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ABSTRACT. Under the semantic frame of complete residuated lattice-valued logic, we
establish BCK-algebra theory based on complete residuated lattice-valued logic. In BCK-
algebra, the concepts of ideals, positive implicative ideals, implicative ideals and filters
have ever been depicted by classical set theory, but now, they are redefined by a unary
predicate on complete residuated lattice-valued logic, and their properties and relations
between them are discussed.
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1. Introduction. One significant function of artificial intelligence is to make a computer
simulate a human being in dealing with uncertain information, and logic establishes the
foundations for it. However, certain information process is based on the classic logic.
However, there are many uncertainties (such as fuzziness, incomparabilities, and random-
ness) in real world, we can handle these uncertainties by using non-classical logics [1,2],
such as lattice-valued logics. As the matter of fact, non-classical logics have been proved
to be a formal and useful technique for computer science to deal with fuzzy and uncertain
information. Many-valued logic, being an extension and development of classical logic,
has always been a crucial direction in non-classical logic. Various logical algebras, such as
residuated lattices [3,4], lattice implication algebras [5], BL-algebras, MV-algebras, and
MTL-algebras, have been proposed for semantical systems of non-classical logic systems.
Among these logical algebras, residuated lattices are the basic and important algebraic
structure because residuated lattices have close links with various important logics and
the other mentioned logical algebras are all particular cases of residuated lattices. For
example, if the multiplication adjoint to the residuation coincides with the meet, then
residuated lattices reduce to Heyting algebras, which plays an important role in the in-
vestigation of intuitional formal theories. Pavelka [6-8] used residuated lattice logic as a
tool to cope with inexact reasoning and as a basis of fuzzy logic.

Imai et al. [9,10] introduced BCK-algebras which generalizes the notion of algebra of
sets with the set subtraction as the only fundamental non-nullary operation. Since then a
great deal of literature has been produced on the theory of BCK-algebras. In particular,
emphasis seems to have been put on the ideal theory [11-16]. Moreover, in the process of
developing the algebraic structure of the BCK-subalgebras, a theory of filters, a concept
dual to that of ideals, has been developed for BCK-algebras [17,18]. Actually, the filters
introduced by Deeba [17] are dual to lattice ideals in BCK-algebras, so Meng called them
lattice filters in his paper [18] and presented a new notion of BCK-filters which are dual to
BCK-ideals. Zadeh [19] introduced the concept of fuzzy sets. At present these ideas have
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been applied to many mathematical branches, such as groups, rings, functional analysis,
vector spaces, probability theory, and topology. In 1991, Xi [20] applied this concept to
BCK-algebras, Jun and Roh [21], Jun et al. [22] investigated fuzzy commutative ideals
and fuzzy positive implicative ideals in BCK-algebras, respectively.

Notably, Rosser and Turquette [23] in 1952 emphatically proposed that if there exist
many-valued theories beyond the level of predicate calculus, then what are the details of
such theories? Ying [25,26] has made an attempt to give a partial answer in case of point
set topology to the question raised above by Rosser and Turquette. He used semantical
method of continuous-valued logic Ly, to develop fuzzy topology from a completely differ-
ent direction. In 2001, Zhang et al. [27] used this method to develop BCK-algebras based
on continuous-valued logic Ly,. They presented the concepts of fuzzifying subalgebras,
fuzzifying ideals and fuzzifying implicative ideals in BCK-algebras based on continuous-
valued logic. In 1993, Ying [28] adopted the semantical method of complete residuated
lattice-valued logic to build elementary L-fuzzifying topology, and generalized some results
obtained in [24-26]. After then, Qin [29,30] and Peng [31] applied complete residuated
lattice-valued logic to automata and grammar theory, and have obtained plenty of inter-
esting results.

In this paper, we develop a new approach to structure of BCK-algebras, which is based
on complete residuated lattice-valued logic and extend the structure of BCK-algebras
based on continuous-valued logic Ly, proposed by Zhang et al. [27] in two directions:
firstly, BCK-algebra live in general complete residuated lattice-valued logic, which re-
duces to continuous-valued logic Ly, , when the set of truth values is Lukasiewicz interval;
secondly, we use the unary fuzzy predicate and the semantic method of complete residu-
ated lattice-valued logic [28-37] to be BCK-algebra theory, and generalize the results of
[20-22,27]. Previous fuzzy structures of BCK-algebras are mainly introduced by defining
a number of specific fuzzy sets, which are just some simple fuzzifications for classical
problems, and also it is a lack of hierarchical structure. In the present paper, the notions
of BCK-algebras structures are defined by fuzzy predicates. Therefore, we develop fuzzy
BCK-algebras from a completely different direction, and features of our work are that
the truth degree of formulas, axioms and inference rules are graded. This grade takes the
valued in a lattice as a sign, and the results obtained form this study are systemic and
beautiful.

This paper is organized as follows. In Section 2, we recall some basic notions and re-
sults of BCK-algebras and residuated lattice-valued logic. In Section 3, the concepts of
L-fuzzifying subalgebras and L-fuzzifying left reduced ideals are introduced, and their
homomorphic image and inverse image are studied. In Section 4, we introduce the notion
of L-fuzzifying ideals and investigated its properties. L-fuzzifying ideals are an impor-
tant algebraic structure of BCK-algebras; in particular, it is an L-fuzzifying implicative
ideals and L-fuzzifying positive implicative ideals are introduced in Section 5, which are
two special L-fuzzifying ideals. And their relations, properties and product algebras are
discussed. In Section 6, the L-fuzzifying filters, a notion dual to that of L-fuzzifying
ideals, are introduced. Further, the concept of the L-fuzzifying BCK-filters is propsed,
the relations between L-fuzzifying filter and L-fuzzifying BCK-filters are given, and their
properties are considered. Finally, we conclude the paper with a summary in Section 7.

2. Preliminaries. This section aims at recalling some preliminaries concerning BCK-
algebras and residuated lattice-valued logic, which can be used in other sections.
Definition 2.1. [32] A (2,0)-type algebra (X, *,0) is called a BCK-algebra if it satisfies
the following conditions: for any x,y,z € X

(1) ((zxy)* (2 x2) * (zxy) =0,
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Define a binary relation < on X: x <y if and only if x x y = 0, where 2,y € X. Then
(X, <) is a partially ordered set with the least element 0. In any BCK-algebra X, the
following relations [17,18] hold for all z,y,2z € X:

(a) x <y impliesx x 2 < y*z and z2xy < 2 % 1,

(b) z <y and y < z imply z < z,

(c) (xxy)xz=(xx2)x*y,

(

(

)

c)

d) 2% (z* (zxy)) =z *y,
e) xxy < x.

