] studies the decentralized optimal dynamic games for large
population discrete-time stochastic systems with infinite horizon and reference [17] con-
siders the optimal control problem for linear discrete time-varying deterministic systems
with input delay. The main contributions of this paper are that the explicit forms of the
decentralized optimal controllers are given and the asymptotic equivalence of the optimal
controllers for the individual cost function and the social cost function are proved.

The remainder of this paper is organized as follows. Section 2 presents the LQG control
problems in discrete-time multi-agent systems with finite time. In Section 3, we give
decentralized optimal controllers for the individual cost function and social cost function.
The analysis of optimal control is given in Section 4. An illustrative example is given in
Section 5. Section 6 gives the conclusions of the paper.

The following notations will be used in this paper: ∥·∥ denotes 2-norm of vector, X
′
(x

′
)

denotes the transpose of matrix (vector) X(x), tr(P ) denotes the trace of matrix P .

2. The LQG Control Problem in Discrete-time System. We consider a linear
stochastic system with N agents in discrete finite time. The dynamics of agent i is
described by (k = 0, 1, · · · , T − 1)

xi(k + 1) = Axi(k) + Bui(k) + wi(k), (1)

where xi(·) is n1 dimensional state vectors and ui(·) is n2 dimensional control vectors. T
is the finite time step number and A, B are matrices with the compatible dimensions.
wi(k) is independent white noise and E{wi(k)} = 0, E{wi(k)wj(l)} = Λδijδkl. The initial
states {xi(0), i = 1, 2, · · · , N} are independent with each other and {wi(k)} and have the
mean value mi(0) and covariance matrix Θ. All subsystems are independent.

The individual cost function of agent i is

Ji = E


T−1∑
k=0


[
xi(k) − 1

N

N∑
j ̸=i

xj(k)

]′

Q

[
xi(k) − 1

N

N∑
i̸=j

xj(k)

]
+ ui(k)

′
Rui(k)


+

[
xi(T ) − 1

N

N∑
j ̸=i

xj(T )

]′

F

[
xi(T ) − 1

N

N∑
j ̸=i

xj(T )

] , (2)
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where Q and F are symmetric, positive semi-definite matrices and R is symmetric, positive
definite matrix. Let xN

−i(k) = 1
N

∑N
j ̸=i xj(k), k = 0, 1, · · · , T . We call xN

−i(·) the mean field
term of agent i. The agents interact with each other through the coupling terms of the
mean field. This type of model is a dynamically independent and cost-coupled system [8].

Sometimes, the subsystems or agents in the systems are cooperative and have the
common objectives. And the social cost function of the system is defined [10,12] as

J (N)
soc =

N∑
i=1

Ji, (3)

where Ji is the individual cost function for agent i.

Remark 2.1. In the individual cost function (2), these agents are individually incentive
driven and noncooperative. In order to get the individual decentralized control solution, the
Nash certainty equivalence (NCE) principle has been designated and many solutions have
been got [8,9,13,16,17]. In the social cost function (3), these agents are cooperative and

have the common objectives. Minimizing J
(N)
soc , from the point of view of an individual’s

control selection, it is necessary to maintain a delicate balance in reducing its own cost and
also taking account of the social impact of such reductions. The social certainty equivalence
(SCE) principle has also been got and Pareto optimality has been used in [10,12].

We will study the following two problems that each agent optimizes its own cost Ji (P0)

and the social cost J
(N)
soc (P1) and looks for the decentralized optimal control strategies.

Comparing with our solution, the centralized solution for the social cost optimization will
also be discussed.

3. Decentralized Optimal Control. To facilitate further analysis, we denote FN
k =

σ(xi(0), wi(s), i = 1, · · · , N, s = 0, 1, · · · , k) for k = 0, 1, · · · , T − 1, which are the σ-
algebra generated by the initial condition xi(0) and the white noise up to time k. Denote
the control set U0 = {(u1, · · · , uN)|ui(k, ω) is adapted to FN

k , i = 1, · · · , N}.
Firstly, for agent i, the problem (P0) is to find the optimal control u∗

i (k) ∈ U0 that
minimizes the individual performance index Ji. Using the principle of optimality and the
Bellman’s dynamic programming, we start with the finial state and work backwards.

