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ABSTRACT. This paper is concerned with the distributed cooperative path following con-
trol of multi-robot systems with unknown uncertainties under general directed graphs. The
control design is categorized into two envelopes. Firstly, adaptive dynamic surface control
allows for handling the unknown dynamical uncertainties and at the same time simplifies
the cooperative path following controllers by introducing the first-order filters. Secondly,
vehicles coordination is achieved by exchanging the path variables. The amount of com-
munications is reduced effectively due to the distributed speed estimator, which means
the condition that the global knowledge of the reference speed is relaxed. Moreover, the
distributed protocol is developed to synchronize the path variable under general intercon-
nected directed graphs. Under the proposed controllers, it can be shown that all signals
in the closed-loop system are uniformly ultimately bounded. Finally simulations results
are provided to demonstrate the effectiveness of the approach presented.

Keywords: Cooperative control, Multi-robot systems, Dynamic surface control, Di-
rected graph, Adaptive control

1. Introduction. In recent years, control of multiple networked vehicles is an emerg-
ing technology which has received great attention. The underlying idea of coordination
control is that group of vehicles can perform many tasks more effectively than a single ve-
hicle. Revelent applications contain the coordination of multiple robots, unmanned ocean
vehicles, satellites, aircraft [1, 2, 3, 4, 5, 6, 7]. In this paper, we consider the problem of
steering a group of multi-robot systems along pre-defined paths while keeping a desired
formation pattern in time.

In the literature, a variety of methods has been developed about the cooperation of
multi-robot systems. In [8], a combination of the virtual structure and path following
approaches is applied to deriving the formation architecture without considering the com-
munication constraints, which is limited in practice. The authors in [9] have presented a
general framework for cooperative control of multi-robot systems in chained form without
considering the orientation information. In [10], a Lyapunov-based technique and graph
theory are combined to address the problem of coordinated path following. However, a
key point of the existing results on [8, 10, 11, 12] is that the formation controllers are
based on the traditional backstepping method. The controllers are complicated due to the
needs to calculate numerical derivatives of the virtual control signals. It is well known that
the traditional backstepping approach suffers from the explosion of complexity problem.
While a dynamic surface control (DSC) method in [13] is proposed to avoid this problem
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by introducing the first-order filters. In [14], DSC for tracking problem of non-Lipschitz
system is proposed. The DSC idea is extended to uncertain single-input single-output
[15]. In [16], DSC for trajectory tracking of the non-holonomic mobile robots is solved.
DSC method also has been applied to the single path following problem, but these pa-
pers do not consider the dynamic model with unknown parameters. This paper combines
the adaptive control method for solving the unknown parameters with DSC method for
coping with the cooperative path following.

In practice, in order to reduce the cost, it is necessary to consider the communication
constraints among the vehicles. In [17, 18], the problem of coordinated path following
under undirected graphs is presented. The authors in [19] strengthen the communication
constraints under the directed graphs. However, a main assumption in [10, 17, 20] is that
the global reference information needs to be known by all vehicles. In order to eliminate the
problem, in [21], the distributed control strategy is applied for multi-agent linear systems.
The authors in [22] present an algorithm for distributed estimation of the active leaders
unmeasurable state variables. It is shown that we have not considered the cooperative
problem under the directed graphs among the multi-robot systems, at the same time
without the need to know the reference velocity.

Motivated by the above observations, this paper considers the cooperative path follow-
ing problem of multi-robot systems with unknown uncertainties under directed graphs,
partial knowledge to the reference velocity. Compared with [8, 10, 11, 12], the DSC method
applied to solving the cooperative path following problem makes the control law simpler.
Moreover, in contrast to [10, 17, 20], the designed distributed estimator reduces the com-
munication cost. The control process can be divided into two aspects. Firstly, the adaptive
path following controller is designed based on the DSC technique so that each mobile ro-
bot converges to the desired path. Secondly, with the analytic tool of graph theory, the
speed and path variable are synchronized under directed graphs owing to the proposed
synchronized control law, where the distributed speed estimate strategy is incorporated.
Based on the Lyapunov analysis, it is proved that all signals in the closed-loop systems
are uniformly ultimately bounded. The contributions of the paper are summarized as
follows. (i) The adaptive DSC method is firstly applied to solving the cooperative path
following problem of multi-robot systems with unknown uncertainties, which leads to a
much more simpler controller than the traditional baskstepping-based design. (ii) A dis-
tributed speed estimator is proposed under directed graphs, which releases the condition
that the global reference velocity is available to all vehicles. (iii) Owing to the aforemen-
tioned advantages, it can be applied to more extensive situations about the cooperative
path following of mobile robots, in which case the amount of communications is reduced
effectively and the dynamic model has unknown certainties.

