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ABSTRACT. In the traditional process of nonlinear non-Gaussian filtering system model,
there are many disadvantages on filtering results such as inaccuracy initial value selection
and low convergence, due to complex system model or the influence of diversity interfer-
ence. To improve the filter accuracy and solve the above problems, we put forward a new
Gaussian approximate filter method, also give the general solution and special solution on
the new method. In this paper, we demonstrate that existing Gaussian approzimate filter
methods are based on our new scheme. The new Gaussian approximate filter method
adopts measurement point correction status quadrature points to better utilize the one-
step predicted density, non-Gaussian information and high-order moment information
of the posterior density, which can directly update quadrature points without repeatedly
producing quadrature points. In addition, our new method not only is suitable for de-
terministic system model but for stochastic system model. At the end of this paper, we
apply our method into single variable non-stationary growth model and vertical free-fall
model to verify the performance of new method. What is more, we make comparison with
the ezisting Gaussian approzimate filter methods, and the results show that our method
is more effective and superior.

Keywords: Gaussian approximate filter method, General solution, Special solution,
Quadrature points, Measurement point correction status

1. Introduction. Nonlinear filtering [1-3] has been widely used in target tracking [4],
signal processing [5], communication and automatic control [6]. Based on the random
state space model, main task of nonlinear filtering is to calculate the posterior probability
density function. We generally use Bayesian estimation theory to deal with nonlinear
filtering problems by recursively computing the posterior probability density function of
state. Bayesian estimation theory provides an optimal solution for dynamic state esti-
mation problems [7]. However, Bayesian estimation contains multi-dimensional nonlinear
integral that is difficult to solve, so it is unable to obtain the analytical solution of the
posterior probability density function for nonlinear stochastic dynamic system. There-
fore, there is no optimal nonlinear filter. To complete the state estimation of nonlinear
stochastic dynamic system, we must use the approximate method to obtain suboptimal
nonlinear filter. These approximate methods can be divided into two categories [8,9]:
global method and local method. Under the Gauss hypothesis, Gaussian approximation
filters mainly calculate the Gaussian weighted integral. Unscented Kalman filter (UKF)
[10-12] is a typical Gaussian approximation filter, which uses three order unscented trans-
formation to calculate Gaussian weighted integral. In order to improve the accuracy of
UKF, Wang and Rui [13] proposed improved UKF. Firstly, the fading factor was intro-
duced into the filter process based on strong tracking filter to avoid the filter divergence,
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and then wavelet transform was used to estimate the statistical characteristics of mea-
surement noise to improve unscented Kalman filter tracking ability. Liu and Yin [14] used
a minimum skewness monomorphic sampling strategy to reduce the amount of calcula-
tion of unscented Kalman filter and improve the accuracy of unscented Kalman filter.
Yu et al. [15] put forward an improved dual unscented Kalman filter (IDUKF) with
random control inputs and sequential dual estimation structure, in which the parameter
was linearly observed and uncorrelated with the state. In [16], based on the square-root
unscented KF (SRUKF), traditional Maybeck’s estimator was modified and extended to
nonlinear systems. The square root of the process noise covariance matrix () or that of
the measurement noise covariance matrix R was estimated straightforwardly. Novel fault
detection method for nonlinear systems was proposed using the residuals generated by the
second-order divided difference filter (DD2 filter) and the local approach. DD2 filter was
based on the polynomial approximation of the nonlinear transformations obtained with a
particular multi-dimensional extension of Stirling’s interpolation formula [17]. In order to
improve the stability of UKF in high dimensional state estimation, improved high-degree
cubature Kalman filter (IHDCKF) was proposed [18].

Updated integral points are obtained by linear transformation of state prediction in-
tegral points. It ignores the correction action of measurement integral points for state
integral points. In order to solve this problem, this paper puts forward an updating point
method. We take correction function of measurement integral points into consideration
for state integral points, which is more effective to obtain non-Gaussian information and
high order moment information of state step prediction probability density function and
state posterior probability density function. In addition, the proposed integral points
updating method not only is suitable for determining system, but also for random system
model. Secondly, we deduce general solution and special solution for proposed integral
points updating method. Finally, we apply this method into Gaussian approximation
filters and get a new (Gaussian approximation filtering method. The experiments of our
new method on single variable non-stationary growth model and vertical free-fall model
demonstrate the effectiveness and superiority compared with other Gaussian approxima-
tion filtering methods. The structure of this paper is as follows. In Section 2, we introduce
nonlinear Gaussian approximation filter including existing improved quadrature Kalman
Filter. Then we detailed explain the proposed new Gaussian approximation filter method
in Section 3. Next, experiments are shown in Section 4. Finally, there is a conclusion in
Section 5.