A BCK-algebra X is said to be bounded if there is an element 1 € X such that x <1
for all x € X. A non-empty subset S of a BCK-algebra X is said to be a lM-closed (a
LI-closed) system if for any x,y € S, there exists a greatest lower bound z My (a least
upper bound z Lly) in S. A BCK-algebra X is said to be a commutative BCK-algebra X
if tAy = yAx for all z,y € X, where xAy = y * (y * z) (see [17]). Let 1 be unit element
in a bounded BCK-algebra X, and define an operator N:

N:X—>X,z—1xzx.

For any x € X, we denote 1 %z by Nz.

In any bounded commutative BCK-algebra X (see [18]) we have that

a) N0 =1 and N1 =0,

b) NNz < z,

¢) z < y implies Ny < Nz,

d) Nz xy = Ny *x,

e) NoVNy = N(zAy),

f) NxANy = N(x2Vy),
where 2Vy = N(NzANy).

A non-empty subset S of BCK-algebra X is called a subalgebra [14] of X if, for any
r,y €S, we have rxy € S.

A non-empty subset I of BCK-algebra X is said to be an ideal [33] of X if it satisfies:
for any x,y € X
(1)0el,
2)zxyel,yecl =z €l.
A non-empty set F' of a BCK-algebra X is said to be a filter [17] of X if:
(1) z € F and y > x imply that y € F,
(2) x € F and y € F imply that x My € F.

A non-empty set F' of a bounded BCK-algebra X is said to be a BCK-filter [18] of X
if it satisfies the following conditions:

(1)1 e F,

(2) N(Nz« NY) € Fand y € F imply = € F.

If (X,%,0) and (X', «',0") are BCK-algebras, then a map f of X onto X’ is called a
homomorphism [32] if, for any z,y € X, we have

flexy) = f(x)« f(y).

A BCK-algebra X is called a quasi-right alternate BCK-algebra [34] if z x (y * y) =
(xxy)xy for any z,y € X, x #y. X is called a positive implicative BCK-algebra [33] if
for any z,y,2 € X, we have (z % 2) x (y*2) = (r *y) * 2
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Suppose X is a BCK-algebra, a non-empty subset M is called an implicative ideal [14]
of X if for any z,y,z € X

(1) 0 € M,

(2) (xxy)x2z€ Myxz€ M = xxz € M.

For convenience, we make some explanations and conventions of notation for complete
residuated lattice-valued logic. Let £ = (L,+,-,®, a) be a complete residuated lattice,
i.e., (L,+,-) a complete lattice, whose least and greatest element are 0, 1 respectively,
and ®, « two binary operations on L such that ® is isotone and (L, ®, 1) a commutative
monoid, « is antitone in the first and isotone in the second variable and couple with
® as a ®b < ¢ if and only if a < bac for all a,b,¢c € L. We call an L-valued logic if
its true value is acquired in complete residuated lattice £, still denoting it as £. The
L-valued logic L possesses nullary connectives a (a € L), the usual connectives V, A and
—, and an additional binary connective § as well as usual ones. The symbols V and 3
are quantifier symbols in L-valued logic L. If x and B are respectively individual and set
variable element, then z and B are atomic formulas in L-valued logic £. All of atomic
formulas are formulas, and @V, p A, ¢ — 1, ¢10p, (Va)d(z) and (Fx)d(x) are formulas
if ¢ and ¢ are two formulas. In an L-valued logic £, the degree of truth value of a
proposition ¢ is represented as [¢]. The only designated truth value is 1, in other words,
a formula ¢ is valid, we write =X ¢, if and only if [p] = 1 for every interpretation, and the
rules of truth value of predicate logical formulae and set theoretical formulae are listed as
follows:

(a) [a] = a (a € L), [p VY] = [o] + W], [p AY] =[] - [¥], [e1d] = [¢] © [¢],
o = 4] = [plaly];
(b) if X is the universe, then

(Br)p(@)] =) _[p(@)], [(V2)e(x)] = [ le@);

(c) if X is the universe, A is a fuzzy set of X, x (zr € X) is an individual variable
element, then

[z € A] = A(z).
In addition, the following derived formulae are necessary:
(i) ~p:=p =0, ph:=(p=2>P) AW —=9), p~i:= (0= = )
i) ACB:=(Va)((r€e A - (reB),A=B:=(ACB)A(BCA), A~ B :=

(AC B)y(B C A).

For more detailed account of complete residuated lattice-valued logic, see [6-8].

In this paper, F(X) denotes the L-fuzzy power set of X, and F(F (X)) stands for the set
of fuzzy predicates on X (see [27,28]), where the universe X is an arbitrary BCK-algebra.

3. L-Fuzzifying Subalgebras. In this section, the concept of L-fuzzifying subalgebras
of a BCK-algebra will be introduced under the frame of lattice-valued logic. The equiva-
lent characterizations of these fuzzy subalgebras will be given.

Definition 3.1. Let X be a BCK-algebra, a unary fuzzy predicate s € F(F(X)) is said
to be an L-fuzzifying subalgebra of X, if it is given as follows: for an arbitrary A € F(X),

Acs:= M) (Vy)((zre A)A(y€ A) = (zxy € A)).

Remark 3.1. For any A € F(X), the truth value [A € s] of A € s can be taken to
any one of the possible values of L. Now, we consider a special case [A € s] = 1: it
means that 1 = [A € s| =[], ,cx(A(@) - A(y))aA(z * y), i.e., Alw xy) > A(z) - Ay)
for any x,y € X. Obviously, this is the condition of the definition of the classical fuzzy
subalgebra of X . In particular, when L is real unit interval [0,1], this condition becomes
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that A(z x y) > min{A(x), A(y)} for any x,y € X, a condition of Xi’s definition of
the classical fuzzy subalgebra in [20]. Therefore, our Definition 3.1 is a generalization of
the definition of the classical fuzzy subalgebra of X. Similarly, the following definitions
and results in our paper are generalizations of the classical fuzzy algebraic structure of
BCK-algebras.