The rest of the paper is organized as follows. Preliminaries and problem statement are
presented in Section 2. Section 3 presents the cooperative path following controller design
and stability analysis. Simulation results are showed in Section 4. Finally conclusions are
given in Section 5.

2. Preliminaries and Problem Statement.

2.1. Notation. Throughout this paper, let 1 and 0 denote column vector with all entries
equal to one and equal to zero, respectively. Let R™ ™ represent a set of n x m real
matrices. Given a real vector x € R", ||z|| is the Euclidean norm of z. For a matrix P,
Amin(P), Amax(P) represent its minimum and maximum eigenvalue, respectively.

2.2. Graph theory. In this paper, the communication topology among the agents is
denoted by the directed graph G = (V, &, A), where V = {1,...,n} is the node set,
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e CV xVis a set of edges, in which an edge is represented by an ordered pair of distinct
nodes and A = [a;;] € RV*V is the adjacent matrix associated with the directed graph G.
In the directed graph G, (i,j) € £ means that the jth agent has access to the ith agent’s
information, but not vice visa. The communication graph graph G is strongly connected
if there exists at least one node having a directed path to all of the other nodes. For the
adjacent matrix A = [a;;], a;; = 1 if (j,7) € &; otherwise it is zero. It is assumed that
there is no self-edge, that is, a;; = 0 for all nodes. The Laplacian matrix L = [L;;] € R™*"
associated with the graph G is defined as L; = Z;.V:m#i a;j and L;j = —a;j, 1 # .

Lemma 2.1. [23]. The Laplacian matriz L associated with graph G has the property that
it has a simple zero eigenvalue with vector 1 as a corresponding right eigenvector and all
other eigenvalues have positive real parts if and only if G contains a directed spanning
tree.

2.3. Formation setup. We consider a group of n mobile robots, which have n individual
parameterized paths. A formation is achieved if and only if all the path parameters are
synchronized. A modification of the conventional virtual structure method is applied
here to generating the reference paths. We define the center of the virtual structure that
moves along a given reference path To(sg) = [Tao(S0), Yao(s0)]” with sy being the path
parameter. The shape of the virtual structure can be varied by specifying the distance
li(2a0(8:), yao(si)) from each mobile robot to the entry of the structure in Figure 1. When
the center of the virtual structure moves along the path &y(sg), the mobile robot i will
follow their individual path I';(s;) = [24(s:), vai(si)]F, 1 < i < n with s; being the ith
path parameter, given by

Ti(si) = To(si) + R(0ao(si))li(zao(si), yao(s:)) (1)
where [;(240(8:), Yao(5:)) = [lzi(Xa0(Si), Yao (i), lyi(Tao(si), ydo(si))]T Ty (i) = M%ZEJ )‘sozsi’

§ )y
f40(s;) = arctan <y‘i°$3> and vyl (s;) 9yao(s0)

380 ‘ S0=S; ’

and

cos(0ao(si)) —sin(ba0(s;))
R(04(s;) = | . .
(0o (s3)) [ sin(@qo(s;))  cos(Bao(s;))
As we all know, the distance from the mobile robot to the center of the structure in the
traditional virtual structure method is constant, which means that the shape of the virtual
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FIGURE 1. Formation coordinates
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structure cannot be changed. However, we modify the traditional method to ensure the
shape to be variable. Having generated the individual path for each mobile robot, the
following tasks are to design a controller so that each vehicle tracks its own desired path,
and all the path parameters of the reference paths are synchronized.