Let xN(k) = 1/N
N∑

i=1

xi(k). When the number of agents is large, it is rational that

xN
−i(k) ≈ xN(k) is approximated by a function x̄(k) for i = 1, · · · , N and its optimality loss

will be negligible in large population conditions. Using the state aggregation procedure,
assume x̄(k) is known and it will be determined later, we will solve a linear quadratic
tracking problem. Then individual cost for the agent i is approximated as follows:

J̄i = E

{
T−1∑
k=0

{
[xi(k) − x̄(k)]

′
Q [xi(k) − x̄(k)] + ui(k)

′
Rui(k)

}
+ [xi(T ) − x̄(k)]

′
F [xi(T ) − x̄(k)]

}
. (4)

For the agent i, using the solution of the linear tracking problem for the finite discrete-
time stochastic system, we have the following theorem.

Theorem 3.1. For k = 0, 1, · · · , T − 1, the decentralized optimal control of the state
equation (1) with the approximate cost function (4) is

u∗
i (k) = −

(
R + B

′
Pk+1B

)−1 [
B

′
Pk+1Ax∗

i (k) − B
′
Pk+1s(k + 1)

]
, (5)
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where

Pk = Q − A
′
Pk+1B

(
R + B

′
Pk+1B

)−1

B
′
Pk+1A + A

′
Pk+1A, (6)

PT = F, (7)

if I − B
(
R + B

′
Pk+1B

)−1
B

′
Pk+1 is invertible

s(k + 1) = As(k), (8)

s(0) =
1

N

N∑
j=1

mj(0). (9)

Then the optimal cost function is

J̄∗
i = [mi0 − s(0)]

′
P0[mi0 − s(0)] + tr

{
P0Θ +

T−1∑
k=0

Pk+1Λ

}
. (10)

Proof: We optimize from the finial state. For the stage T − 1, the cost function of
agent i is

J̄i(u(T − 1))

= E
{

[xi(T − 1) − x̄(T − 1)]
′
Q[xi(T − 1) − x̄(T − 1)] + ui(T − 1)

′
Rui(T − 1)

+[xi(T ) − x̄(T )]
′
F [xi(T ) − x̄(T )]

}
= E

{
E

{
[xi(T − 1) − x̄(T − 1)]

′
Q[xi(T − 1) − x̄(T − 1)] + ui(T − 1)

′
Rui(T − 1)

+[xi(T ) − x̄(T )]
′
F [xi(T ) − x̄(T )]

} ∣∣FT−1

}
= E

{
[xi(T − 1) − x̄(T − 1)]

′
Q[xi(T − 1) − x̄(T − 1)] + ui(T − 1)

′
Rui(T − 1)

+[Axi(T − 1) + Bui(T − 1) − x̄(T )]
′
F [Axi(T − 1) + Bui(T − 1) − x̄(T )]

}
+ tr(FΛ).

Using the maximal principle, we can get the optimal control

u∗
i (T − 1) = −

(
R + B

′
PT B

)−1 [
B

′
PT Ax∗

i (T − 1) − B
′
PT s(T )

]
, (11)

where PT = F, s(T ) = x̄(T ) and

PT−1 = Q − A
′
PT B

(
R + B

′
PT B

)−1

B
′
PT A + A

′
PT A, (12)

s(T − 1) =

(
A

′ − A
′
PT B

(
R + B

′
PT B

)−1

B
′
)

s(T ) + Qz∗(T − 1), (13)

and if I − B
(
R + B

′
PT B

)−1
B

′
PT is invertible (we will prove it later), we can get the

following equation from Equations (11), (12), (13) and the definition of x̄(T )

s(T ) =

[
I − B

(
R + B

′
PT B

)−1

B
′
PT

]−1 [
A − B

(
R + B

′
PT B

)−1

B
′
PT A

]
s(T − 1)

= As(T − 1). (14)

Substituting the optimal control u∗
i (T − 1) into the cost function, by (12), we get

J̄∗
i (T − 1) = E

{
[xi(T − 1) − x̄(T − 1)]

′
PT−1 [xi(T − 1) − x̄(T − 1)]

}
+ tr(PT Λ). (15)
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The finial time T − 1 is chosen arbitrarily, using mathematical induction, Equations
(5)-(8) are right for any k, k = 0, 1, · · · , T − 1. For k = 0, we have

u∗
i (0) = −

(
R + B

′
P1B

)−1 [
B

′
P1Axi(0) − B

′
PT s(1)

]
, (16)