In fact, [A € s| = 1 means that A € s is a tautology in complete residuated lattice-valued
logic L system. As discussed above, L-fuzzifying algebraic structures (they are character-
ized by introducing a unary fuzzy predicate and by adopting the semantic method of com-
plete residuated lattice-valued logic L) are different from L-fuzzy algebraic structures (they
mean that the associated membership function takes its values from the complete residu-
ated lattice L under Xi’s idea [20]), for example, all the formulas of the latter are only
the tautologies of the former. From a methodological point of view, it is obvious that the
semantic method is completely different from Xi’s method of membership function of the
classical fuzzy set. On the basis of Ying’s idea [28], we use semantic method of complete
residuated lattice-valued logic to develop fuzzy algebraic structure of BCK-algebras from a
completely different direction in this paper and thereby establish elementary L-fuzzifying
algebraic structure of BCK-algebras which is dual to the existing L-fuzzy algebraic struc-
ture of BCK-algebras. When the set of truth values is Lukasiewicz interval, the underlying
logic of L-fuzzifying algebraic structures is the continuous-valued logic Ly, .

Theorem 3.1. FX A€ s— (Vz) (x€ A—0€ A).

Proof: By Definition 3.1 and b-b = b for every b € L, we have

[Aes]=]] (Al) - Ay)ad(r = y) < [[(A(x) - A(x))aA(z x 2) = [ ] (A(x)aA(0)).

T, yeX zeX reX
And so Theorem 3.1 is valid. O

Theorem 3.2. Let X be a BCK-algebra and A € F(X), and then
ErAces— (Vo) e e A— (x* (- (zx(w*x))--+)) €A, k=1,2,--;

-~

):£A€8—>(VI)(Q?EA(—)(iy*(---(?yk*(x*xl)-.-))614)} k=0,1,2,---;

):£A68—>(Vx)(:z:EA—>((---((x*x)*x)---)*:g)EA),n:1,2,---

-

~~

n

Proof: Since x xx = 0 and x x 0 = x in BCK-algebras, then

[(Vx)(xeA%(av*((i*(x*x)J)))EA)]

2k

=[(Ve)(zr € A= (zx (- (xx(xx0))---)) € A)]

= [Vz)(x € A= (xxx € A)
= H A(z)aA(0)

reX
> [A € s].

The first is proved. Similarly, the second formula can be proved. Using x+xx = 0, x*0 = z,
the third can be proved too. 0]
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Corollary 3.1. Let X be a BCK-algebra, A € F(X), and z1,x9,--- ,x, be arbitrary
elements of X. If at least one xy of the set {x9, 23, -+ ,x,} equals x1, then

EfAcs— (Vo) € A— ((-+ ((wy % 22) % 23) ) % 2,) € A).

Proof: For any z,y,2 € X, we have (x xy) * 2 = (z % 2) xy. So we can exchange xj to
the position of z5. Using 1 * 1 =0, 0 % z; = 0, we have

[T A@)aA((- (21 % 2) x23) -+ ) 5 20) = [] A@)@A((--- (21 % 21) * 22) -+ ) % 2)

reX zeX

— [1 A@)aA)

zeX
> [A € s].
H

Definition 3.2. Let X be a BCK-algebra. A unary fuzzy predicate I, € F(F (X)), called
an L-fuzzifying left reduced ideal of X, is given as follows: for an arbitrary A € F(X),

Aecl = Vx)(Vy)(y e A=z xy e A).

Similarly, we can define an L-fuzzifying right reduced ideal I, € F(F (X)) of X. For
an L-fuzzifying left reduced ideal, we have

Theorem 3.3. Let X be a BCK-algebra and A € F(X). Then
EfAel — (Vo)(z € A 0 € A).

Proof: By Definition 3.2, z * 0 = x and x x x = 0, we have

[Aen]= [] (Aw)eA(z «y)) < [[(A@)aA(z « 2)) = [ (A=)aA(0))

. [Aen]= [] AweA(@+y) < [] A(0)ad(z+0) =[] A(0)aA(
. ryeX 2eX seX
[Aerl] < (H A@)M(o)) : (H A(O)aA(x))
= f[e{X(A(x)aA(O)) : (A;()E)ZA(fr))}
= f(ev);)(x €A 0¢e€ A),
and the proof is completed. O

Similarly, we have
Theorem 3.4. Let X be a BCK-algebra and A € F(X). Then
=CAel, — (Vo) ((x € A) =0 € A),
Theorem 3.5. Let the lattice < L,+,- > be completely distributive, and let X and Y be
BCK-algebras, A € F(X). If f : X =Y is a surjective homomorphism, then
EfAcs— f(A)Es
EfAcl — f(A) e,
EfAcl — f(A) el
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Proof: From Theorem 7.1.10 in [35], we have (), a;)ab = [].(a;ab). Since the lattice
< L,+,- > is completely distributive, it holds that

fA) es) = [T (P - FA)w)af () w))

Z,WeY

= 11 xefZA ZA ZAx*y

ZWEY (2) yef~Hw) zef1(2),
yef~H(w)
> T D « y))aA(z *y))
ZWEY gef— ( ),
yef " (w)
- 11 H A(y))aA(z + y))
2,weY gef-1
yerf- ( )
= |1 (A@) - A(y)aA(z =+ y)).
zyeX
The first formula is proved. Similarly, we can prove others. 0]

Theorem 3.6. Let X and Y be BCK-algebras, B € F(Y). If f : X =Y is a surjective
homomorphism, then

=-Bes« fYB)€s,

=-Bel «+ f7Y(B)el,

=-Bel « fH(B)el,.

Proof: We only prove the second formula, and the proofs for others are similar.

By en] = I (f'B)waf (B)(x=*y))

T,yeX

= [[ (B(fw)aB(f(zxy)))

z,yeX

= [ B(rw)eB(f(x)+ f(y)))

z,yeX

= [[ (Bw)aB(z w))

Z,WeY

= [B € [l];

hence, the proof is completed. O
In the following, we use the symbol [ to denote the intersection of some fuzzy sets.

Theorem 3.7. Let X be a BCK-algebra, Ax(A € A) € F(X). Then for every A € A,

):EA)\ES—><HA)\) € s,

AEA

=X Avel — (ﬂ) Ay €,

AEA
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):EA,\EIT% (ﬂ) Ay € 1,.

AEA

Proof: With the formulas (Ry) and (R;) in [35], it is easy to see that [ [, a;ab > a;ab,
ac [ [, b = [[,(acd;). By Definition 3.1, we have

(0n) - m((Fnn

- TI {(HAA(x)-HAA(y)>OéHAA(x*y)}

zyeX AEA AEA AEA

1 {H(AA aHAw*y}

zheX \AeA AEA

> 1] {(AA aHA)\x*y}

T,yeX AEA

- H H{(AA(:U) - Ax(y))aAx(z xy)}

T,y€X AEA

- H H {(Ax(z) - Ax(y))aAx(z * y) }

AEA zyeX

= H[A)\ S S].