2.4. Mobile robot dynamics. In this section, we consider the ith two-wheeled driven
mobile robot as shown in Figure 2, which has the following equations of motion [24]:

M :Ji(m)%’ 9
where 1; = [;,y;,0;]T represents the position (z;,y;) and the heading 6; of the robot i
in the inertial reference frame XOY, v; = [v1;, vy]T, with vy; and vy being the angular
velocities of the right and left wheels. 7; = [11;, 7;]T with 71; and 75; denoting the control
torques applied to the wheels of the robot i. J;(n;) is the rotation matrix, M; is a sym-
metric, positive definite inertia matrix, C;(n;) denotes the centripetal and coriolis matrix,
and D; is the damping matrix. 4A; is a bounded uncertainty. Matrices J;(n;), M;, C;(n;),
D; in (2) are given by

. N I . fl N .
Jz(nz) i |: COS(gl) Sln(gl) bz :| , Mz — |: mi1; Mg :|

2 | cos(f;) —sin(B;) —b;! Miz; My
0 Cg dn' 0
Ci(n;) = A B ) R :
i) [ —cifh; 0 ] ! [ 0 da; ]
with myy; = ﬁn? (mib? + L) + Ly, mig = ﬁﬁ? (mib? — L), mi = me + My, I; =
mcia? + Qmwibl2 + I+ 21, ¢; = %r?mciai, where m,; and m,,; are the masses of the

body and wheel with a motor. I, I,,;, and I,,; are the moments of inertia of the body
about the vertical axis through P,.; (center of mass), the wheel with a motor about the
wheel axis, and the wheel with a motor about the wheel diameter, respectively. a;, b;
and r; are defined in Figure 2. And the nonnegative constants d;;; and dyy; are damping
coefficients.

Then we need to transform the model (2) to a simpler one. Let v; and w; denote
the linear and angular velocities of the mobile robot respectively. Then the relationship
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FIGURE 2. The ith mobile robot
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between vy;, 1o; and v;, w; is described as follows:

L1 b
_ -1 L )
gi - Bz VZ, BZ - Ti |: 1 _bz :| (3)

where & = [v;,w;]". With (3), we write (1) as
N Zji(m)& (4)
M;&; + Ci(:)& + Di&i + Ay = By
where M; = B; 'M;B;, C;(n;) = B; 'Ci(%;)Bi, D; = B;'D;B;, B; = B; ', A; = B; '/,
and
T

- cos(f;) sin(6;) 0
Ji(mi) = é ) (g ) ]

2.5. Control objective. In this paper we will solve the formation path following problem
under the following assumptions.

Assumption 2.1. For each value of s;, there exists a unique value of x4 (s;) and yq(s;).
Assumption 2.2. There exists a positive constant r such that ||A;]| < k.

Assumption 2.3. The dimensional terms r;, a; and b; of the mobile robot i are known.
The parameters related to mass, inertia and damping mq1;, mio;, di1;, di2;, ¢; are unknown
but constant.

Assumption 2.4. The reference path to be tracked by mobile robot i is T';(s;) = [x4i(s;),
vai(si)]" satisfying the following conditions: there exist strictly positive constants €1, €2
such that:

e < wi(si) + yir(si) < eai,
where xl,(s;) and yl;(s;) are defined as

’ 04 (i / 0Yai(si
Tyi(8i) = %, Yai(si) = gs( )

Assumption 2.5. In this paper, for the sake of simplicity, we assume that the robot does
not slip and slide.

Remark 2.1. Assumption 2.4 means that each path is reqular with respect to the path
parameter. If the path is not reqular, we can break it into different reqular paths and
consider each path separately. In addition, we only consider that the virtual structure
moves forward.

Let ngi(si) = [2ai(s5), vai(si),04i(5:)]F, i = 1,...,n be a series of desired paths pa-
rameterized by continuous variable s;. Our purpose is to design a controller 7; under

Assumption 2.1, such that all signals in the closed loop system are uniformly ultimately
bounded.

tlgglon — naill < € (5)
Jim [|5; — o] < e (6)
Jim [|s; — 55| < € (7)
where 04 = arctan (yl,(s;)/2;(si)), €1, € and €3; are some small constants, v, is a

constant reference speed which is assigned by the virtual leader. The objective (5) means
that each mobile robot moves on the desired path and its linear velocity is tangential to
its own path. The objective (6) means that the speed is synchronized. Moreover, the
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objective (7) guarantees synchronization of all path parameters so that the formation of
the mobile robots is achieved.