2. Nonlinear Gaussian Approximation Filter.

2.1. Gaussian approximation filter framework. Considering the following discrete
nonlinear control system [19-21] in state apace:

Tk = fr—1(Th-1) + W1, (1)

2 = hy(z1) + vp (2)

where (1) and (2) are system equation and measurement equation respectively. k& is
discrete-time series. x, € R™ is state vector. z; € R™ is system measurement vector.
fe—1(*) and hy(+) are unrelated zero mean Gaussian white noise, which meets E[wyw!] =
Qror and E[vgvl] = Ry6p respectively. 4y is Kronecker-6 function. Initial state xq is
Gaussian random vector whose mean value is Zgg and covariance matrix is Fyjo. Initial
state xp, system noisy w; and measurement noisy vy are independent. Nonlinear filtering
obtains the minimum variance estimation E[xy|Z;] according to current moment noise
measurement and previous noise measurement. Z; = z;,1 < j <k.
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Under Gaussian approximation filter, state and measurement joint step prediction prob-
ability density function can be approximated as Gaussian, namely:

_ Tk | . i‘k|k71 Pk\kfl Py, klk—1
Thy 25| Lr—1) = N N , ’ 3
P(: 2 Zie-1) ({ %k } [ Rk|k—1 ] [ (sz,k\kfl)T Py ki1 3)
where state step prediction Zy;—; and its corresponding covariance matrix Py are the
first and second order moment of p,, |z, _, respectively. Measurement step prediction Zj,_;
and its corresponding covariance matrix P, yjx—1 are the first and second order moment of

Pz |zp_, Tespectively. Py, pjx—1 is cross-covariance matrix of state and measurement. The
following is the calculation for above matrixes.

Tpp—1 = . Je—1(@r—1) N (@p—1; To—1jk—1, Po—1jp—1)dTp—1. (4)
Prjr—1 = fo1@r-1) fioy (@ 1) N (215 Be—1pp—1, Pocije—1) dwg—1 5)
RTL
- fﬁk\k—lf{\kq + Qp—1-
Zhlk—1 = / i (2k)N (215 Bhjk—1, Prjr—1) dg. (6)

Py pjk—1 = / () by, ()N (285 Brjp—1, Prin—1) k1 = Zrp-12ppp_1 + Be. (7)

sz,k\kfl = / h;‘f(xk)N (ka; i'k\kfla Pk\kfl) dxy, — fk|k712]z1|k71- (8)

According to Formula (3), state posterior probability density function can be updated
as Gaussian:

(T, 26| Zk—1)

Pk Zy) = (ol Ze1) = N(xk; Trjp, Pejr) (9)
where state estimation 2 and corresponding estimation error covariance matrix is:
T = Tk + We(2k — Zije-1), (10)
Pk = Pt + Wi P i W, (11)
Wy = sz,k\k—lpz;lk“c_l (12)

where W}, is Kalman filter gain. As we all know, the basic framework of nonlinear filter is
Kalman filter. So Gaussian approximation filter framework adopts that of Kalman filter.

Gaussian approximation filter is composed of time update and measurement update,
and Formulas (4) and (5) belong to time update. (6), (7), (8) and (10), (11), (12) are
measurement update. We mainly calculate the Gaussian weighted integral in (4)-(8). So
Gaussian weighted integral can be written as the following unified form,

Tlg] = / LGN (5 1, S (13)

In general, we adopt the following formula to solve (13).

N
/ g(x)N(z; p, X)dx ~ Zwig(xi) (14)

" i=1
where x; and w; are integral points and corresponding of Gaussian density N(x;u,Y).
N is the number of integral points. We use (14) to calculate Gaussian weighted integral
in (4)-(8). Different x; and w; will result in different Gaussian approximation filters.
Before updating time and measurement, existing Gaussian approximation methods need
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to produce integral points based on the Gaussian hypothesis. After updating, it will give
up these integral points. However, it will repeat the above processes in the next time.
In addition, it only retains low moment information of p(xy|Z;) and p(zx|Z;_1), which
limits estimation accuracy of Gaussian approximation filtering and loses high moment
information.