AEA

y e ﬂAA

AEA

)a[x*ye [ A

AEA

Similarly, we can prove others. O

4. L-Fuzzifying Ideals. In this section, the concept of L-fuzzifying ideals of a BCK-
algebra will be introduced under the frame of lattice-valued logic. The equivalent char-
acterizations of this fuzzy ideal will be given.

Definition 4.1. Let X be a BCK-algebra. For an arbitrary A € F(X), we set
Aecl, =Vr)(zre A= 0€ A);
Acl:=Nr)Vy)((zxy e A)A(y € A) — (z € A)).

A unary fuzzy predicate I € F(F(X)), called an L-fuzzifying ideal of X, is given as
follows: for an arbitrary A € F(X),

Ael:=(Aec))N(Ae D).
Proposition 4.1. Let X be a BCK-algebra and A € F(X). Then
=5 (Vo) (V) (Vo) (x y) xy) x 2 € AYA (2 €A) waxy € A) = A€ L.
Proof: By Definition 4.1 and = * 0 = x, we have
[(va)(Vy)(VZ)((((x xy)xy)rze A)A(z € A) 5 xxy € A)

=TI ((A(x *y) xy) *2) - A2))aA(x x )}

z,y,2€X

< JJ {A(((z # 0)  0) % 2) - A(z))aA(z + 0)}

r,2€X

= ] (4@ 2) - A(2)ad(2)}

T,2€X
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=[A € ).

Proposition 4.2. Let X be a BCK-algebra and A € F(X). If =X A € I, then
(1) for all z,y € X withx <y, E* A€l — (y€ A—xe€A);
2)EfAel — (Vo) (Vy)(V2)(zxy € A— (zx2) % (yx2) € A);
B)EfAel — (Vo) (Vy)(V2)((x xy) k2 € A— ((z*2) * (y*2)) x2 € A).

Proof: By - A € I, we have [[,_(A(z)aA(0)) = 1, and so A(z) < A(0) for any
r € X. From z <y, we have z x y = 0. Thus

[Aeb]= ] (A xy) - Aly)aA(r))

z,yeX

< ]I (Al=y)-A@y)eA()

z,y€X,z<y

= [ (A0) A(y))aA(x))

z,yeX,z<y

Therefore, [A € I| < [Ae L] <[y€ A— x € A forall 2,y € X with z < y, and the
first is proved.

With (8) and (12) in [36], we have (zx2)*(y*2) < xxy, ((xx2)*(y*2))x2 < (xxy)*2.
So

[ wed—ze4

= [&Vm),(‘v’_y)(Vz) (rxy€eA— (x*2)*(yx2) €A
= [(Vo)Vy)(V2)((zxy)x 2 € A — ((x*x2)* (y*2)) xz € A)].

Combined with the proof of the first formula, the second and the third formulas have
been proved too. O

Proposition 4.3. Let X be a BCK-algebra and A € F(X). If EX A € I, then for all
x,Yy,2 € X withxxy < z,

=X ((ye A)A (2 € A)) = o € A.

Proof: Form =% A € I, we have A(0) > A(z) > A(z xy) - A(y) for all 2,y € X.
For any x,y,z € X, the inequality z * y < z in X implies that (x xy) * z = 0. Hence
Alz) > Az *y) - Aly) > A((z +y) * 2) - A(2) - A(y) = A(0) - A(2) - A(y) = A(2) - A(y) for
all ,y,z € X with z xy < z. That is, [[, , .expuy<.(y EA) A (z € A)) €Al O

Theorem 4.1. Let X be a BCK-algebra and A € F(X). Then for all z,y,z € X with
rHy < 2,
F((ye AA(zed)sred)»Ael

Proof: For any z € X, 0«2 <z and so (0 x z) x x = 0, thus

II (yeHrzea)»zeA= [] (Aly)-A®R)aA()

T,y,2€X, z,Y,2€X,
Txy<z Try<z

< [T ((A@) - A(z)aA(0)

=[Ae L]
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For z,y € X, z* (zxy) <y, so

II (yeNrze) aed= ]] (A1) A()aA())

z,y,2€X, z,y,2€X,
Try<z Txy<z
< [ (A *y) - A(y)aA(x))
r,yeX
= [A € IQ]
Therefore, [((y € A)A(z € A)) vz € A]<[Ae |- [Aec L]=[AcI]|forall z,y,z € X
with z xy < 2. 0

Theorem 4.2. Let X be a BCK-algebra and YA (A € A) € F(X), and then for all

A€EA,
):ﬁAAEI%(ﬂA,\) el

AEA

Proof: It is easy to know that [[,(a;ab;) < (I]; @)a(]]; b;) with the formulas (A) and
(A") in [28]. By Definition 4.1, we have

(0] -m(l=ne
=11 (H A=) [] AA(0)>

0€ ) Ax

AEA

(07

r€X \XEA AEA
> H H A/\ OZA)\
AeAzeX
= H[A)\ & 11]
AEA

and

: yEﬂAA l'EﬂA/\

(07

[(ﬂAk> 612] = 11 _x*ye M Ax

)

AEA z,yeX L AEA AEA AEA
= H HA/\(x*y)'HA/\(y)> QHAA($)>
zweX \ \AeA AEA AEA

= II (([] A\ =v) - Ay >aHAA )

zyEX AEA AEA

> [T I (@@ *9) - Ax(v))ada(@))

AEA z,yeX

= H[A)\ € [2],

AEA

(Qn=))= ()] (0)

> [T AN]- T]R(4)]

AEA AEA

therefore
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= H 11 (AN)] - [12(AN)])

AEA

= TTI0 (A0 A B(42)]

= H[A,\ S I],

so we complete the proof. O

Theorem 4.3. Let X and Y be two BCK-algebras and A € F(X), and let the lattice
< L,+,- > be completely distributive. If f: X — Y is a surjective homomorphism, then

ErAel — f(A) el

Proof: By Theorem 7.1.10 in [35], we have (), a;)ab = [],(a;ab). Since the lattice
< L,+,- > is completely distributive, we have

[f(4) € L] = [T (F()(2)af (4)(0))

z€eY

H( RN Am)

zey \zef-1 :vef*l(o’)

>H(ZA aA)