3. Formation Path Following Controller Design. In this section, we will consider
the dynamics (4) and use the dynamic surface control method to design controller 7; for
the robot i to achieve the formation control aim (5).

3.1. Path following error dynamic. In order to prepare for the control design, we first
interpret path following errors [25] in the frame X;0;Y; (see Figure 2), where the origin
O; is a point on the path T';(s;), and O;X; and Oy X,; axes are parallel to the surge axis
and sway axis of the mobile robot, respectively. So, we have:

Tej COS(QZ’) sm(ﬂz) 0 T; — Ty,
Yei | = | —sin(#;) cos(6;) 0 Vi — Ydi (8)
0.; 0 0 1 0; — 0,

where 6,; is the angel between the path and the OX axis defined by
4 = arctan (y5;(s;)/zh:(s:)) -

Differentiating both sides of (8) along the solution of the first equation of (4) results in
the following kinematic error dynamics:

Tei = V; — Vgi €0S(0¢;) + Yeiw;
Uei = Vi SIN(0;) — Teiw;
éei = Wi — Wi
M;& = —Cy(0:)& — Di& — Ai + By

where we have defined

i (5:)Yqi (i) — T; (5:)Ygi (:)
i (si) + Ygi (i)
Remark 3.1. From the equation of vy and wg;, we can see that the speed of the robot on
the path is specified by the derivative of the path parameter $;. In addition, s; for the ith

robot will be used as an additional control input for formation feedback and synchronization
of path parameters in the following part.

Wei = §; = Wg;Si (11)

3.2. Control design. In this part, the adaptive dynamic surface control method is ap-
plied to stabilizing the error dynamics (9). Meanwhile, the derivative of the path param-
eter is utilized as an extra control input to synchronize the speed and path parameters.
The controller design follows three steps.

3.2.1. Kinematic control design. In this step, the aim is to stabilize the (Z¢;, Yei, 0ei) dy-
namics. At first, we define the following variables:
Ve = U; — Uj (12)
Bei = Oci — 0; (13)
where v; and 0; are virtual controls to be specified later.

Step 1. Stabilizing the x.; dynamics. Replacing the expression (12) into the first equation
of (9), we obtain

Tei = Vej + U; — Ugi Si COS(eei) + YeiW; (14)
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then choosing the virtual control law o; as

Ui = —k1i%e; + Ugi$; c0s(0e;) (15)
where ky; is a small positive constant. Finally we get
Teoj = —k13Tei + Vei + Yeii (16)
where we have defined k1; = —04; cos(0;)- )
Step 2. Stabilizing the y.; dynamics. Define the virtual control 6; as
0; = — arctan (ko;ye; ) (17)

where ko; is a small positive constant.
Substituting (17) into the second equation of (8) gives

Gos = — k2iVdi$iYei
: V1 + k52
where ®; = (sin (éei) cos (éz) + (cos (éei) — 1) sin (9}))
Then we introduce two new smoothed states ay, and «,,, which can be obtained by

passing 6; and v; through low-pass filters with positive time constants ;; and 7s;, respec-
tively.

+ QU4 8 — Teiw; (18)

7lid9i + ap, = 9_1', a9i(0) = 1(0) (19)
72idvi + Qy; = Ui, avi(o) = 61(0) (20)

In addition, we define two new error variables #; and v; as

gi =y, — gz

i i (21)
U = Oy, — U
Furthermore, we consider a candidate of Lyapunov function as Vi; = 322 + 12, whose
time derivative along (14) and (18) is given by
. k ~17d~é~y2~ .
Vig = —kua; — L;e; + TeiVei + PiVdiSiYei (22)
L4 ke
Step 3. Stabilizing the f,; dynamic. We define the new variable:
We; — W; — (I)Z' (23)

where @; is the virtual control to be specified later. Differentiating both sides (13) along
the third equation of (9) and (19) gives

0o = w; — 048 — O'égi + éz (24)
So we can choose the virtual control @; as

w; = —k3ifle; + Wai$; + cu, (25)
where k3; is also a small positive constant.