2.2. Existing improved quadrature Kalman filter. Existing improved quadrature
Kalman filter [14,22] does not need Gaussian hypothesis to repeat generate integral points.
And we define the following variate.

g]; = [5](61)7 - i‘k|k717 e 7§](CN)7 - "i.k\kfl] ) (15)

&= [5;9” — Ty ,f,iN” - fﬁk\k] (16)

where 5,(;)7 is integral points of state step prediction. 5,; is state prediction integral
points error matrix. SI(JH is updated integral points at k£ time. 5,: is state updating
integral points error matrix. So the processes of existing improved quadrature Kalman
filter can be described as:

1) Initialization. According to (14), we can get integral points §Si)+ of density function

N (o3 Zojo, Pojo) and corresponding weight wj.
2) Time updating.
e Spread updated integral points of previous time §,(2J{

& = fi (627). (17)
e Compute state step prediction Zj—1 and corresponding error covariance matrix
Pyjgp—1.
N .
jk|k71 = Zwifl(;)_- (18)
i=1
N . \T
Pyjg—1 = Zwif,?)* (Wigi(;)i) — Iﬁk\kq»"f?kT\k_l- (19)
i=1

e Compute state prediction integral points error matrix &, by Formula (15).
3) Measurement updating.
e Calculate measurement step prediction Zy_;, corresponding covariance matrix
P, yjk—1 and cross-covariance matrix Py, jjr—1.

N
G = > wili) (20)
i1
N . .
Poopik—1 = Zwihkﬁ,ﬁ”’hf&,i”’ — Zhik—1 21 + Ri (21)
i1
N . .
Py plk—1 = Zwihkf,?)’hff,i”* — Eppe_1Zh - (22)
i-1

e Compute kalman filter gain W}, through (12) and updating state estimation Z,
corresponding estimation error covariance matrix Py, by (10) and (11).
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e Compute state updating integral points error matrix f,j
- s
& = Sk\k5k|k—1§k : (23)
where Sy, and Sy;_; are root matrix of Py, and Py, respectively.
e Calculate updated integral points f,(jH.

f;(ﬁlHa e ,5;(€N)+] = 5;: + [i“kuc, Tt ,i“kuc] . (24)

From (23), we can know that state updating integral points error matrix é,j is obtained
by linear transformation of state prediction integral points error matrix & . » which ignores
correction function of measurement integral points for state integral points and limits es-
timation accuracy of existing improved the quadrature Kalman filter. If wy_; = 0 in (3),
then the quadrature Kalman filter cannot be applied into random system model. There-
fore, we propose an improved Gaussian approximation filter method using measurement
integral points to correct state integral points. It has higher accuracy than other methods.
In addition, it can be applied into determining system and random system.

3. The Improved Gaussian Approximation Filter Method.

3.1. Updating integral points. We firstly define the following variate before introduc-
ing new integral points.

Xl(ci) = fr-1 (ngl_)w . (25)

- [xff) gy (M = :zk‘k_l] , (26)
X, = [XIEI% — B, X - jklkfl] ; (27)
797 = b, (X,EZ’") , (28)

Z; = [Z,El)_ — Zklk—1," " ,ZIEN)_ - ﬁk\kq] , (29)
X = [X]gm — g X - £k|k] , (30)
w=[wy, -, wy], W =diagw (31)

where X ,&)Jf is updated integral points at k£ time. X;(:) is integral points of X ,EZEJIF propagated

by system function fr_i(-). Xk is error matrix of propagated integral points. X ,gi)_ and
X, are step prediction state integral points and state prediction integral points error
matrix respectively. Z,EZ)_ and Z, are step prediction measurement integral points and

measurement prediction integral points error matrix respectively. ng” is updated integral

points at k time. X: is state updating integral points error matrix. w is column vector
composed of weight. W is diagonal matrix composed of weight. So we can get the
following formulas:

w =0; VWXi = Poppmt — Qi1 Z, w=0. (32)
~ - T
Ziw (%) = Puupios — Ree (33)
~ ~ T
5w (%) = Pegnr (34)

In this section, we adopt the following methods to update integral points.

X, = F. (35)
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X, =GX, — HZ,. (36)
(35) and (36) satisfy the following constraint conditions.
o o N\T

Xow=0; X;W(XHT = Py (38)
where Py is introduced in (11). The above constraint conditions show that updated
integral points X,(;)Jr and X,(;% can match mean value and covariance matrix of state
posterior density p(zy|Z) and state step prediction density p(xx|Z;_1). Meanwhile, it
keeps weight w; unchanged. After getting 5(,: and 5(,:, we add state step prediction Zy—;
and state estimation Iy, into column of X , and X . to get state prediction integral points
Xlgz)f and state updating integral points X,EZH.

Equation (23) shows that other methods are only suitable for nonlinear system with
determining system model (i.e., system noise covariance matrix Qk — 1 = 0) to design
the integral points updating method. And they ignore the effect correction function of
measurement integral points on state integral points. From Equation (32) we can know
that our method aims to the nonlinear system with random system model to design the
integral points updating method. Therefore, we propose improved Gaussian approxima-
tion filter method, which not only can be applied into determining system, but random
system. Equation (36) indicates that our new method utilizes the measurement integral
points to correct state integral points.

