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ABSTRACT. The problem of non-fragile robust H., control for nonlinear networked con-
trol systems (NCSs) with time-varying delay and random actuator faults is addressed in
this study. The system parameters are allowed to have time-varying uncertainties and
the actuator faults are unknown but the upper and lower bounds of which are known. By
taking the exogenous disturbance and network transmission delay into consideration, a
delay nonlinear system model is constructed. Based on Lyapunov stability theory, linear
matriz inequalities (LMIs) and free weighting matriz methods, the sufficient conditions
for the existence of the non-fragile robust H,, controller gain are derived which can be
obtained by solving the LMIs. Finally, a numerical example is provided to illustrate the
effectiveness of the proposed methods.

Keywords: Nonlinear networked control systems, Time-varying delay, Random actua-
tor faults, Free weighting matrix methods

1. Introduction. The actuator failure problem has become a prevalent research focus in
control engineering domain due primarily to its practical significance [1]. Over the last two
decades, enormous research on the networked control systems (NCSs) has been carried out
in search for new design methodologies, to deal with the actuator failures and maintain
the acceptable system stability and performances [2-8]. The modeling of actuator faults
is proposed with three types generally: 1) The actuator is either completely normal or
completely fail and the actuator fault is known as constant values [2-5]; 2) The actuator
fault is unknown but the lower and upper bounds are known [6,7]; 3) The actuator fault
is stochastic variable with known expectation and variance [8-10]. Most of the literature
focuses on the first and second types, but there has been seldom effort on the stochastic
fault of actuator. Consider the different failure rates of the actuators and the actuator
fault only has two situations [8,9]. Consider the different failure rate of the actuators
and the actuator fault has a range [10]. Two sets of stochastic variable are proposed to
describe stochastic fault of the actuator and sensor [11].

As is well known, time-delay phenomenon is very common in many real physical sys-
tems and the problem of time-delay is an important topic that has attracted considerable
research interests [9,12-16]. Since the effects of time-delay are inevitable, it is important
and necessary to take time-delay into account when considering the performances of sys-
tems [12]. Moreover, in practical systems, the study of control scheme with time-varying
delay is more important than that with constant delays. Actually, the time-delay in many
realistic control systems exists in a stochastic fashion [13-19]. For such case, if there is
a time-varying perturbation on the nonzero delay, it is of great significance to consider
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the stability analysis and controller design of the systems with time-varying delay [17].
On the other hand, the design of control scheme in H, setting has good advantages, and
it is well known that the H,, performance is closely related to the capability of distur-
bance rejection [18]. The robust reliable H,, control with time-delay and time-varying
norm-bounded parametric uncertainties is studied, but its actuators are considered as a
disturbance signal to the system which is augmented with system disturbance input [20].
A new robust H filtering is investigated for a class of time-varying nonlinear systems
with norm-bounded parameter uncertainties and probabilistic sensor gain faults [21]. In
the above-mentioned literature, most of the literature only considers the case of con-
tinuous systems [12-23], and there is little research on discrete systems [21], but data
transmission in the network is based on the existence of a discrete manner. To the best
of our knowledge, the non-fragile robust H,, fault-tolerant control problem has received
much less attention for networked time-delay nonlinear systems with randomly coming
actuator failures and the exogenous disturbance, especially the articles about random
actuator failure are few. These aspects constitute the main motivation of this paper.

Summarizing the aforementioned discussions, we aim to model the networked control
systems as a discrete time nonlinear system with time-varying delay. Besides, randomly
coming actuator failures, the exogenous disturbance, and norm-bounded parameter un-
certainties are also considered. The sufficient condition of non-fragile robust H, fault-
tolerant control for networked control system is developed in terms of LMIs. The controller
gain matrix can be figured out by a set of matrix inequalities. Finally, an example is used
to illustrate the effectiveness and the feasibility of the proposed approach.

The rest of this paper is organized as follows. The system description and preliminaries
are introduced in Section 2. In Section 3, the stability analysis and controller design of
NCSs are addressed. A numerical example is given in Section 4. Finally, the concluding
remarks are given in the last section.