2€Y \zef

—HH

2€Y zef-1

xeX

=[A € [}]

where the zero element 0’ of Y is the image of zero element 0 of X under f, and

f(A) e L] = T (F(A) (=¥ w) - f(A)(w))erf (4)(2))

Z,WeY
= 1] Y Alzxy)- Z Aly Z Az
2, WEY z€f(2), yef—1(w) zef-1
yef~ (w)
> 11 > (Alwxy)- Ay))aA(z)
ZweY \ zef~(z),

yef~H(w)

= I 1II (A@=xy)-Aw)ai()

2,WeY gef~ (
yer- ()

= I (A +9) - A)aA@)

T,yeX

=[A el
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Therefore, [f(A) € I| =[f(A) € ] - [f(A) e L] > [Ae ] [Ac L]=[A €] O
Theorem 4.4. Let X and Y be two BCK-algebras and B € F(Y). If f: X - Y isa
surjective homomorphism, then
EfBel« f7'(B)el.
Proof: With Definition 4.1, we have

B e n] = [T (F ' (B (@)af(B)(0)

zeX

= || (B(f(x)aB(£(0)))
= [1(Bw)aB(©))

yey
- [B € [1]

and

7By e k] = [ (I B)zxy) - f7(B)w)) af ' (B)(x))

z,yeX

= [ (B(f () ¥ f(v)) - B(f(y)aB(f(x)))

z,yeX

— H ((B(z #" w) - B(w))aB(z))

2,WEY
= [B € L]
Therefore, [f~(B) € I] = [B € I]. O
Theorem 4.5. Let X be a quasi-right alternate BCK-algebra and A € F(X). Then
EfAes— Ael

Proof: By Theorem 4.1, we have [A € s] < [A € [}]. Otherwise, for any z,y,z € X,
Ef{(ze AANye A) = (zxy) € A} & {(z€ A)AN(ye A) — (2xy) € A}. With the
formula (A") in [35], we have (aab) ®a < b for all a,b € L. Notice that X is a quasi-right
alternate,

{(A(2) - A(y))aA(z xy)} © (A(z x y) - A(y))
{(A(z *y) - Ay))aA((z x y) x y) } © (A(z x y) - Ay))

| (I VAN |

By formula (A) in [35], we have a ® b < ¢ if and only if @ < bac. Thus
(A(z) - A(y))aA(z x y) < (A(x +y) - A(y))aA(z),
it implies that [A € s] <[A € L], and so [A € 5] < [A € I].
Conversely, for any z,y € X, we have
(A(z xy) - A(y))aA(z)} © {A(z) - Ay)}
(A((z *y) xy) - A(y))aA(z + y)} © {A(z = (y xy)) - Aly)}
A

{
{
{(A((m*y) xy) - A(y))aA(z xy) } © {A((w xy) xy) - A(y)}
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< Az *y).

It follows that (A(zxy)- A(y))aA(zr) < (A(z)-A(y))aA(z+y), and so [A € L] < [A € s].
Therefore, [A € I| < [A € L] < [A € s]. By combining with the above conclusions we
complete the proof. O

5. L-Fuzzifying Implicative Ideals. In this section, the concept of L-fuzzifying im-
plicative ideals of a BCK-algebra will be introduced under the frame of lattice-valued
logic. The equivalent characterizations of this fuzzy implicative ideal will be given.

Definition 5.1. Let X be a BCK-algebra, and a unary fuzzy predicate I1 € F(F(X)) is
called an L-fuzzifying positive implicative ideal, if it is given as follows: for an arbitrary

Ae F(X),

AGIII:(AEIl)/\(AEIg),
where A € Iy := (Va)(Vy)(V2)((x xy) x 2) € A)A ((yx2) € A) = (x x 2) € A).
Theorem 5.1. Let X be a BCK-algebra, A € F(X), and then EX A€ Il — A€ I.

Proof: From x 0 = z, we have

[Aen]= [] (A(z*y)*2)- Ay * 2)ad(z * 2))

z,y,2€X

< T (Al * y) #0) - Aly + 0))aA(w  0))

z,yeX

= 1 (A * ) - Aw))aA())

z,yeX

— [A € IQ]
Therefore, [A€ II|=[Ac L|-[Ac L] <[Ae |- [Ac L]=[Ac]I]. O

Theorem 5.2. Let X be a positive implicative BCK-algebra, A € F(X), and then
EfAel—-Aell.

Proof: Since X is a positive implicative BCK-algebra, we have (zxz)*(y*z) = (r*y)*z
for any x,y,z € X. So

{(A(z xy) - A(y))aA(2)} © (A((z * y) * 2) - Ay * 2))
= {(A(z * 2) % (y * 2)) - Ay % 2))aA(w  2)} © (A((w *x y) * 2) - Ay * 2))
= {(Al(z * 2) % (y * 2)) - Ay * 2))aA(z x 2)} © (A(z * 2) * (y * 2)) - Ay * 2))
< Az * 2),
ie., (A(zxy)-A(y))aA(r) < (A((xxy)*x2)-A(yxz))aA(r+z), and hence [A € L] < [A € [3].
It follows that [A € I] < [A € II], and hence the conclusion holds. O

Proposition 5.1. Let X be a BCK-algebra and A € F(X). If =X A € I, then

EEAcTl — (Vo) (Vy)((zxy)xy € A = axxy € A),

=X (Vo) (Vy)(zxy)xy €A = xxye A) — (Vo) (Vy)(V2)((z xy) x 2 € A

— (xx2)x(y*z2) € A),

EEAcIl— (Vo) (Vy) (Vo) ((mx2) s (y*2)) x2 € A= (zx2) % (yx2) € A).
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Proof: By =5 A € I, we have [[, . (A(2)A(0)) =1 = [],cx ((A(z*y)- A(z))aA(0)).
It follows that A(0) > A(z) > A(x*y)- A(y) for any z,y, 2z € X. With yxy = 0, we have

[Ael] = H{ (% y) * 2) - Ay * 2))oA(z * 2) }

< H{ (wxy) *y) - Aly * y))aA(z * y)}
= H (A((z * y) * y)aA(z * y)).

Therefore, F“ A€ I — (Vo)(Vy)((z*xy)xy € A = axy € A).