P0 = Q + A
′
P1A − A

′
P1B

(
R + B

′
P1B

)−1

B
′
P1A, (17)

s(1) = As(0), (18)

s(0) = E

{
1

N

N∑
j=1

xj(0)

}
=

1

N

N∑
j=1

mj(0). (19)

And the finial optimal cost function is

J̄∗
i = [mi0 − s(0)]

′
P0[mi0 − s(0)] + tr

{
P0Θ +

T∑
k=1

PkΛ

}
. (20)

And then, we will prove that I − B
(
R + B

′
Pk+1B

)−1
B

′
Pk+1, k = 0, 1, · · · , T − 1

are invertible. It follows that R is invertible because R is positive definite matrix, let

W (k + 1) = I − B
(
R + B

′
Pk+1B

)−1
B

′
Pk+1 and V (k + 1) = I + BR−1B

′
Pk+1, then we

have
W (k + 1)V (k + 1) = V (k + 1)W (k + 1) = I,

therefore W (k + 1) are invertible. The proof of the theorem is completed. �
For the agent i, applying the optimal control law, the closed loop Equation (1) becomes

x∗
i (k + 1) =

(
A − B

(
R + B

′
Pk+1B

)−1

B
′
Pk+1

)
x∗

i (k)

+B
(
R + B

′
Pk+1B

)−1

B
′
Pk+1s(k + 1) + wi(k), k = 0, 1, · · · , T − 1. (21)

Denoting xi(k) = Exi(k) and taking expectation on both sides of Equation (21) gives

x∗
i (k + 1) =

(
A − B

(
R + B

′
Pk+1B

)−1

B
′
Pk+1

)
x∗

i (k)

+B
(
R + B

′
Pk+1B

)−1

B
′
Pk+1s(k + 1), (22)

where xi(0) = Exi(0) = mi(0), and Pk are the solutions of the difference Riccati equation
(6) and s(k) are the solutions of the iterative equation (8).

Remark 3.1. From (5), we know that the decentralized optimal controllers only depend
on its own state and an iterative equation which can be solved off-line. The optimal state
equations are given by (21).

In the front of this section, the individuals or agents involved in the large systems
have self-governed objectives and are individually incentive driven and noncooperative.
Each agent optimizes its own cost function and does not consider the impact on other
agents. Now we will study a different situation where the agents are cooperative and

have a common objection. For minimizing the social cost J
(N)
soc , we also consider the

decentralized strategies where each agent only uses local information. Let the set of the
socially optimal controls be denoted by (û1(·), · · · , ûN(·)) ∈ U0. Suppose the state x̂i(k)
corresponds to ûi(k) and the admissible control set U0i consists of all ui(k) adapted to
FN

k . Then ûi(·) is the unique optimal control for the following control problem (P2) [10]:

xi(k + 1) = Axi(k) + Bui(k) + wi(k), (23)
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J0
i (ui(·)) = JN

soc(û1(·), · · · , ûi−1(·), ui(·), ûi+1(·), · · · , ûN(·)), (24)

for k = 0, 1, · · · , T − 1, where J0
i (ui(·)) is to be minimized.

Due to the mean field coupling of the states in the JN
soc, for any agent i, we give the

reformulation of the cost function of the problem (P2). Since (û1(·), · · · , ûN(·)) ∈ U0. We
know (û1(·), · · · , ûi−1(·), ûi+1(·), · · · , ûN(·)) and x̂j(·), j ̸= i have been specified in advance
and will not change with ui(·). After a simple calculation, we have

J0
i (ui) = E

{
T−1∑
k=0

[
L1(xi(k), x̂−i(k)) + ui(k)

′
Rui(k)

]
+ L2 (xi(T ), x̂−i(T ))

}
, (25)

where

L1(xi(k), x−i(k))

=
N2 + N − 1

N2
xi(k)

′
Qxi(k) − N + 2

N
xi(k)

′
Qx̂−i(k)

−N + 2

N
(x̂−i(k))

′
Qxi(k) + M(x̂−i(k)),

L2(xi(T ), x−i(T ))

=
N2 + N − 1

N2
xi(T )

′
Fxi(T ) − N + 2

N
xi(T )

′
Fx̂−i(T )

−N + 2

N
(x̂−i(T ))

′
Fxi(T ) + M̄(x̂−i(T )).