2. System Description and Preliminaries. In practical networked systems, the sys-
tem parameters will produce perturbation due to external interference or the aging of the
instruments themselves. Consider the discrete-time nonlinear model with the exogenous
disturbance of the plant as:

{ z(k +1) = Apz(k) + Ay (k — d(k)) + Bou(k) + Rw(k) + f(k,z(k)) (1)
z(k) = Cx(k) + Dw(k)

where z(k) € R™ is the plant state, u(k) € R™ is the control input, w(k) € L»[0, o)
is the external disturbance, z(k) is the control output, f(k,z(k)) is the nonlinear vector
satisfying Lipschitz condition, and ||f(k,z(k))|| < ||[Fiz(k)|]. Ao = Ay + AAy, A} =
Ay + AAy, By = By + ABy, Ay, Ay, By, C, D, R and F; are constant matrices with
appropriate dimensions. AAy, AA; and ABy denote the uncertainty of the system and
they are assumed norm-bounded. They could be time-varying, and described as

[ AAy AAy ABy | =DiF(k)[ By E, Ejs | (2)

where Dy, F, F5 and F5 are constant matrices which denote the uncertainty of structure.
F (k) is uncertain matrix function and satisfies F\(k)" F((k) < I. d(k) is a positive scalar
and it is time-varying that satisfies

0<d <d(k)<dy, Vk (3)

Define 7 = dy — dy, when 7 = 0, it indicates that d(k) is time-invariant, so the time-delay
is a scalar.
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For the problem of parameter perturbation, the design of the controller should be
corresponding, so we use a non-fragile controller to make system have a good state.
Consider the following state feedback controller:

u(k) = (K + AK)z(k) = Kz (k) (4)

where K is the controller gain matrix, AK denotes the uncertainty of the controller which
is defined as AK = D F(k)E,, and Fy is a constant matrix with appropriate dimensions.

Actuator failures for some reasons cannot be measured, so it is important to take a
different approach to handle random failures. If system (1) is under actuators failures
whose matrix can be described as:

M = diag{my,ma,...,my} (5)

where m; are n unrelated random values, absolutely, ‘1’ for normal and ‘0’ for failure.
When m; # 1, it indicates that the actuator has partial failure. The expectation a; and
variance 67 of m; are known values. Define M = E{M?}, and then

M = diag{on, ay, ..., an} = Zai@i (6)
i=1

where O; is a diagonal matrix with the ¢ elements being 1 and the other elements being
0. By taking the actuator failures into consideration, the control law (4) can be rewritten
as

u(k) = MKz (k) (7)
Substituting (7) into (1) leads to the following closed-loop system:

z(k+1) = Agx(k) + Ajz(k — d(k)) + Rw(k) g
2(k) = Ca(k) + Dw(k) (8)

where A, = Ay — [ + ByM K + F,.

3. Main Results. In this section, we will first present a sufficient condition of system
(8) which is robustly stochastically stable, and then give a parameterized representation
of the robust control laws in terms of the feasible solutions to certain LMIs. To begin
with, we introduce the following lemmas which will be used in subsequent developments.

Lemma 3.1. Let Q = QT, H and E be real matrices of appropriate dimensions with
FTF < I, and then the inequality Q + HFE + ETFTHT < 0, if and only if there exists
a positive scalar € > 0 such that Q +eHHT + ¢ 'ETE < 0.

Lemma 3.2. Let X and Y be real matrices of appropriate dimensions, if there exists a
positive scalar € > 0 such that XY + YTX <eXTX + 7YY,

Then, let us introduce the following definitions.

Definition 3.1. When w(k) = 0, system (8) is said to be robustly stochastically stable if
for every initial state xo, E [ pe, ||x(k)||2] < 00.

Definition 3.2. For a given scalar v > 0, the exogenous disturbance w(k) € Ly[0,00), if
2]ly < 7 lJwlly, where ||z]l, = [Sopey B [ZT(k)z(k)Hl/Z, then system (8) is said to have a
robust H,, performance .
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3.1. Stability analysis. The following theorem gives a sufficient condition for the sta-
bility of the networked control systems.

Theorem 3.1. When w(k) = 0, the networked control system (8) is robustly stochastically
stable if there exist symmetric positive-definite matrices P = PT > 0, Q@ = QT > 0,
Xll S

Xo1 X
dimensions matrices N1, Ny such that the following matriz inequalities hold.

Z = 7T > 0, semi-positive-definite matriz X = ] > 0 and appropriate

P11 * * * * * ]
P21 . P22 *2 * * *
| (PR) 0 T x * *
=14 4 R -P' s o« | <0 (9)
dQAk d2A1 ng 0 —dgzil *
| C 0 D 0 0 -1 ]
Xll % *
U = Xgl X22 * 2 0 (10)
NI NI Z
where
o =PAy+ AP+ N/ + Ny + (1 +1)Q + do X 11,
Vo1 = Aipp — NlT + Ny + dy Xy,
P32 =—Ny — Ny —Q + ds X,
and “«” is used as an ellipsis for terms induced by symmetry. Then the system has the

H, performance 7.