Finally we get the 6,; dynamic like
O = —k3ifei + wei + 0; (26)

Similarly, let w; pass through a first-order filter with a positive time constant v3; to obtain
a new state o, as
V3i; + 0 = Wi

010, (0) = @4(0) (27)
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In addition, we propose the condidate of Lyapunov function as V5; = Vi; + 29(% Differ-
entiating V5; with respect to time, we get
Voi = Vis — kil + weilei + 0ei0; (28)

Remark 3.2. In this part, we apply the dynamic surface method to constructing a kine-
matic controller that stabilizes the position and heading errors of each mobile robot with
respect to its own path. Then we will continue to design the dynamic controller ; for the
dynamic model of the mobile robot with unknown parameters.

3.2.2. Dynamic control design. At first, we introduce the dynamic model of the mobile
robot which has been presented in Section 2.

M;é&; = —Ci(0:)& — Di& — Ay + By (29)
Then we define the new variable:
ei = & — Eui (30)
where & = [v;,w;]T and &g = [, aw,|T, Eei = [Eeri, Eeni]T . Differentiating (30) along the
the dynamic Equation (29), we get
Miéei = —Ci(m)& — Di& — Mi€g — N + By (31)
And we can rewrite the linear parametrization of the expression —Cj(1;)& — D;&; — My

into the new form 2;0;, where €; refers to the regressor matrix and ©; is the vector which
contains all the unknown parameters of the mobile robot. They are given by

2 .
wi = —w; —Ug 0 0 0 0
0 0 0 0 —V;W; —U; —W; —Wy; (32)
O; = [ cibi dii dizi M cb; do1i dozi }
- . e T bi(d11; —doo; - o dees T . .
where dyy; = ke, = w, dy; = d“}ibidma dag; = BUED2 = g,

and mg; = myy; — My
So Equation (31) becomes

Qi:

Mi.i = Q0 + Bir; — A, (33)
At this step, we can design the actual control input 7; and updated laws for the unknown
system parameter vector ©; for each mobile robot i. So we choose

T = Bz-_l [—kzufei — Qzé)z — Risgn(&e;) (34)
éi = Ks;proj (QzTgeia éz) (35)
ki = 0i(||eill — piki) (36)

where (:)Z is an estimate of ©;, &; is an estimate of x;, and we define 0, = 0, — (:)Z-,
K; = K; — k;, The gain matrix Kjx; is symmetry, positive definite, and k4; is a positive
constant. And the operator proj is the Lipchitz continuous projection algorithm [26] as
follows:

proj(r,6) = , if, 2(5) <0
proj(m,5) =, if, 2(6) > 0 and Z;(6) <0
proj(m,0) = (1 —=Z2(6))r if, Z2(6) >0 and =Z;(6) >0

where 2(6) = (6% — 03;) / (k* + 2kowr), Z5(6) = 83(“) k is an arbitrarily small positive

constant. & is an estimate of o and |o| < o). The projection algorithm is such that if
o = proj(m,d) and 6(ty) < o then
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(a) 6(t) <our+k, V0 <ty <t<oo

(b) proj(m, o) is Lipschitz continuous

(¢) [proj(m,0)| <=

(d) éproj(m,6) > 67 withd =0 — 6

Finally, we propose a Lyapunov function V3; = V5, + %gg;Migei %
Differentiating V3; along (33), (34), (35) and (36), using the property (d
algorithm results in

(:) 51/1(:) + L’V
) of the prOJect1on

Vi < Vai — kai€llei + pifiki (37)

Remark 3.3. By applying the DSC technique, our design leads to a much simpler control
law than the traditional backstepping-based design. In traditional backstepping approach,
the high order derivative of 8; and ; have to appear in the dynamic control 7. As a result,
the expression of T will be more complicated. While the DSC method can overcome the
problem of explosion of complexity.

3.2.3. Coordination controller design. In this section, to achieve the control objective (6)
and (7), cooperative control for multiple vehicles needs to be developed by the directed
communication network over which the vehicles exchange information about path pa-
rameter s;. To satisfy the constraints under the directed communication network, the
synchronization control law for the vehicle 7 can only depend on its own states and the
information exchanged with its neighbors.