Then, we will give the detailed calculation method on matrix F, G and H.

Theorem 3.1. If matrix F' meets following relationship:
F: Sk‘kflMlT (S]hk,l)_l (39)

where Sy,—1 18 root matriz of Pyy_1, My is arbitrary orthogonal matriz, S,i‘k_l s root
matriz of Pyr—1 — Qr—1, namely,

Sklk=1Sk k1 = Pepp—1, MM =1, (40)
Sli|k71 (Si%\kq)T = Prg1 = Qi (41)
where I is unit matriz, therefore, constraint Equation (37) is true.
Proof: From (32) and (35), we can get that:
X, w = Fxyw = F0 = 0. (42)
So (37) is true for any matrix F. According to (32) and (35), we calculate matrix
X WX,
W (%) = Pl (PR = FRW ST = F (Pyey — Qea) FT. - (43)
We substitute (43) into (37), and get constraint equation,
F (Pyj—1 — Qr—1) FT = Py (44)
According to (39)-(41), (44) can be calculated as:

F (Py1 — Q1) F7

_ N\T
= S MI (Shim) ™ % (Pt = Qecr) (Swa oMY (Shr) ™) (45)

T
= Sklk—1Skk—1 = Prjk-1-
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If F' meets Equations (39)-(41), then (44) is true as well as (37). Next, we compute ma-
trix G and H. Firstly, we should find error matrix X" satisfying the following constraint
equation,

X, = AX, - BZ,. (46)
X;fw = 0. (47)
XWX = Py — Wi Ry (48)
Then we use the following linear transformation to transform X;* as XZ
X, = LX/*. (49)
Using (36), (46) and (49), we can get:
X, =LAX; - LBZ; =GX; — HZ,. (50)
So G' and H can be expressed as:
G=LA, H=LB. (51)
Theorem 3.2. If matriz A and B meet the following relation:
A= BPy, jyr Py + EMy Spp (52)

EET = Pk‘k — WkRkW;;‘F - B sz,k\k—l — Ry — P)ij,k\kflpkqli—lpxz,k\k_l BT’ (53)

where Wy, is Kalman filter gain, My is arbitrary orthogonal matriz,
MyM; =1, (54)
then, constraint Equations (47) and (48) are true.
Proof: We use Formulas (32), (37) and (46) to get:
X w = (Af(,j - BZ;) w = AX;w — BZyw = A0 — B0 = 0. (55)
So constraint Equation (47) is true for any matrix A, B. By Equation (46),
X;:W (X:r)T can be described as:

xw (%) =4 (ka (xk)T) AT _ B (ka (z,f) AT

A (ka (z,f) B+ B (zkw (zk)T> BT

Then, we put (32) (34) (37) into (56), and get:

(56)

X, W (ij)T — APy 1 AT — BPL 4y AT — APy 1B + B(Poops 1)B™. (57)
We substitute (57) into (47) and get a constraint equation which is equivalent to (48).
APyp—1 AT = BP 1 1 AT — AP pi—1 B" + B(Ppopi—1) BT = Py — We R, (58)
Equation (58) can be divided by matrix decomposition.

ASk—1(ASk—1)" — B (Smi_lpxz,kkA)T X (ASkjk—1)"
— (ASki—1) St Peep1B” + BPL, 1Pyl Pacpp 1 B” (59)

X klk—1

= Pojp — Wi RkW,| — B (Paogp—1) — R — P>Z;7k|k_1pk_|;,lpxz,k|kfl)BT-
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After computing, (59) can be expressed as:

T T
ASkjk—1 — B (S,ai,lpxz,mkA) ASkk—1 — B (S,ai,lpxz,k\kq) (60)
= Py = WiReWJ = B (ot = R = PL g1 Pt Peeiie ) BT
T
According to (52)-(54), ASkk—1 — B (Sk_ulcqpxz,klkfl) and
-1 r -1 T
ASk|k71 - B (Sk“c,lpxz,ldkfl) ASk|k71 - B <Sk|kflpxz,k\k71>
can be calculated as (61) and (62):
T
ASpk—1 — B (Sk_“i_lpxz,kw—l) (61)
—1 -1
- Bsz,k\k—l (S]Zikfl) + EMZT — Bsz,k|k71 (Slakfl) = EMQT
-1 T 1 7T
ASk|k71 - B (Sk“c,lpxz,ldkfl) ASk|k71 - B <Sk|kflpxz,k\k71> (62)

= P — WiBW[ — B (Propr = Ri = P11 Pyl Pesjosr ) BT

From (62) we can know that if A and B meet (52)-(54), so (58), (59) and (47), (48) are
true.