Proof: Supposing

y() = z(l+1) —2(), (11)
then we can get
z(k+1) =z(k) +y(k), (12)
and
k—1
w(k) —a(k—di) = ) y()=0. (13)
I=k—dy,
Choose the following Lyapunov-Krasovskii function as
V(k) = Vi(k) + Va(k) + V3 (k) (14)
where

0=—do+11=k—1+6
—di1+1 k—1

ity = Y > 2" ()Qa().

O=—do+11=k—1+0
Define AV (k) = V(k +1) — V(k), and then we can get
AVi(k) = 22" (k) Py(k),
k-1
AVy(k) = y" (k)(P + do Z)y (k) — y' (1) Zy (),
I=k—ds
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AVa(k) < (1 + Da" (k)Qu(k) — 2" (k — di)Qu(k — dy).
Using the free weighting matrix method for any matrices NV; (i = 1,2) with appropriate
dimensions, we can obtain that

k—1
2 [;UT(k)Nl + xT(k — dk)NQ] X l‘(k) — ZL‘ k dk Z y ] (15)
I=k—dy,
Xll *
The following formula is true for semi-positive-definite matrix X = > 0.
Xo1 Xoo
k—1 k-1 k—1
Yo G RXGE =Y T RXGE) = d (RXGE) - Y ¢ (RXG(E) >0 (16)
I=k—d> I=k—dy, I=k—dy,

where ¢;(k) = [ 2T(k) «"(k—dy) |"
Calculating V (k) and adding the left side of (15) and (16), AV (k) can be written as

AV() < ) {E+TT(P+ 21} Gk~ 3 (h DWGak, D7 (Byuwlk) (17)
where Go(k) = [ 2T (k) aT(k—di) w'(k) )", Gk, 1) = [ 7(k) 2T(k—dy) y"(1)]",
E= g; 9022 I ,P1:[Ak Ay R]-

(PB)T 0 —~2]
We can prove Theorem 3.1 from two aspects. On the one hand, system (8) is robustly
stochastically stable; on the other hand, system (8) has the H,, performance 7. Firstly,
when w(k) = 0 if the matrix inequality (9) holds, the following matrix inequality is true:

o ok *
/PR ST (18)

do Ay, doA 0 —dy 77!

If ¥ > 0, using Lemma 3.1 and Formula (17), we can obtain that AV (k) < 0. So
system (8) is asymptotically stable from the Lyapunov-Krasovskii stability theorem.
When w(k) # 0, the following inequality is true from Formula (17).
AV (k) + 27 (k) 2(k) — v*w” (k)w(k)
k1
<G R {E+TT(P+ bR +T5To} k) = ) G (kDTG (kD)

I=k—dy
WhereFQZ[C’ 0 D]
If the matrix inequalities (9) and (10) hold and use Lemma 3.1, we can get
AV (k) + 27(k)z(k) — v*w” (B)w(k) < 0 (19)
Summing from 0 to oo for the above formula of both sides, we can obtain that
i (27 (k)z(k) — v*wT (k)w(k)] < V(0) — V(c0), and when V(0) = 0, we have

k=0

> [T (k)z(k) = Y*w" (k)w(k)] <0 (20)

k=0
that is, [|z]], < v||w]l,-
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It follows from Definition 3.1 that the result of the theorem is true. Therefore, the
proof of this theorem is complete.

3.2. Controller design. Next, we will show that the above sufficient condition for the
existence of robust controller is equivalent to the feasibility of LMIs.

Theorem 3.2. The networked control system (8) is robustly stochastically stable and has
an Hu, performance vy if there erist symmetric positive-definite matrices P = PT >0,

Xll * .-

- > > 0, positive scalar e; > 0
)521 _X22 ] =0 P ’

(1 =1,2,3,4) and appropriate dimensions matrices Ny, No, such that the following matriz

inequalities hold. A state feedback controller can be constructed via K = K P.