Since not all the vehicles can obtain the value of common reference speed, some of them
have to estimate it throughout the process. Let A be the set of those vehicles that are
neighbors of vehicle 7, and Nj be the set of labels of those vehicles that are neighbors
of the virtual leader. In such a way, the common reference speed assigned by a virtual
leader is available to only one or a subset of vehicles. So we achieve the speed distributed
control. It is given by

ﬁri = - Z azg Urz - Ur] Z h Urz - r (38)

JEN; FEND

where h; is the connection weight between vehicle 2 and the virtual leader. h; = 1 if the
virtual leader is available to the ith vehicle and h; = 0 otherwise.

Suppose that the communication topology between the n followers and the virtual
leader can be represented by an extended directed graph G = (l_/, 6_'), where = 0,1,...,n
A directed graph among the n robots is defined as G = (V,€). The adjacency matrix
A = [a;;] € RV*N related to G is defined as a;; = 1 if (j,i) € &; otherwise, a;; = 0. The
new Laplacian matrix L is given as

T _ 0 01><N
L—{—hL+H]

where h = [hy,...,h,])", and H = diag[hy,...,h,]".

Lemma 3.1. [27]. For the nonsingular M-matriz L + H, there ezists a diagonal matriz
G = diag(gi,...,gn) with g; > 0, i = 1,...,n, such that G(L + H) + (L + H)TG > 0.
And the positive definite matriz G can be given with [gy,...,g,]" = L7'1.

And the 9, = [01,..., 0,7 € R, then we define ¥, = 9, — v,1,, then we have the
following structure

—(L + H)v, (39)

Since then, all the vehicles can directly or indirectly get the information of the reference

speed. Then for the convenience of the cooperative controller design, we define the variable
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[i = $; — Uy, and then the dynamics of the coordinated variable can be written as

=u
" ) (40)
S=u+ o
where p = [y, ..., 1,]" and s = [sy,...,s,]".

Now the coordination control objective can be stated as finding a control law u to make
s; = s;. In this paper, we suppose that the communication topology between the vehicles
is represented by a directed graph that has at least one globally reachable vertex. With
this assumption, then there exists a nonsingular matrix F', defined as [28]

F=[,F], F'=[" R (41)
such that
.. [0 o
FLF = { o L. ] (42)
where 0 = [0,...,0]7 is a vector of appropriated dimensions. § is a left eigenvector

associated with the 0 eigenvalue, and L;; is nonsingular and has the property that all its
eigenvalues have positive real parts. It can be easily concluded that

F21 == 0, L - F1L11F2 (43)

Define the cooperation error § = Fys € R* !, Given the properties of F,1 = 0, then
§ = 0 is equivalent to s; = s;, Vi, j. The dynamic (40) can be rewritten as

f=u

2 (44)
§ = Fop

Considering the coordination dynamics (40), we propose the following coordination control

law as
wi=—pui—q Y _(si—s;) (45)
JEN;
where p, q are positive control gains to be designed.

Proposition 3.1. Consider the coordination dynamics described by (40). Suppose the
communication graph has at least one globally reachable vertex. When applying the control
law (45) to synchronizing the path parameters, then the control objective (7) is achieved
if the parameters p > 0, ¢ > 0 are chosen such that

2 2
P Im(¢)
- 16
q 072163;)&) ( Re(s) ) (46)

where o () stands for the spectrum of a matriz and Im(-) and Re(-) denote the imaginary
and real part of a complex number, respectively.

Proof: The control law can be written in vector form as
u=—Pu—QLs (47)

where P = pI and Q = gI. Then the closed-loop system is given by
p=—Pu—QFLus

: (48)
s=Fp

We show that the closed-loop matrix

—P —QF L

Acl = F2 0
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is a stability matrix. Using a similarly transformation diag(7, F'), it can be shown that
A = —p is an eigenvalue of A, and the rest of the eigenvalues are given by the roots of
det(A(A + p)I 4+ qL11) = 0. Let ¢ € o(Ly;) with Re(s) > 0 be an arbitrary eignvaule of
Lq;. From the last equation it follows that ¢ = —A(\ + p)/q. Obviously, to every ¢ there
correspond two possible eignvalues which have negative real part if p and ¢ satisfy (45).

