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Abstract. This paper presents a mathematical model for dimensioning of square foot-
ings using optimization techniques (general case), i.e., the column is localized anywhere
of the footing to obtain the most economical contact surface on the soil, when the load
that must support said structural member is applied (axial load and moments in two
directions). The classical model is developed by test and error, i.e., a dimension is pro-
posed, and the equation of the biaxial bending is used to obtain the pressure acting on
the four corners of the square footing, which must meet the conditions as the following:
1) the minimum pressure should be equal or greater than zero, because the soil cannot
withstand tensile; 2) The maximum pressure must be equal or less than the allowable
capacity that can withstand the soil. Therefore, normal practice to use the classic model
will not be a recommended solution. Then, the proposed model is best option, since it is
more economic.
Keywords: Square isolated footings, Most economical contact surface, Allowable ca-
pacity of the soil, Biaxial bending

1. Introduction. The foundation is the part of the structure which transmits the loads
to the underlying soil. The foundations are classified into superficial and deep ones, which
have important differences: in terms of geometry, the behavior of the soil, its structural
functionality and its constructive systems [1,2].

Superficial foundations may be of various types according to their function: isolated
footing, combined footing, strip footing, or mat foundation [1-6].

In the design of superficial foundations, in the specific case of isolated footings, there are
three types in terms of the application of loads: 1) footings subjected to concentric axial
load, 2) footings subjected to axial load and moment in one direction (uniaxial bending),
3) footings subjected to axial load and moments in two directions (biaxial bending) [1-4].
The hypothesis used in the classical model is developed by trial and error, i.e., a dimension
is proposed, and after the equation of the biaxial bending is used to obtain the pressure
acting on the four corners of the square footing, which must meet the following conditions:
1) the minimum pressure should be equal to or greater than zero, because the soil is not
capable of withstanding tensile; 2) the maximum pressure must be equal to or less than
the allowable capacity that can withstand the soil [1-6].

Mathematical models have been presented to obtain the dimensions of rectangular,
square and circular isolated footings subjected to axial load and moments in two direc-
tions (biaxial bending), but the column is located in the center of the footing [7-9]. Also
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a comparison between the rectangular, square and circular footings in terms of the con-
tact area with soil has been proposed; this paper considers the column situated in the
center of the footing [10]. A new approach for dimensioning of rectangular footings using
optimization techniques is presented, and also the column is situated in the center of the
footing [11].

Also models have been presented to find the dimensions of rectangular and trapezoidal
combined footings subjected to axial load and moments in two directions (biaxial bending)
in each column [12,13].

This paper presents a mathematical model for dimensioning of square footings using
optimization techniques (general case), i.e., the column is localized anywhere of the footing
to obtain the most economical contact surface on the soil, when the load that must
support said structural member is applied (axial load and moments in two directions).
Also, numerical examples are presented to validate the mathematical model proposed in
this paper to obtain the most economical area of square footings under an axial load and
moments in two directions.

The paper is organized as follows. Methodology (Section 2) describes the mathematical
model for the dimensioning of square footings, shows the equations for the general case,
presents the special cases of footings (concentric footings, edge footings, and corner foot-
ings), and also shows the equations to obtain the optimal area for each case. In Section
3, numerical examples are presented to validate the proposed mathematical model using
optimization techniques. Results and discussion are presented in Section 4. Conclusion
(Section 5) completes the paper.

2. Methodology. Figure 1 shows a square footing subjected to an axial load and mo-
ment in two directions (biaxial bending) and the column is localized anywhere of the
footing, where pressure is different in the four corners of the contact surface.

Figure 1. Square footing under a column localized anywhere of the footing

The general equation for any type of footings subjected to biaxial bending is [7-14]:

σ =
P

A
± MxT y

Ix

± MyT x

Iy

(1)

where σ is the pressure exerted by the soil on the footing, A is the contact area of the
footing, P is the axial load applied at the center of gravity of the footing, MxT is the total
moment around the axis “X” (MxT = Mx + Pey), MyT is the total moment around the
axis “Y ” (MyT = My + Pex), x is the distance in the direction “X” measured from the
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axis “Y ” up the fiber under study, y is the distance in direction “Y ” measured from the
axis “X” up the fiber under study, Iy is the moment of inertia around the axis “Y ” and
Ix is the moment of inertia around the axis “X”.

The pressure exerted by the soil anywhere on the footing in function of coordinates
(x, y) is obtained [7-14]:

σ(x, y) =
P

A
+

MxT y

Ix

+
MyT x

Iy

(2)

Substituting MxT = Mx+Pey, MyT = My+Pex, A = L2, I = L4

12
, and the corresponding

coordinates at each corner into Equation (2), the pressures at each corner of the square
footing are presented below.