Here, M(x̂−i(k)) and M̄(x̂−i(T )) denote the terms not depending on ui(k) and ui(T ).
When N is sufficiently large, we also can approximate the term x̂−i(k) by a deterministic
function ˆ̄x(k). Then the cost function (25) can be approximated by

J̄0
i (ui) = E

{
T−1∑
k=0

[
L̄1

(
xi(k), ˆ̄x(k)

)
+ ui(k)

′
Rui(k)

]
+ L̄2

(
xi(T ), ˆ̄x(T )

)}
, (26)

where

L̄1

(
xi(k), ˆ̄x(k)

)
=

(
1 +

N − 1

N2

)
xi(k)

′
Qxi(k) − N + 2

N
xi(k)

′
Qˆ̄x(k) − N + 2

N
(ˆ̄x(k))

′
Qxi(k),

L̄2

(
xi(T ), ˆ̄x(T )

)
=

(
1 +

N − 1

N2

)
xi(T )

′
Fxi(T ) − N + 2

N
xi(T )

′
F ˆ̄x(T ) − N + 2

N
(ˆ̄x(T ))

′
Fxi(T ).

Minimizing the cost (26) with the sate equation (1), we have the following theorem.

Theorem 3.2. For k = 0, 1, · · · , T − 1 and any agent i, the decentralized optimal con-
trollers are

ûi(k) = −
[(

1 +
N − 1

N2

)
B

′
P̂k+1B + R

]−1 [(
1 +

N − 1

N2

)
B

′
P̂k+1Axi(k)

−N + 2

N
B

′
P̂k+1s(k + 1)

]
, (27)

where

P̂k = Q + A
′
P̂k+1A
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−
(

1 +
N − 1

N2

)
A

′
P̂k+1B

(
R +

(
1 +

N − 1

N2

)
B

′
P̂k−1B

)−1

B
′
P̂k+1A, (28)

P̂T = F, (29)

and if I −
(
1 + N−1

N2

)
B

[
R +

(
1 + N−1

N2

)
B

′
P̂k+1B

]−1

B
′
P̂k+1 is invertible, then

s(k + 1) = As(k), (30)

where

s(0) =
1

N

N∑
j=1

mj(0). (31)

And the social optimal cost function for agent i is

J̄0∗
i (ûi) = [mi0 − s(0)]

′
P̂0[mi0 − s(0)] + tr

{
P̂0Θ +

T−1∑
k=0

P̂k+1Λ

}
. (32)

The proof of this theorem is similar with Theorem 3.1, and we omit it.

Remark 3.2. We should point out that I − (1+ N−1
N2 )B[R+(1+ N−1

N2 )B
′
P̂k+1B]−1B

′
P̂k+1,

k = 0, 1, · · · , T−1 are invertible. Let Ŵ (k+1) = I−(1+N−1
N2 )B[R+(1+N−1

N2 )B
′
P̂k+1B]−1B

′

P̂k+1, and V̂ (k + 1) = I + (1 + N−1
N2 )BR−1B

′
P̂k+1, and we can get

Ŵ (k + 1)V̂ (k + 1) = V̂ (k + 1)Ŵ (k + 1) = I,

so Ŵ (k + 1), k = 0, 1, · · · , T − 1 are invertible.

Remark 3.3. It follows from (6) and (28) that the two Riccati equations are equivalent
when N → ∞ because lim

N→∞
(1 + N−1

N2 ) = 1. As N is large, the difference between the

solutions of the two Riccati equations is also very small. From Theorems 3.1 and 3.2,
by lim

N→∞
N−2

N
= 1, we know that the decentralized optimal controllers and the optimal cost

function of the individual optima and social optima are the same when N → ∞. It can
be seen from Theorem 3.2 that the decentralized optimal controller of the social optimal
control for any agent i is related to the agent number of the systems.

Remark 3.4. The Riccati equations and the optimal controllers have the same forms
with the deterministic optimal control, but the optimal cost function is different with the
deterministic optimal control in Theorems 3.1 and 3.2 [18]. The optimal cost function
has not only the quadratic forms of the initial values but also the stochastic quantity of
the initial states and the noise of the system [19]. So the optimal cost function is bigger
than the value of the deterministic optimal control.