Theorem 3.3. If matriz L satisfies the following relation
L = SypM; D™ (63)

where Sk 1s root matriz of Py, M3 is arbitrary orthogonal matriz, D is root matriz of
Pk:|k — WkRkW]z, S0

SkkSip:  MsMg =1 (64)
DD" = Py, — Wi RyW/[. (65)
Constraint Equation (38) is true.
Proof: X, w can be expressed as follows by (47) and (49).
X)fw=LX[fw=L0=0. (66)
So constraint equation (38) is true for any matrix L. Using (48) and (49), we calculate
Sw (%)
f(,jW(X,j)T = L(Pe — WiRaW] ) LT, (67)
We substitute (67) into (38) and get a constraint equation which is equivalent to (42).

L(Pug = Wi W] ) LT = Puy. (68)
According to (63)-(65), L(Pk‘k - WkRkaT) L" can be calculated as:

1
L(P,ﬂk . WkRkW,;f)LT = SyxMID 'DDT (DT) MyST, = SySTy, = Pp. (69
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So if matrix L meets Equations (63)-(65), then (68) and (38) are true. From Theorems
3.2 and 3.3, matrix G and F' can be expressed as:

G = SypMID™ ( BPL iy Pop_y + EMJ 5,;‘;_1). (70)
H = SyM; D™'B. (71)

(70) and (71) show that G and F' are the function of unknown matrix B. To obtain
the detailed value of matrix G and H, we need to give the detailed B value. Then, we
will give two possible values of B in the following. First, when B = 0, state updating
integral points error matrix X . has only relation with state prediction integral points
error matrix X,; So Theorem 3.4 will give the solution of matrix G and H.

Theorem 3.4. If B = 0, and the following formula s true,

Py, = Wi R,W, >0, (72)
so G and H can be calculated by:
G =SuM{ Sy, ,, H=0 (73)
where My is arbitrary orthogonal matriz.
MM =1T. (74)
Proof: It plugs B = 0 into Formula (71) and can get:
H = SyMID 'B = Sy M{ D '0=0. (75)
B =0 is plugged into Formula (53) and it can get:
EE" = Py — Wi R, W, (76)
Utilizing (66) and (76), we get:
DD" = EE" = Py, — Wi RyW}. (77)
Formula (72) and (77) have the orthogonal matrix M:
EM = D. (78)
We plug (78) and B = 0 into (70) and obtain:
G = Syn(MoMM;)"Sgy = Ske(Ma)"Sp (79)
where
My = MyM Ms. (80)

Because M, M and M; are orthogonal matrixes,
MMT = MM MM MT = 1. (81)

According to Formulas (79)-(81), we can know that M, is orthogonal matrix. And (73),
(74) are true. M, and Mj are any orthogonal matrixes, so M, is also orthogonal matrix.

Theorem 3.5. If B = Wy, then matriz G and H can be calculated as:

G = SypMID! (Wk Pt oo Pty + Sk Ms Sy
- Wkpzj;,k\k—lsk_\g—lM5sk_|li—1>'

H = Sy M; D 'W,. (83)
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My s an orthogonal matriz.

M;MI =1. (84)
Proof: We plug B = W, into (71) and get,
H = Sy Mi D™'Wy. (85)
B = Wy, is plugged into (53). It gets,
EE" = Py — Wi P i W) + Wkpg;,mk Isz1k|k Wi (86)
We use (12) and obtain,
Wi P g1 Wy = WkP,Z;,k|k_1 = P 1 Wy . (87)
Then we plug (11) and (87) into (86),
EET = (Sk|k—1 - WkP,Z;,mqu;akT_l) (Sk\k 1= WP 1Sk 1>T- (88)
Using (11) and (87), the matrix Syx_1 — Wksz,k|kf1Sk_|1{71 can be expressed as:

Sk\k 1 — Wk Xz k\k ISI;\k 1= <Pk\k:—1 - Wkpxz,k\k—IWkT> 5;;@ 1 — Pk|kSk;|k; 1° (89)
We put (89) into (88) and get,
EE" = PyiPpy_y P (90)

Pyx and Pyx_y are state estimation error covariance matrix and step prediction error
covariance matrix respectively. So they are positive definite matrix,

Pyr >0,  Pyj—1 > 0. (91)
We plug (91) into (90) and get,
EET = Py Py, P > 0. (92)
M is an orthogonal matrix.
E = (Sk|k 1= WP, - 151:\;6 1) M (93)
We plug B = W}, and (93) into (70), and get:

G =SyMi D! (WkP,Z;,mk 1Pk\k1§ 1

+ Sk\k—1M5Sk_|1i—1 - Wksz,k|k—1Sk_|13—1M5Sk_|1i—1> o
where
My = MM (95)
M and M, are orthogonal matrixes. So we can get,
MsMT = MMI MoM™ =1. (96)

According to Formula (94) and Formula (96), we know that M; is orthogonal matrix and
(82) and (84) are true. M, is arbitrary orthogonal matrix, so M; is arbitrary orthogonal
matrix too.