The pressure in corner 1 with coordinates (x = L/2, y = L/2) is:

σ1 =
P

L2
+

6(Mx + Pey)

L3
+

6(My + Pex)

L3
(3)

The pressure in corner 2 with coordinates (x = −L/2, y = L/2) is:

σ2 =
P

L2
+

6(Mx + Pey)

L3
− 6(My + Pex)

L3
(4)

The pressure in corner 3 with coordinates (x = L/2, y = −L/2) is:

σ3 =
P

L2
− 6(Mx + Pey)

L3
+

6(My + Pex)

L3
(5)

The pressure in corner 4 with coordinates (x = −L/2, y = −L/2) is:

σ4 =
P

L2
− 6(Mx + Pey)

L3
− 6(My + Pex)

L3
(6)

Now, if we consider ey = L/2−b and ex = L/2−a, since in some cases, the column could
be located anywhere on the footing (see Figure 1), Equations (3) to (6) are presented as
follows:

σ1 =
P

L2
+

6[Mx + P (L/2 − b)]

L3
+

6[My + P (L/2 − a)]

L3
(7)

σ2 =
P

L2
+

6[Mx + P (L/2 − b)]

L3
− 6[My + P (L/2 − a)]

L3
(8)

σ3 =
P

L2
− 6[Mx + P (L/2 − b)]

L3
+

6[My + P (L/2 − a)]

L3
(9)

σ4 =
P

L2
− 6[Mx + P (L/2 − b)]

L3
− 6[My + P (L/2 − a)]

L3
(10)

Figure 2 shows more general cases of square footings according to the location of the
column, which are concentric footings, edge footings and corner footings.

The concentric footings: the column is localized in center of the footing (see Figure
(2a)). The edge footings: the column is found on one property line of the footing (see
Figure 2(b)). The corner footings: the column is located on two property lines attached
of the footing (see Figure 2(c)).

2.1. Objective function to minimize the area. An area function is defined as the
contact surface total area A, which is:

A = L2 (11)
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Figure 2. General cases of square footings: (a) concentric footings, (b)
edge footings, and (c) corner footings

2.2. Constraint functions (general case). Equations for dimensioning of square foot-
ings are:

σ1 =
P

L2
+

6[Mx + P (L/2 − b)]

L3
+

6[My + P (L/2 − a)]

L3
(12)

σ2 =
P

L2
+

6[Mx + P (L/2 − b)]

L3
− 6[My + P (L/2 − a)]

L3
(13)

σ3 =
P

L2
− 6[Mx + P (L/2 − b)]

L3
+

6[My + P (L/2 − a)]

L3
(14)

σ4 =
P

L2
− 6[Mx + P (L/2 − b)]

L3
− 6[My + P (L/2 − a)]

L3
(15)

0 ≤


σ1

σ2

σ3

σ4

 ≤ σmax (16)

where σmax is allowable load capacity of the soil.

2.3. Special cases.

2.3.1. Constraint functions for the concentric footings. Substituting the values of a = L/2
and b = L/2 into Equations (12) and (15), constraint functions are presented:

σ1 =
P

L2
+

6Mx

L3
+

6My

L3
(17)

σ2 =
P

L2
+

6Mx

L3
− 6My

L3
(18)

σ3 =
P

L2
− 6Mx

L3
+

6My

L3
(19)

σ4 =
P

L2
− 6Mx

L3
− 6My

L3
(20)

0 ≤


σ1

σ2

σ3

σ4

 ≤ σmax (21)
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2.3.2. Constraint functions for edge footings. Substituting the values of a = c2/2 and
b = L/2 into Equations (12) and (15), constraint functions are presented:

σ1 =
P

L2
+

6Mx

L3
+

6[My + P (L/2 − c2/2)]

L3
(22)

σ2 =
P

L2
+

6Mx

L3
− 6[My + P (L/2 − c2/2)]

L3
(23)

σ3 =
P

L2
− 6Mx

L3
+

6[My + P (L/2 − c2/2)]

L3
(24)

σ4 =
P

L2
− 6Mx

L3
− 6[My + P (L/2 − c2/2)]

L3
(25)

0 ≤


σ1

σ2

σ3

σ4

 ≤ σmax (26)

2.3.3. Constraint functions for corner footings. Substituting the values of a = c2/2 and
b = c1/2 into Equations (12) and (15), constraint functions are presented:

σ1 =
P

L2
+

6[Mx + P (L/2 − c1/2)]

L3
+

6[My + P (L/2 − c2/2)]

L3
(27)

σ2 =
P

L2
+

6[Mx + P (L/2 − c1/2)]

L3
− 6[My + P (L/2 − c2/2)]

L3
(28)

σ3 =
P

L2
− 6[Mx + P (L/2 − c1/2)]