4. Optimality Analysis. In the above computation of the optimal control, x−i(k) is ap-
proximated by x̄(k), x̂−i(k) is approximated by ˆ̄x(k), for i = 1, 2, · · · , N , k = 0, 1, · · · , T ,
i.e.,

xN
−i(k) =

N∑
j ̸=i

xj(k) ≈
N∑

j=1

xj(k) = xN(k), (33)

x̂N
−i(k) =

N∑
j ̸=i

x̂j(k) ≈
N∑

j=1

x̂j(k) = x̂N(k). (34)

They will cause the error in the computation for the optimal computer of every step.
Then we have the following theorem.
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Theorem 4.1. The error of the social cost function for agent i satisfies

lim
N→∞

δJsoc(ui(k)) = 0. (35)

Proof: For any step k, k = 0, 1, · · · , T − 1, assume ∥xi(k)∥ < M for i = 1, 2, · · · , N ,
M is a constant, and the error of individual cost function for agent i is

δJi(ui(k)) =
∣∣J̄i(ui(k)) − Ji(ui(k))

∣∣
=

∣∣∣∣− 1

N
[xi(k) − x̄(k)]

′
Qxi(k) − 1

N
xi(k)

′
Q[xi(k) − x̄(k)] − 1

N2
xi(k)

′
Qxi(k)

∣∣∣∣
=

∣∣∣∣ 2

N
(xi(k) − x̄(k))

′
Qxi(k) +

1

N2
xi(k)

′
Qxi(k)

∣∣∣∣
≤ 4

N
Mtr(Q) +

1

N2
M2tr(Q).

Then we have
lim

N→∞
δJi(k) = 0. (36)

The error of the social cost function for agent i is

δJ0
i (ui(k)) =

∣∣J̄0
i (ui(k)) − J0

i (ui(k))
∣∣ =

∣∣∣∣2N + 2

N2
xi(k)

′
Qxi(k)

∣∣∣∣
≤ 2

N + 2

N2
M2tr(Q).

When N → ∞, we get
lim

N→∞
δJsoc(ui(k)) = 0. (37)

The proof of the theorem is completed. �
Remark 4.1. It follows from Equations (36) and (37) that the losses of both individ-
ual cost and social cost for each agent caused by approximation of state aggregation are
insignificant if the number of agent is large.

Next, we consider the scalar model of the systems. Minimizing the social cost function

J
(N)
soc (u(·)) for the systems, the centralized optimal control can be obtained. Let A = a,

B = b, Q = q, R = r and F = f . Then the state equation for the system and the social
cost function become

x(k + 1) = Ãx(k) + B̃u(k) + w(k), (38)

J (N)
soc (u(·)) = E

{
T−1∑
k=d

(
x

′
(k)Q̃x(k) + u

′
(k)R̃u(k)

)
+ x

′
(T )F̃ x(T )

}
, (39)

where x(k) = (x1(k), x2(k), · · · , xN(k)), u(k) = (u1(k), u2(k), · · · , uN(k)), w(k) = (w1(k),

w2(k), · · · , wN(k)), Ã = aIN , B̃ = bIN , R̃ = rIN , Q̃ = (q̃ij), F̃ = (f̃ij), and

q̃ii =

(
1 +

N − 1

N2

)
q, q̃ij = −N + 2

N2
q, i ̸= j,

f̃ii =

(
1 +

N − 1

N2

)
f, f̃ij = −N + 2

N2
f, i ̸= j.

Minimizing the social cost function (39) under the state Equation (38), we can get the
optimal controllers, for k = 0, 1, · · · , T − 1,

u∗
c(k) = −ab

(
rIN + b2P̃k+1

)−1

P̃k+1x
∗(k), (40)
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where

P̃k = a2P̃k+1 − a2b2P̃k+1

(
rIN + b2P̃k+1

)−1

P̃k+1 + Q̃, (41)

P̃T = F̃ . (42)

From Theorem 3.2, we can obtain the optimal controllers and Riccati equation of the
scaler model for minimizing the social cost function, k = 0, 1, · · · , T − 1

ûi(k) =
1(

1 + N−1
N2

)
b2p̃k+1 + r

[(
1 +

N − 1

N2

)
abp̃k+1xi(k) − N + 2

N
bp̃k+1s(k + 1)

]
, (43)

where

p̃k = q + a2p̃k+1 −
(
1 + N−1

N2

)
a2b2p̃k+1

r +
(
1 + N−1

N2

)
b2p̃k+1

, (44)

s(k + 1) = as(k), p̃T = f. (45)

Theorem 4.2. It follows from Equations (40)-(45) that the decentralized optimal con-
trollers for any agent i are the same with the centralized optimal controllers when N → ∞.