3.3. Stability analysis. In this section, we shall analyze the stability of the closed sys-
tem. At first we define the new variable @; as

B =y — @ (49)
Together with Equation (21), we have three new variable 6;, #;, and &; as
éi = Oy, — Hia Uy = Oy, — T)Z', (:)Z = Qy, — w (50)

Differentiating the variables, we have the following relationship

L 01 n 0.~
92’ = _fy_ + Hli (l‘eia Yeis 98i7 \Iji’ gei’ gi’ Vi, Tdi 77:11’, 77:1’1’)
1z
k3 U; 7] ..
Gi= — 2 4TI, (l'ei;yeia 0., \IJZ-,fei,ei,vi,ﬂdian&iangi) (51)

Yoi
L o s, o 5 s i L,
wl__'}/_—i_ 2i \ Leiy Yeiy Vei, iagei; iy Uiy Wiy Ndiy Ngi» i
31

where 13, = 0(n4i(s:))/0si and ng; = 0%(nai(s;))/0s}.
We now state the main result for the formation tracking control problem in the following
theorem.

Theorem 3.1. Consider a network of non-holonomic mobile robots with the dynamic
given by (2). Suppose the communication graph has at least one globally reachable vertex.
And the proposed system satisfies Assumptions 2.1-2.4; then for any initial conditions sat-
isfying V(0) < 6, where 0 is any positive constant, under the control input (34), adaptive
control law (35), (36), the coordinated control law (45) and distributed speed update law
(38), all signals in the closed-loop systems are UUB. Finally, we solve the control objective

(5), (6) and (7).
Proof: Consider the following Lyapunov function candidate
1 1.
V= Z <V3Z + 92 2+ 2w ) + §UTTGUT (52)
Then differentiating (52) with respect to tome and substituting (37), (39) and (51) yields

: } : k2 i Vdi Si y (92 02 02
7 11

V1 +k3y% Yo Y2i V3
+ BiTi5i%ei + Weibei + 0eil + O;TTy; + 0;1Ty; + Tl + Pz%&)

—0,(GL + LTG)v, (53)

Then based on Assumption 2.3 and the condition Vj < §, we can consider the compact
set, as follows

Avi = { (i s i) = Wil + Il + Iz |* < e}



272 P. WANG AND Z. GENG
= {Zx; by 0+ 07+ 0 < 2p}

2 2y A ~ ~
5 = {erj+y§j+9§j+\lf§+§§j+9§+v§+w§g 2p}

where € and 0 are positive constants. There exist positive constants cy;, ¢z; and c3; such

that ||[I1y;|| < ¢ on Ay X Agy, ||| < e on Ay; X Ay, and [|TIg]] < e on Ay x Ay,

In addition, from the above details, we know 74 and $; are all bounded functions, and

then define |v4$;| < ¢, where ( is a positive constant. Furthermore, ve; = &eq; + 0; and
ei = Ee2i + @;. Use Young’s inequality.

~ 1~ 1
|611;] < 593 + 56%1'
1._
2 Z
- 1. 1
|15 < 5%2 + §C§z

1
|0; 10| < = 24 2CZZ

1.
|1‘ezvez| < -'L. + 3Y; + gez

. 1 ) (54)
|(I)ivdi8iyei| S yez +3 (I)
|wei§ei| S 0_22 2 w; + 5
= < it 1 922
|gei z| S n 92 ) + 5C1

Substituting Equation (54) into (53), we get

: & k i 2 i+ 1Y\ =
V< Z [_(kli - 1)35; - ( ZC - %) yi - (k3i - 37 + ) 931- — (kg — 1)f£§ei
i=1 i

2713
1 L=y 5 L—y2\ -
- (526 (52)
2 271 V2i

L=\ -
- < 73 ) w? + T12:| (55)
where Y; = ¢, + %cgz + lcgz + %PmQ + 1. By assigning k* = ky — 1, k3, = k2t CZ,