L3
+

6[My + P (L/2 − c2/2)]

L3
(29)

σ4 =
P

L2
− 6[Mx + P (L/2 − c1/2)]

L3
− 6[My + P (L/2 − c2/2)]

L3
(30)

0 ≤


σ1

σ2

σ3

σ4

 ≤ σmax (31)

3. Numerical Examples. The tables for the dimensioning of square footings are pre-
sented with three cases and each case with four problems different, where the soil load
capacity varies of 250, 200, 150 and 100 kN/m2. Table 1 shows the results for the di-
mensioning of concentric square footings using the new model with the optimization tech-
niques; the objective function (minimum contact surface) by Equation (11) is obtained,
and constraint functions by Equations (17) to (21) are found. Table 2 presents the results
for the dimensioning of edge square footings using the new model with the optimization
techniques; the objective function (minimum contact surface) by Equation (11) is found,
and constraint functions by Equations (22) to (26) are obtained. Table 3 shows the results
for the dimensioning of corner square footings using the new model with the optimiza-
tion techniques; the objective function (minimum contact surface) by Equation (11) is
obtained, and constraint functions by Equations (27) to (31) are found. The minimum
areas and dimensions for square footings by the MAPLE-15 software are obtained.

4. Results and Discussion. Table 1 shows the results for the dimensioning of concentric
square footings. Case 1 presents that the second condition prevails in all types; this means
that the footing should be dimensioned on the basis of soil load capacity. To case 2 governs
the second condition for the last three types and the first condition prevails in the first
type. Finally, to case 3 is governed by the first condition for the first three types (soil load
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Table 1. Dimensioning of concentric footings using the new model

Soil load
capacity

σmax

kN/m2

Axial
load P

kN

Moments Minimum
area

Minimum
dimensions Pressure in the corners of the footing

My

kN-m
Mx

kN-m
A
m2

L
m

σ1

kN/m2
σ2

kN/m2
σ3

kN/m2
σ4

kN/m2

Case 1
250.00 700.00 70.00 100.00 4.6850 2.1645 250.0000 167.1642 131.6632 48.8274
200.00 700.00 70.00 100.00 5.6463 2.3762 200.0000 137.3913 110.5591 47.9504
150.00 700.00 70.00 100.00 7.2007 2.6834 150.0000 106.5277 87.8967 44.4243
100.00 700.00 70.00 100.00 10.1946 3.1929 100.0000 74.1938 63.1340 37.3277

Case 2
250.00 500.00 70.00 100.00 4.1616 2.0400 240.2922 141.3484 98.9438 0.0000
200.00 500.00 70.00 100.00 4.8224 2.1960 200.0000 120.6798 86.6855 7.3653
150.00 500.00 70.00 100.00 6.0890 2.4676 150.0000 94.0944 70.1349 14.2293
100.00 500.00 70.00 100.00 8.4988 2.9153 100.0000 66.0967 51.5667 17.6635

Case 3
250.00 500.00 100.00 150.00 9.0000 3.0000 111.1111 66.6666 44.4444 0.0000
200.00 500.00 100.00 150.00 9.0000 3.0000 111.1111 66.6666 44.4444 0.0000
150.00 500.00 100.00 150.00 9.0000 3.0000 111.1111 66.6666 44.4444 0.0000
100.00 500.00 100.00 150.00 9.7932 3.1294 100.0000 60.8445 41.2668 2.1114

Table 2. Dimensioning of edge footings using the new model

Soil load
capacity

σmax

kN/m2

Axial
load P

kN

Moments Minimum
area

Minimum
dimensions Pressure in the corners of the footing

My

kN-m
Mx

kN-m
A
m2

L
m

σ1

kN/m2
σ2

kN/m2
σ3

kN/m2
σ4

kN/m2

Case 1
250.00 450.00 −211.87 0.00 1.8000 1.3416 250.0000 250.0000 250.0000 250.0000
200.00 450.00 −247.50 0.00 2.2500 1.5000 200.0000 200.0000 200.0000 200.0000
150.00 450.00 −299.71 0.00 3.0000 1.7321 150.0000 150.0000 150.0000 150.0000
100.00 450.00 −387.30 0.00 4.5000 2.1213 100.0000 100.0000 100.0000 100.0000

Case 2
250.00 439.40 −300.00 100.00 3.1170 1.7655 250.0000 250.0000 31.9387 31.9387
200.00 401.39 −300.00 100.00 3.5902 1.8948 200.0000 200.0000 23.6017 23.6017
150.00 357.88 −300.00 100.00 4.3121 2.0766 150.0000 150.0000 15.9867 15.9867
100.00 305.40 −300.00 100.00 5.5914 2.3646 100.0000 100.0000 9.2395 9.2395

Case 3
250.00 400.00 −300.00 0.00 2.5317 1.5911 65.9891 250.0000 65.9891 250.0000
200.00 400.00 −300.00 0.00 2.8058 1.6750 85.1256 200.0000 85.1256 200.0000
150.00 400.00 −300.00 0.00 3.1844 1.7845 101.2209 150.0000 101.2209 150.0000
100.00 400.00 −300.00 0.00 7.8755 2.8063 100.0000 1.5804 100.0000 1.5804

capacity), and the fourth type is dominated by the second condition (minimum pressure
zero).