With £ A € T we obtain A(x) > A(y) when x <y in X. Applying this conclusion to
2)) % z) > A((z x y) x z). Consequently,

*

we have A(((z * 2) * (y *
((z
(v

[(Vz)(Vy) y) xy€e A—xxye A
= [(Vo)(Vy)(V2)(((z % (yx 2)) % 2) x 2 € A — (v % (y * 2)) x 2 € A)]
= [ (A= (y*2)) * 2) * 2)aA((w * (y * 2)) * 2))

x’y?'zeX

< T (Al *y) x 2)ad((z  (y + 2)) * 2)

=TT (Al sy * oAl 2) = (y+2))).

The second is proved. By ((xx*(yx2))*2z)x2 = ((xx2)*(y*2))*z, we have [(Vx)(Vy)((z*
y)ry €A axy e A =[(Vo)(Vy)(V2)(((zx2) # (y*2)) k2 € A= (wx2)* (yx2) € A)],
and so the third formula is proved. O

Definition 5.2. Let X be a BCK-algebra, and a unary fuzzy predicate I11 € F(F (X)),
called an L-fuzzifying implicative ideal, is given as follows: for an arbitrary A € F(X),

Aelll .= (Aell)/\(AEI4),
where A € I := (Vo)(Vy)(V2)(((z * (y xx)) x 2z € A) A (z € A)) = x € A).
Theorem 5.3. Let X be a BCK-algebra and A € F(X). Then EX A€ Il — A€ I.

Proof: From Definition 5.2, we have

[Ael]= [] (Al (yxa) *2) - A(z))aA(2)}

z,y,2€X

H {(A((z * (z x2)) * 2) - A(2))aA(z)}

T,2€X

= ] {(A((z = 0) * 2) - A(2))aA(x)}

T,2€X

IN

= ] (A 2) - A(2)a(2)}

r,2€X

Combined with A € I, the proof is completed. O
In the following theorem, we can see that the converse of Theorem 5.3 also holds in an
implicative BCK-algebra.
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Theorem 5.4. Let X be an implicative BCK-algebra (see [10]), A € F(X). Then
EfAcTl« AclIl

Proof: Since X is an implicative BCK-algebra, it follows that x = z % (y * ) for all
x,y € X. Then

[Ae L] = H ((A(z * 2) - A(2))aA(z))

r,2€X

= ] ((Allw = (y*2)) x2) - A(2))aA(x))

,y,2€X
=[A € 1.
Combined with A € I, we have proved the theorem. O
Theorem 5.5. Let X be a BCK-algebra, A € F(X). If EX A € I, then
=CAcIIl - Acll

Proof: Since =X A€ T and ((z%2) % 2) x (yx2) < (v % 2) xy = (v *y) * 2, we have
A((zxy)x2)- Ay x2) < A(((xx2) x2) % (yx2)) - Ay * 2) < A((x x 2) * ). Noting that
(xx2)x(xx(r*xz2)) = (xx(x*x(r*xz)))*z=(x*2)*zand the binary operation o on L
is antitone in the first and isotone in the second variable, we have

[Ael]= [] {(A(x*2) * (@ (2 2)) xy) - Aly))aA(z * 2)}

< xi[i{ ((z 5 2)  (z % (2% 2))) % 0) - A(0))aA(z * 2) }
- mlz_e[X{A((x x2) * (z % (% 2)))ad(z * 2)}
- mi;[X{A((x x2) * 2)ad(z * 2)}
< T (Al = y) ) - Ay * 2))aA(z * 2)}
fien
Therefore, [A € ITT] =[A€ T,]-[Ac | <[A€ T,]-[Ac L] =[A € IT]. 0

Proposition 5.2. Let X be a BCK-algebra, A € F(X). If EX A € I, then
=X AcIIT— (Vo) (Vy)(y* (yxz) €A = xx(zxy) € A).

Proof: By X A € I;, we have A(0) > A(z) for all x € X. From Proposition 4.2, it
holds that [A € I <[y € A — x € A] for all z,y € X with 2 < y, and so A(z) > A(y)
for any z,y € X with z < y. Since z % (z * y) < z, it follows from (8) in [33] that
y* (zx(x*y)) > y=x, and thus

(zx (wxy)) *(y* (vx(vxy)) < (vx(x*xy))*(y*x)
(z* (yxz)) * (z*y)

<
Therefore, A((z * (z xy)) * (y * (x % (x xy)))) > A(
With the formula (RO) in [35], we have

[Ael]= [] {(Al@*(yxa) *2) - Az))aA(2)}

z,y,2€X
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=TI (A o) > e o )+ ) Akl ()
< ﬁx{ (5 9) (g (2% (@ 9) *0) - AO)ad(x + (2 )}
- i[X{A((x () ¢ (g% (5 o 5 9))ad (e x (0 )}
< TT 1A+ e )a(e s (o))
V) () € As 2 (@) € )
hence, the proposition is proved. 0

Proposition 5.3. Let X be a BCK-algebra, A € F(X). If X A € I, then
=X ATl (Vo) (Vy)(zx (yxx) € A=z € A).
Proof: Tt follows from ¢ A € I that A(O) > A(z) for all z € X. So

[Ael]= H {(A((z * (y * 2)) * 2) - A(2))aA(2) }

< H{ % (y* ) % 0) - A(0))A(z)}
- H {A(z * (y * 2))aA(z)}

= [(Vz)(Vy)(z x (yxx) € A = x € A)].
Conversely, by =5 A € I, we have A(x * (y * x)) > A((x * (y * 1)) * 2) - A(2) for all
x,y,z € X. So, for any z € X,

(Vo) (Vy)(z « (yxz) € A >z € A)] = H {A(z % (y * 2))aA(z)}

< H {(A((z * (y x 7)) * 2) - A(2)) e A(2) }

= [:4 S 14]
Consequently, [A € I[[I|=[Ae€ ]-[Ac L] =[Ae L] =[Vx)(Vy)(x* (y*z) € A —
x € A). O

Similar to the proofs of Theorem 4.2, Theorem 4.3 and Theorem 4.4, we can have the
following three theorems.

Theorem 5.6. Let Ay € F(X) for all A € A, and then for every A € A,

=X Ay e I — (ﬂ AA) eIl

AEA

=X Ay e IIT — (ﬂ AA> eIl

AEA

Theorem 5.7. Let the lattice < L,+,- > be completely distributive, A € F(X), and let
f: X =Y be a surjective homomorphism. Then

=CAell — f(A)ell,
=fAc Il — f(A) eIl
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Theorem 5.8. Let Be€ F(Y), and f : X =Y a surjective homomorphism. Then
=fBell « f1(B)ell,
=f BelIll < f~'(B) € III.