We can further simplify the specific solution in Theorem 3.5. Setting M; = I and
plugging it into (82), we can get,

G = SypM; D . (97)
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Therefore, G = SypMj D™ and H = Sy M3 |D~'W, are specific solutions of our
method.

3.2. Improved Gaussian approximation filter based on quadrature rule. In this

section, we give the detailed processes for proposed method, which contains time updating

and measurement updating.

1) Initialization. According to (14) and related quadrature rule, it generates integral point
X(EZ)JF and corresponding weight value w; of posterior density function N (zo; Zojo, Fojo)-

2) Time updating.

e We use (25) to spread the updated integral point X,EZ)JIF in last time and get the

transmitted integral point ngi)-

e Compute state step prediction Ty 1.

N
Thik-1 = Z%‘X;(;)- (98)
i=1

e Use (26) to calculate error matrix xk of integral point.
e Calculate state step prediction error covariance matrix Pjx_;.

Pyjr—1 = W Xe + Q1. (99)

e Use (39)-(41) and (35) to calculate matrix F' and state prediction integral point
error matrix X, respectively.

e Compute step prediction state integral point X,Ei)_.

X0, angN)_] = Xy o+ [Bee-r 5 Beppea] (100)

3) Measurement updating.

(a) Use (28) to calculate step prediction measurement integral point Z,Ei)f.
(b) Calculate measurement step prediction Z,_;.

N
i = Y wiZ) (101)
=1

(c) Use (29) to calculate measurement prediction integral point error matrix Z, .
(d) Calculate measurement prediction error covariance matrix P,, y,—1 and cross-
covariance matrix of state and measurement sz,k‘k_l.

~ ~ T
Pzz,k|k71 - Z];W <ZI;> + Rk. (102)

~ ~ T

(e) Use (12) to compute Kalman filter gain Wy, and use (10) and (11) to update state
estimation fv\k‘k and corresponding estimation error covariance matrix Py.

(f) Use (53), (54), (64), (65), (70), (71) to compute G and H, and use (36) to calculate
state updating integral point error matrix X,

. : i)+
(g) Calculate updated integral point X,g) )

AT aXigNH] = X{ 4 [Taper -+ T - (104)
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Our new method can directly update integral point without generating integral point re-
peatedly. Then we make a comparison to standard Gaussian approximation filter method
with our new method.

First, standard Gaussian approximation filter method adopts Formulas (4)-(8) to cal-
culate state and measurement step prediction average value Zy;—1, Zyk—1, and covariance
matrix Pp—1, P k-1, Pxzkk—1. However, new method uses the following way.

Thlk—1 = . Je—1(@p—1)p(xr_1|Zr—1)dzp 1. (105)

Prjp—1 = . Fro1 (Te—1) fio i (mr—1) X p(vp—1]Zk—1)drg—1 — fk\kfﬂf{\kq + Qr-1. (106)
St = / aap(aal Ze ). (107)

s 1 = / el (rep (el Ze g — Z 1 Zly + R (108)

Prosps = / o] (a)p(aal Ze )~ T3 (109)

And the state posterior probability density function p(zy_1|Zx_1), state step prediction
probability density function p(zx|Z_1) can be expressed as:

N
p(Tp—1]|Zk1) = Zwi5 <$k—1 — X,EZ_)T) ; (110)
i—1

p (k| Zk_1) Zwl <xk— )7> (111)

where X ,gz_)ir and X ,gl_)I are directly updated by Theorems 3.1-3.3. Through comparing
Formulas (4)-(8) and (105)-(111), when standard Gaussian approximation filter method
calculates state and measurement step prediction average value, it needs to assume that
state posterior probability density function and state step prediction probability density
function are Gaussian condition. The new method does not require these assumptions.
Second, they adopt different methods to get integral points. Standard Gaussian ap-
proximation filter method uses numerical technique to produce integral points C,EZ)_ and
C,EZH under the condition of Gaussian assumption of state posterior probability density
function and state step prediction probability density function. However, the new method
adopts three-order sphere diameter volume rule to generate integral points C ,gl)f and C,?H

C,ﬁi)* = Tgp—1 + Skik—1Ai; C;EZH = Tk + SkirAs (112)