V3i
A

ki = ksi — %, i = &ﬁa i = 27?“, Vai = “, Vi =5 —2*, and then substituting
them into (55), it leads to
V<=28(V-V5)+ T (56)

where 8 = min (kf;, k5;, ki, Ko Vi Ve Vi €5) > 0, Vs = 207 G, + LOTK5;'6; and T =
Sy (G 3+ bk + 1+ SOT K10
. T
It is noted that (56) implies V' < 0 when § > o And solving (56) gives to
P

y< Ly [V(O) — | e (57)

26 %}
It shows that V' is uniformly ultimately bounded. Accordingly, all error signals in
the closed-loop system are semi-globally uniformly ultimately bounded. So the control
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objective (5), (6) and (7) are satisfied, where the error bound ||e;|| < /Y /8 and ||ex;|| <
VT/B

Remark 3.4. By adjusting the design parameters ki;, koi, k3iy Kai, Y1i, V2i, 7V3is €5, the
error set \/Y /B in the closed-loop system can be made arbitrarily small. Here are some
suggestions: (i) increasing ki;, kai, ksi, ks, €5 and decreasing vi;, Yo, y3i to increase 3,
subsequently reduces the bound Y /3; (ii) decreasing Ks; helps to decrease Y, and then
reduce Y /.

4. Simulation Results. To illustrate the effectiveness of our formation path following
controller, we run some simulations in this section. These four mobile robots assemble and
maintain an in-line formation, which means that these four robots are requested to follow
the desired path with respect to the path parameter s; by having them aligned along
a common vertical line. We assume that these four robots are identical, the nominal
parameters of the EtsRo mobile robots taken from [10]. The physical parameters are
given by:

My = 0.28 I, =0.01 I,; =0.0056 I,,; =0.002
And the control gains, the initial conditions and the parameters involved to update the

path parameters are as follows: ki; = 2, ky; = 3, ks; = 1.5, ky; = 3, K5, = diag[0.1,0.1,
0.1,0.1,0.1,0.1,0.1,0.1}, v, = 0.6, y1; = y2;: = 7y3; = 0.01, ; = 0.001, p; = 1, s;(0) = 0,

p =2 q=1 H = diag[1,0,0,0], n1(0) = [-8,5,0]", n:(0) = [-7,1.5,7/2]", n3(0) =
[—5.5,—1,7/4]" and n,(0) = [-6,—6,7/2] .

The reference path of the center of the virtual structure is chosen as I'y(sg) = [so —
3.5,c08(89)]T. The distance from the vehicles to the center of the virtual structure are
chosen as l1(zao(s1), Yao(s1)) = <\/12+S:1n(;(15)1)’ \/1+§n2(51)>a l2(Zao(52), Yao(s2)) = (0,0),

_ 2sin(s3) —2 _ 4sin(sy)
l3(xd0(83),yd0(83)) B \/1+Sin2(83), \/1+sin2(83)> and l4(xd0(84),yd0(84)) B 1+Sin2(54),

—4
1+sin2(s4)

And we assume the system parameters are unknown. The communication directed
graph is given as in Figure 3. In Figure 4, it shows that the mobile robots are successfully
towards their desired paths and the vehicles ultimately attain their desired formation
configuration. And the path tracking and path parameter errors are shown in Figure 5,
Figure 6, Figure 7, and Figure 8. It can be shown that all the errors converge to a small
neighborhood around the origin. It is clear that all the signals are ultimately bounded.

N :
W 4 e

3

FIGURE 3. The communication graph
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for 20% of the total time for 35% of the total time
5/ = \ 51 =
i N .\
- 0 <Pz, - 0 \
N N
-5 0 5 -5 0 5
X X
for 50% of the total time for the total time

FIGURE 4. Robot position and orientation
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5. Conclusion. This paper has addressed the distributed cooperative path following
control of multi-robot systems with unknown uncertainties under general directed graphs.
The cooperative path following controllers are devised on the adaptive DSC technique,
the coordinated protocol, and the distributed velocity estimator. It has been shown that
the closed-loop signals are UUB and the compact set of the error can be made arbitrarily
small by choosing the control parameters appropriately. In addition, simulation results
have demonstrated the effectiveness of the method. From a multiple vehicle point of view,
problems revolving around communication among vehicles, such as switching topologies
(time-varying network topologies) and time delays, pose many challenging problems that
deserve further research.
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