Definition 5.3. For any A € F(X x X) and B € F(X), a binary fuzzy predicate
Rp € F(F(X x X)) is called an L-fuzzifying relation on B if

A€ R = (Vz)(Vy)((z,y) € A — (x € B) A (y € B)).
Clearly, we have
Proposition 5.4. Let A, B € F(X), then
= (V2)(Vy)((z,y) € Ax B <> (z € A)A(y € B)).

Theorem 5.9. Let X be a BCK-algebra, and A, B € F(X). Then

= (Ae)AN(Bel)— Ax Bel,

FC(AelL)AN(Bel) > AxBel,

= (Ae)AN(Bel)—» AxBel,

=S (Aell)AN(Bel) > AxBell,

=S (AeIINA(BeIIl) - Ax Belll.

Proof: We only prove the third formula, and the others are similar. With the formulas
(Ry) and (Ry) in [35], we have

[AxBen]= []{(AxB)xy)a(Ax B)0,0)}

~—~~ I~ N

- ﬁx{(/l(x) - B(y))a(A(0) - B(0))}

- mﬁx{{(A(x) - B(y))aA(0)} - {(A(x) - B(y))aB(0)}}
> ]y_[ {(A(x)aA(0)) - (B(y)aB(0))}

— ml’y_[e)((A(a:)aA(O)) - [1(Bw)aB(©)

- TZXE n)-[Bel) -

and
[A X B e [2]

= [ (A xB)(w1,22) * (y1,12)) A (A x B)(y1,92))a(A x B) (1, 2)}

T1,T2,Y1,Y2€X

= JI  {((AxB)(ai * g1 % ) A (A x B)(y1,12)) (A x B) (w1, 2)}

T1,22,Y1,Y2€X

= [] {(A@i*w)-Blzzxy2)- A1) - Byz))a(A(z1) - B(x2))}

z1,72,Y1,Y2€X

> ] (A ) - A))aA(zn) - (Bl % y2) - Blyz))aB(x2))}

z1,72,Y1,Y2€X

= J] ((A@i=m)-Aw))ad@)) - [] (Bzz ) - B(ys))aB(z2))

z1,y1€X To,y2€X
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Therefore, [AXBEI]:[AXBEIl][AXBEIQ]Z[AEIl][BEIl][AGIQ][BE
L) =[A € I]-[B € I], and the third statement is proved. O

6. L-Fuzzifying Filters. In this section, the concept of L-fuzzifying filters of a BCK-
algebra will be introduced under the frame of lattice-valued logic. The equivalent char-
acterizations of this fuzzy filter will be given.

Definition 6.1. Let X be a BCK-algebra. For an arbitrary A € F(X), we set

(1) Ae Fli=xe€A—yecAforalzx,ye X withy> x;

(2) Ae Fy:= (Vx)(Vy)((z € A)AN (y € A) > x Ny € A).
A unary fuzzy predicate f; € F(F(X)), called an L-fuzzifying filter of X, is given as
follows: for an arbitrary A € F(X),

Aec fi=(Ae F))N(Ae ).
Proposition 6.1. Let X be a bounded BCK-algebra, A € F(F(X)). Then
ECAcfi— (Vo) (v € A— 1€ A).
Proof: Since X is a bounded BCK-algebra, 1 > x for all x € X, and so
AeR]= ][] (A@eAy) < []A@)eAQ)=[(Vz)(z € A= 1€ A).

T yeX,y>x reX

Therefore, [A € fi] <[A € Fi] <[(Vx)(zr € A — 1€ A)]. O
Theorem 6.1. Let X be a BCK-algebra and A € F(X), and then
ECAcfie (V) (Vy)((z € A)A(y€ A) < aly € A).

Proof: Since z,y > x My for all z,y € X, we have

[Ae R]= E[>( HX (z My)aA(r)).
Similarly, [A € Fy] <], y:(e (; ﬂ y)aA(y)). Thus’ye
[Ac F < x];e[X(A(x M y)aA(r)) - xQX(A(I My)aA(y))
_ I’E[X(A(x NYad() - (Al Nyad()
_ mjl;[X(A(x Ty)a(A®E) - AW))

and so [A € fi] < [(Vx)(Vy)(z My € A — (x € A)A(y € A))]. On the other hand,
[Ae fil <[Ae€ B =[(Vr)(Vy)((zr € A) A (y € A) — My € A)]. Therefore,

ECAc fi— (Vo) (Vy)((r € A)A(y € A) &>z My € A).

Conversely, [(Vz)(Vy)(z € ANy € A+ aNye A)] <[Vr)(Vy)(xr € ANy e A —
zMy € A)] = [A € Fy]. Since the binary operation « is isotone in the second variable, we
have

(Vo) (Vy)(zx e ANye A axNye A)] < [(Vo)Vy)(zMNye A—x e ANy € A)
= [[ AG@ny)e(Al@) - Ay))

z,yeX
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< [I Awa(Aw)-Awy)

T yeX,y>x

< I (A@aA)

zyeX,y>x

= [AEFl]

Therefore, [(Vz)(Vy)(r € ANye A axNyc A <[A€ F|-[Ae K =[A¢€ fi, ie.,
EX (Vo)(Vy)((r € A)A(y € A) &> My € A) - A € f, and we have completed the
proof. O

Corollary 6.1. Let X be a commutative BCK-algebra and A € F(X), and then
ECAc fio (Vo) (Vy)((z € A) A (y € A) <> 2Ay € A).

Similar to the proofs of Theorem 3.5, Theorem 3.6 and Theorem 3.7, we have the
following three theorems.

Theorem 6.2. Let X be a BCK-algebra and Ay € F(X) for all X € A, and then for
every A € A\,

=X Ay e fi — (ﬂAA> € fi.

AEA

Theorem 6.3. Let X and Y be two BCK-algebras, A € F(X) and B € F(Y'), and let the
lattice < L,+,- > be completely distributive. If f : X — Y is a surjective homomorphism,
then

= Ae fi— f(A) € f,
FBe fie fH(B)€E fi
Theorem 6.4. Let X be a BCK-algebra, and A, B € F(X). Then
E“(Ae f)A(BEf) > AxBE€ f.

Definition 6.2. Let X be a bounded BCK-algebra. For an arbitrary A € F(X), we set
(1) Ac F5:= (Vx)(r € A— 1€ A),
(2) A€ Fy:= (Vx)(Vy)(N(Nzx Ny) e ANye A—x e A).
A unary fuzzy predicate fg € F(F(X)) is said to be an L-fuzzifying BCK-filter of X, if
it is given as follows: for an arbitrary A € F(X),

A€ fp:=(Ae€ F3)N(A€F,).