The proof of this theorem is simple and straight-forward, and we omit it. �
Then we analyze the difference of the solutions of the Riccati equations (6) and (28)

for scalar model. For any k, suppose m1 < pk < M1,m1 < p̂k < M2,

pk − p̂k

=
a2rpk+1

r + b2pk+1

− a2rp̂k+1

r +
(
1 + N−1

N2

)
b2p̂k+1

=
a2r2 (pk+1 − p̂k+1) + N−1

N2 a2b2rpk+1p̂k+1

(r + b2pk+1)
(
r +

(
1 + N−1

N2

)
b2p̂k+1

) ,

it follows that

|pk − p̂k| <
a2r2

(r + b2m1)(r + b2m2)
|pk+1 − p̂k+1| +

N−1
N2 a2b2rM1M2

(r + b2m1)(r + b2m2)
. (46)

Because pk+1 > 0, p̃k+1 > 0, r > 0 and pT = p̃T = f , ∀ε > 0, if N is sufficient large and
|pk+1 − p̃k+1| < δ, then |pk − p̃k| < ε. Therefore, by (46), we can get that |pk − p̃k| = 0
if N → ∞ for k = 0, 1, · · · , T . From (5) and (27), the optimal controllers ûi(k) = u∗

i (k)
if N → ∞. We also point out that the optimal individual cost function and social cost
function for any agent i are the same when N → ∞ because pk = p̃k for k = 0, 1, · · · , T .

Remark 4.2. By the analysis of this section, if the number of agent is large, the differ-
ences of the optimal controllers and the optimal cost function of problem (P0) and (P1)
are small. So in the computation of the decentralized optimal problems, we can only op-
timize the individual cost function and do not consider the impact on other agents if the
number of agents is very large.

5. An Illustrative Example. We now provide one scaler model example to explain the
solutions of Sections 3 and 4. Assume the system has 50 agents. For simplicity, let the
system matrices be A = 0.9, B = 1 and the weighted matrices of the cost function be
Q = 1, R = 1.5, F = 2 for agent i, i = 1, · · · , 50. Suppose the initial states of all agents
are given by N (0, 1), where N (0, 1) is the standard normal distribution. Without loss
of generality, assume the covariance matrix of the white noise Λ = 1 and the time step
number T = 30.

Based on the solutions of Theorems 3.1 and 3.2, for any agent i, we can get the de-
centralized optimal controller and optimal closed-loop state equation. The expectation
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of optimal states and the decentralized optimal controllers for any agent i are given in
Figure 1, where x1 = Ex∗

i (k), x2 = Ex̂i(k), u1 = u∗
i (k), u2 = ûi, x3 = Ex̂i(k) − Ex∗

i (k)
and u3 = ûi − x∗

i (u). From this figure, we know that the difference of the expectation
of optimal states and the difference of the optimal controllers gradually tend to 0 as the
increase of k. By Figure 2, it is known that the relative error dx(k) is only 2% for any
agent i, where dx(k) = [Ex̂i(k)−Ex∗

i (k)]/Ex∗
i (k). Figure 3 shows different curves of the

difference of the expectation of optimal states for different agent number N , where the
number of the agents N = 30, 50, 100. It can be seen that the differences of the expec-
tation of optimal states increase as the increase of k and decrease as the increase of N .
By this example, we know that the states of the decentralized optimal control tend to
be stable fast and the difference of the optimal states for individual optimal control and
social optimal control is also small if the number of agents is large.

Figure 1. The curve of the optimal states and controllers

0 5 10 15 20 25 30
0

0.005
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0.015

0.02

0.025

k

dx

Figure 2. The curve of relative error of the optimal states
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Figure 3. The curve of the optimal states for the different number N

6. Conclusions. In this paper, the mean field LQG optimal control problem in discrete-
time for large population stochastic system is considered. An approach of state aggrega-
tion is applied and the decentralized optimal controllers for individual optima and social
optima are got. We get that the two solutions of the Riccati equations, the optimal con-
trollers, and the cost function for each agent are the same as N → ∞. We also prove that
the losses of the individual cost function and the social cost function for each agent are
equal to 0 when N → ∞. We should point out that the approach may not work if the
state equations or the cost function have different forms, and other approaches should be
searched of the problem in the future.
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