Table 2 presents the results for the dimensioning of edge square footings. This table
shows numerical experiments. For the case 1 consider P = 450 kN, Mx = 0 and the
maximum value of My is obtained to produce the optimal area. For the case 2 take into
account My = 100 kN-m, Mx = −300 kN-m and the maximum value of P is found to
produce the optimal area. For the case 3 consider P = 400 kN, My = −300 kN-m and
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Table 3. Dimensioning of corner footings using the new model

Soil load
capacity

σmax

kN/m2

Axial load
P kN

Moments
Minimum

area
Minimum
dimensions Pressure in the corners of the footing

My

kN-m
Mx

kN-m
A
m2

L
m

σ1

kN/m2
σ2

kN/m2
σ3

kN/m2
σ4

kN/m2

Case 1
250.00 300.00 −104.32 −104.32 1.2000 1.0954 250.0000 250.0000 250.0000 250.0000
200.00 300.00 −123.71 −123.71 1.5000 1.2247 200.0000 200.0000 200.0000 200.0000
150.00 300.00 −152.13 −152.13 2.0000 1.4142 150.0000 150.0000 150.0000 150.0000
100.00 300.00 −199.81 −199.81 3.0000 1.7321 100.0000 100.0000 100.0000 100.0000

Case 2
250.00 400.00 −300.00 −238.23 2.5317 1.5911 65.9892 250.0000 65.9892 250.0000
200.00 400.00 −300.00 −255.01 2.8058 1.6750 85.1256 200.0000 85.1256 200.0000
150.00 400.00 −300.00 −276.90 3.1844 1.7845 101.2209 150.0000 101.2209 150.0000
100.00 400.00 −300.00 −481.27 7.8755 2.8063 100.0000 100.0000 1.5804 1.5804

Case 3
250.00 400.00 −238.23 −300.00 2.5317 1.5911 65.9892 65.9892 250.0000 250.0000
200.00 400.00 −255.01 −300.00 2.8058 1.6750 85.1256 85.1256 200.0000 200.0000
150.00 400.00 −276.90 −300.00 3.1844 1.7845 101.2209 101.2209 150.0000 150.0000
100.00 400.00 −481.27 −300.00 7.8755 2.8063 100.0000 100.0000 1.5804 1.5804

the maximum value of Mx obtain to produce the optimal area. To all cases are dominant
the second condition.

Table 3 shows the results for the dimensioning of corner square footings. This table
presents numerical experiments: For the case 1 consider P = 300 kN, Mx = My and the
maximum values of My and Mx are obtained to produce the optimal area. For the case 2
take into account P = 400 kN, My = −300 kN-m and the maximum value of Mx is found
to produce the optimal area. For the case 3 consider P = 400 kN, Mx = −300 kN-m
and the maximum value of My is obtained to produce the optimal area. To all cases are
dominant the second condition.

5. Conclusions. This paper presents a new mathematical model for dimensioning of
squ-are footings using optimization techniques (general case), i.e., the column is localized
anywhere of the footing to obtain the most economical contact surface on the soil (optimal
area), which must meet the conditions as the following: 1) the minimum pressure should
be equal to or greater than zero; 2) the maximum pressure must be equal to or less than
the soil load capacity.

The study aims to show the minimum contact surface (minimum area) for square iso-
lated footings, and present the types more known are concentric, edge, and corner footings.

Real examples for the dimensioning of square footings have been presented to demon-
strate the efficiency of the optimization techniques.

The research reported in this paper concludes as follows.
1) The dimensioning of concentric square footings can be used for any load and mo-

ments.
2) The dimensioning of edge square footings can be used for any load and moment

around the axis “X”, but the moment around the axis “Y ” must be negative to balance
the moment that produces the eccentric load.

3) The dimensioning of corner square footings can be used for any load, but the moments
around of the axes “X” and “Y ” must be negatives to balance the moments that produces
the eccentric load in the two directions.
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The model developed in this paper applies only to rigid soils satisfying expression of
the biaxial bending, i.e., the variation of the pressure is linear. The suggestions for future
research are: when another type of soil is presented, by example in cohesive soils and
granular soils, because the pressure diagram is not linear and should be treated differently
to the problem presented in this paper.
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