- { Vne; when z 1, , N (113)
—/ne;_, wheni=n+1,---,2n

where e; denotes unit column vector of i-th element. The new method only uses state

posterior probability density functlon and state step prediction probability density func-

tion to update integral points X ~and X' W+ Using (25)-(27) and (35), X(Z)f can be

shown as:

X,E“’ = Tpk—1 + F | fo—a( k)J{) — Thlk—1 (114)

where X ,gi)f and %g) denote i-th column of error matrix X . and Xy respectively.
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We apply (39) into (114), so X,gi)f can be redefined as:
X7 = Tt + Suprmi (115)

where
= MY (Shi) ™ S x (X)) = B ] (116)
Using (27)-(29), (36), X,Ei)_ can be expressed as:
X =G+ G [ X0 =T | = H (X)) = B (117)

where X T and Z ~ are the i-th column of error matrix X [ and Z; respectively.
We plug (70) and (71) into (117), so X)*

0; can be denoted by:

6, = MT D™ (BP T ks P+ EMY S 1) [X,g“‘ — T
) (119)
- B [hk(X,j ) — Bt ]

From (112) (113), (115), (118) we can know that, A; is used for constructing integral
point Ck and C,?H. n; and 6; is used for updatlng mtegral pomt X( and X

According to (113), \; is constrained on the axis, so Ck and Ck cannot capture h1gh—
order moment information of state posterior probability density function and state step
prediction probability density function. From (118), (121), n; and 6; are not constrained
on the axis and they contain the nonlinear information of system model fx_;(-) and
measurement model Ay (- ) Therefore, high-order moment and non-Gaussian information

is kept in X( and X . Our new method can better approximate state posterior
probability den51ty functlon and state step prediction probability density function than
standard Gaussian approximation filter.

Finally, we make a comparison to computation complexity of different methods. Com-
putation complexity includes the number of floating point arithmetic of calculation matrix
multiplication, Cholesky decomposition, inverse matrix, system function and measure-
ment function. So the float point arithmetic total number of the different methods is:

fi=0 (120 + m*) + 9n® 4+ 3n°N + 2nN? + 2nNm + mN* + Nm?

+7mn2+6nm2+Nn+Nm+nm+NMf+NMh, (120)

fo =0 (3n® + m*) + n® 4+ 2n°N + nNm + Nm® + mn® + 2nm’ (121)
+3Nn +2Nm +n” +m®> + NM; + NM,,

f3=0 (2n3 + m3) +n2N +nNm+ Nm? + mn? + 2nm? + 3Nn (122)

+2Nm + 2nm +n* +m* + NM; + NM,

where fi, fo and f3 are the float point arithmetic total number of our new method,
existing improved Gaussian approximation filter and standard Gaussian approximation
filter respectively. O(-) is the order number of floating point calculation. N is number
of integral point. My and M, denote the floating point arithmetic number in system
function and measurement function. From (121)-(123), we know that:

fi>f2> fs. (123)
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Formula (123) shows that the new method has higher approximation accuracy and
higher computational complexity than other Gaussian approximation filter methods.

4. Experiments and Analysis. In this section, we use single variable non-stationary
growth model and vertical free-fall model to verify our method’s effectiveness and su-
periority. We conduct the experiments on MATLAB platform. According to the real
situation, parameters are selected as B = Wy, M3 = My = I. We use the same integra-
tion rule to compare new method and existing improved methods. Before experiments,
we adopt unscented transformation to process the method (free parameter kK = 3 — n)
and get the standard UKF, improved UKF (B = 0) and proposed UKF (B = Wy). In
addition, to further demonstrate the superiority of the proposed method, we compare
the standard Cubature Kalman filters (CKF), odd-order filter DDF (its interval length is
h = /3), existing proposed UKF and our method.

4.1. Single variable non-stationary growth model. Single variable non-stationary
growth model has been widely used as a standard question to verify the performance of
nonlinear filter, and its state space model can be expressed as follows:

Tr—1
= 0.52)_ 25—— + 8 1.2k _
T, Tp—1 + 1142, + 8cos(1.2k) + wy—1, (124)
2
— Tk 125
2k 20 + v ( )

where system noise vector w; and measurement noise vector v are independent white
Gaussian noise. Their zero mean variances are () = 1 and R, = 3. Initial state xq is
Gaussian random variable with mean value 0.1 and variance 1. In each iteration, initial
state estimation Zypp is randomly selected from Gaussian density function N(z¢;0.1,1).
All filters have the same initial conditions. Simulation time 7" = 10000s. Root mean
square error (RMSE) is as the performance index:

T
RMSE,, = %Z (zh — 21)° (126)
k=

1

where 2} and &% are the real value and estimation value respectively at [-th iteration.
Figure 1 is the RMSE comparison curve after 50 iterations. Table 1 is the average RMSE
value. Table 2 is the single step running time. Note when n+x = h? and n = 1, standard
UKF is equal to 2-order UKF.
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NG TV
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R N T NS ST

6.6 | f ) = -
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Iteration number

FiGURE 1. RMSE comparison curve
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TABLE 1. Average RMSE with different methods

Filter CKF | DDF | Improved UKF | Our UKF
Average RMSE | 7.418 | 7.788 7.273 7.008

TABLE 2. Single step running time with different methods

Filter CKF DDF Improved UKF | Our UKF
Running time | 0.21 x 1073 | 0.22 x 1073 | 0.28 x 1073 | 0.32 x 1073

From Figure 1 and Table 1, the improved UKF and our method have smaller RMSE than
standard UKF and DDF. When B = W), RMSE of our method is smaller than B = 0.
From Table 2, this paper’s method needs more single step running time. Therefore, the
new method has higher estimation precision.

4.2. Vertical free-fall model. Vertical free-fall model has been widely used to verify
the nonlinear filtering performance. In this subsection, we will use the measurement
amplitude of radar to estimate the height, velocity and ballistic coefficient of the vertical
fall. Vertical free-fall model is as shown in Figure 2. z;(¢) and z5(t) denote the height of
faller and falling velocity respectively. r(t) is the distance between radar and faller. M is
horizontal distance. 7 is the height of radar.

E

x2(1) ““"--\a;\(r)

H \‘
v

ol g Radar
A

z
v v

FIGURE 2. Vertical free-fall model

Continuous time dynamic equation of vertical free-fall is:

Bo(t) = —e 1 Og2(1) 4 (2), (128)
F3(t) = 0 (129)

where z3(t) denotes ballistic coefficient. 7 is known constant. So measurement function
is:

yk = \/M2—|—(I1,k—Z)2+'U]€ (]‘30)

where v, ~ N (0, R;). Radar measures the distance every 1 second. In order to eliminate
the effect of system strongly nonlinear, we use 4-order Runge-Kutta to make integration
for (132)-(134). Parameters are: T = 60s, v = 5 x 107°, Z = 10°ft, R, = 10*ft>.
System true state initial value 2y = [3 x 10° 2 x 10" 107?]". Initial filter value Zo;p =
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[3.5 x 10° 2.5 x 10 3 x 107°]". Covariance matrix Pyjo = diagx 105, 4 x 108, x10~%.
We use average absolute error (AAE) as the performance index. AAE is defined as:

t
1 n n
n=1

where ¢ is iteration number. We also use standard DDF, standard UKF, existing improved
UKF and our method to make a comparison. After 250 iterations, the results are as
Figures 3-5. Table 3 is the mean of average absolute error (MEAE). Table 4 is the single
step running time. Figure 3 shows that MEAE with DDF is the worst, followed by
UKF and improved UKF. MEAE with our new method can reach convergence in a short
time of nearly 15s. Hight MEAE with our method is 73.209 smaller than DDF(143.702),
UKF(144.002) and improved UKF(92.059). The differences of speed MEAE are obvious
that our method is the smallest in Figure 4. Although the curve of the four method is
similar, our UKF is the optimal choice. Also ballistic coefficient MEAE with new method
is just 1.885 x 1075, which is the best method shown in Figure 5.

From Figures 3-5, we can know that our new method has smaller average absolute
error value. When B = W, the new method has the lowest average absolute error value
compared with B = 0.
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TABLE 3. Average absolute error mean with different methods

Filter Hight MEAE | Speed MEAE | Ballistic coefficient MEAE

DDF 143.702 9.635 5.174 x 107°

UKF 144.002 9.658 5.183 x 107°
Improved UKF 92.059 5.722 3.086 x 107
Paper’s method 73.209 3.498 1.885 x 107°

TABLE 4. Single step running time with different methods

Filter DDF UKF Improved UKF | Our UKF
Running time | 0.28 x 1073 | 0.25 x 1073 | 0.34 x 1073 | 0.49 x 1073

5. Conclusions. This paper proposes a new Gaussian approximation filtering method.
The new method can better capture the non-Gaussian information and high-order moment
of state step prediction probability density function and state posterior probability density
function. In addition, the proposed method not only can be fit for determined model,
but also fit for the random model. The simulation results show that the new Gaussian
approximation filter method has higher estimation accuracy than the existing methods. In
the future, we will reduce the computation complexity of our method using more advanced
Gaussian filter method. And we would apply it into actual engineering projects.
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