Theorem 6.5. Let X be a bounded BCK-algebra and A € F(X). If = A € fg, then
for all z,y € X with Nx < Ny,

EfyeA—acA

Proof: From |=° A € fz we have that [, (A(z)aA(1)) =1 =[], cx {(A(N(Nz *
Ny)) - A(y))aA(x)}, and so A(z) < A(1) and A(N(Nz x= Ny)) - Ay ) < A(z) for all
x,y € X. If Nx < Ny, then Nx x Ny = 0, so N(Nz * Ny) = NO = 1. It follows that
A(y) = A1) - A(y) = A(N(Nz x Ny)) - A(y) < A(z) for all z,y € X. Therefore, for all
x,y € X with Nx < Ny,

[ye A—xe Al = A(y)aA(z) =1,
proving the theorem. O
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Corollary 6.2. Let X be a bounded BCK-algebra and A € F(F(X)). If X A € f3,
then for all x,y € X with y < z,

Efye A e A
Proof: From y < z, we have Nx < Ny, and prove the corollary using Theorem 6.5.[]
Theorem 6.6. Let X be a bounded commutative BCK-algebra and A € F(X). If
=X A € fp, then
=CAef
Proof: Since ¢ A € fp, by Corollary 6.1 we have that =* A € F;. That is to
say, A(y) > A(z) for all z,y € X and x < y. Because X is a bounded commutative

BCK-algebra, there exists element 1 € X such that y <1 forally € X. For any z,y € X
we have that y xz < 1%z = Nz, and so

r=NNz < N(yxz)=N(yx*(y*(y*xz))) =Ny (zAy)) = N(N(zAy) x Ny).

Hence, A(N(N(zAy) * Ny)) > A(z) for any z,y € X. By hypothesis and Corollary 6.1,
we have

—_
I

[A € fB]
< T ((ANV(N= = Nw)) - A(w))aA(=))

zZ,weX

[T {((AN(N(zAy) * Ny)) - Ay))aA(zAy)}

z,yeX

< 11 {(A@) - A)ad=Ay)}

= [(Vz)(Vy)(x € ANy € A— zAy € A)]
=[A € fi].

The theorem is proved. O
The next theorem shows that for commutative BCK-algebras, Definition 6.2 can be
simplified.

Theorem 6.7. Let X be a bounded commutative BCK-algebra and A € F(X). Then
ELAe fper (Ae B3)A((Vr)(Vy)(ly e ANN(yxz) € A — x € A)).

IN

The proof is trivial and omitted.
Now, we consider the converse of Theorem 6.7.

Theorem 6.8. Let X be a bounded commutative BCK-algebra and A € F(X). If X is
implicative and =5 A € f), then
=CAc fp
Proof: Since X is implicative, bounded and commutative, we have that Ay = y* (y x
)= N(y*z)* Ny = N(y*x)Ay = N(Nz x Ny)Ay for all z,y € X. From =X A € f; we
have that [A € F] =1 = [A € Fy]. It follows that A(y) > A(z) for all z,y € X, x < v.

By xAy < x, we get that A(x) > A(xAy) for all z,y € X. Because the binary operation
« is isotone in the second variable, we have

1=[A¢ FQ]
=[] { y))aA(zAy)}

z,yeX
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< [ (AN(Nz = Ny)) - A(y)) 0 A(N(Nz « Ny)Ay)

z,yeX

= [] (AN(Nz « Ny)) - Ay))aA(zAy)

z,yeX

< T (AW + Ny)) - A(y))ad()

T,yeX
= [A € Fyl.
On the other hand,

1=eRl= ] {A@aAw) < [[{A@aAM)} = [4 € Ry,
z,yeX,z<y zeX
and so [A € Fy] =1 = [A € F3]. Therefore, [A € fp] =[A € F3]-[A € Fy] =1, completing
the proof. M
Similar to the proofs of Theorem 4.2, Theorem 4.3, Theorem 4.4 and Theorem 5.9, we
have the following three theorems.

Theorem 6.9. Let X be a bounded BCK-algebra and Ay € F(X) for all X € A, and
then for every A € A,

):ﬁ Ay € fp— <mA)\> € fB.

AEA

Theorem 6.10. Let X and Y be bounded BCK-algebras, A € F(X) and B € F(Y),
and let the lattice < L,4,- > be completely distributive. If f : X — Y is a surjective
homomorphism, then

= A€ fp— f(A) € fp,
=“Be fpe [H(B) € fo.
Theorem 6.11. Let X be a bounded BCK-algebra, and A, B € F(X). Then
= (Ae fe)N(BE€ fp) =+ Ax BE fp.

7. Conclusions. As a branch of general algebra, BCK-algebra originated in 1960s and is
booming now. BCK-algebras appear in many branches of mathematics such as universal
algebra, group theory, ring theory, lattice theory, point set topology, and topological
algebra. Fuzzy generalizations of BCK-algebras were introduced by Xi et al. In this paper,
we generalize the notion of Xi’s fuzzy BCK-algebras [20] taking a complete residuated
lattice as a basic algebraic structure.

It is well known that ideal theory plays a very important role in studying the algebraic
structures of ring, lattice, BCK-algebra and so on. In this paper, we have generalized
several classes of fuzzy ideals to the complete residuated lattice-valued logic scenario,
presented the concepts of several classes of fuzzifying ideals such as L-fuzzifying ideal,
L-fuzzifying positive implicative ideal and L-fuzzifying implicative ideal, and investigated
basic properties and relations between these classes. Filter theory not only plays a very
important role in studying the related algebraic structures, but also gives rise to a crucial
methodology for analyzing logic systems. It is therefore natural to consider L-fuzzifying
filters. In particular, an interesting problem concerns fuzzy inference rules: how to com-
bine methods commonly applied in fuzzy logics with reasoning methods traditionally
developed within the framework of filter theory. Filters correspond to the basic modus
ponens. We have combined the semantical method of complete residuated lattice-valued
logic and the filter theory to develop the notions of L-fuzzifying filter and L-fuzzifying
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BCK-filter in BCK-algebras. At the same time, the relations between these notions are in-
vestigated. We have discussed homomorphism relations and intersections of several fuzzy
structures such as L-fuzzifying subalgebras, L-fuzzifying ideals, and L-fuzzifying filters.
We desperately hope that our work would serve as a foundation for enriching theory of
BCK-algebras and many-valued logical system.
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