Q >0, Z > 0, semi-positive-definite matriz X = [

Qll *
d, = <0, 21
! [ Q. Oy ] (21)
):(11 K *
Uy = | Xor Xoo * > 0. (22)
NIT NZT op~t — 771
where
[ V11 * * * * * ]
V21 V29 * * * *
RT 0 —~2I * * *
APt —P ' 4e3D,DT
Q= k -1 314
11 e dH, AP R e, * * )
dy A, P! eady Dy DT —hZ!
ey AP R S +esdsD D %
4o 11 402111 +54d§H1
CpP! 0 D 0 0 —1
[ E\P '+ EsMK +¢e,Hy E2P™' 0 e4Hy e4doHy 0]
E,P~! 0 0 0 0 0
QZI - _ )
EIP_I + EsMK +e4,Ho 0 0 e4Hy eu4dyHy 0O
| E,P ! 0 0 0 0 0 |
[ —e3l +e4H3 % * *
0 —€QI * *
922 - €4H3 0 _6II+64H3 * ’
0 0 0 —eql

oy =4 P '+ P AT+ PN P 4+ PTINI P+ () PTIQP !
+ doP7' X1 P+ (21 + &2) Dy DT + 48 Hy,
Bi=a;+ 62, wy =P AT - P INIP '+ PN, P 4 dyP P Xy P
gy = =P 'NoP ' = PTINJ P — PTIQP ' + dyP ' X, P!, Ny = PN, P,
Ny =P 'NoP ', Xy =P 'X P!, X =P 'Xp P!, Xpp=P 'XpP!,
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Q=P 'QP7', K=KP™' A,=A,—I+BMK + F},
H, = Z (BiBob; D1(Bo0;Dy)T), Hy = Z (B;E30; Dy (Bo#;D1)7),
=1 =1

Hy = " (B;Es0;D1(E30;D:)").

=1

Proof: These uncertainties such as AA,, AA; and AB, in Formula (9), can be written
as (23) using Lemma 3.2 and Schur Lemma.

e1PDy(PD,)T .
+62PD1(PD1)T * * % % * * % %
0 0 = * * * * * *
0 0 0 * * * * * *
0 0 0 e3D,DT * k% * *
T, = 0 0 0 e3dsD DT sZDDT +  x o« x| (23)
0 0 0 0 0 0 * * *
(E1+E3Mf(> B 0 0 0 0 —es] % %
0 B, 0 0 0 0 0 —=s0
<E1 + E3Mf<) 0 0 0 0 0 0 0 —al

Note that the form of AK is the same as AA, so using Lemma 3.2 and Schur lemma, we
can get

r e,PCiP % «x * * x k% % x ]
0 0 = * * x ok %k *
0 0 0 * * x ok %k *
e CiP 0 0 e4C4 * x k% % *

1, — egdyCiP 0 0 £4dyCy e4d3Cy % % % % * (24)

0 0 0 0 0 0 * * * *
esCoP 0 0 e4Cy  e4doCy 0 e4C5 % % %
0 0 0 0 0 0 0 0 = *
esCoP 0 0 40y e4dyCy 0 e4C5 0 e4C5 *

.  E, 0 0 0 0 0 0 0 0 —eql |

where Cl == B[)MDl (B()MDl)T, 02 == E3MD1 (B()MDl)T, 03 == E3MD1 (E3MD1)T.
Considering the fault’s specific form such as (6), we can get

E(Cy) =E {BoMD:(BoMD;)"} = E{By(M — M + M)D;(Bo(M — M + M)D;)"}
Z (5 B(]@ D1 Bg@ Dl) + aiB(]@iDl (Bg@le)T)

=1

> (5800 (BOD)"),

i=1
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)= (BEGD (BaiDy)").

i=1

Y (@Eg@ D, (E,0;D;) )

i=1

Then, using Lemma 3.2, we can obtain that

resPHP % % * * * * * * * ]
0 0 =* * * * * * * *
0 0 0 * * * * * * *
eHP 0 0 e4Hy * x % k% *
o esdoH\P 0 0 e4doHy eqd3H, * % *x % * (25)
0 0 0 0 0 0 = x ok *
esHaP 0 0 e4Hy e4dyHy 0 e4Hz * * *
0 0 0 0 0 0o 0 0 =« *
esHy P 0 0 e4Hy e4doHy 0 e4Hs 0 e4H; *
. E, 0 0 0 0 0 0 0 0 —e4l |
From (9), (24) and (25), we can get
=1 1) )
where
[ wyy * * * * x ]
Wa1 Wag * * * *
RTP 0 —2I * * *
Ty = Ay + e H P Ay R _P:;?IIDID? * 0,
. dy D, DT -
dy (Ay, +e4dy HyP) dyA,  doR 61524 e tesdsDi D
+e4d2H,
i C 0 D 0 0 —I |
[ By 4+ EsMyK +e4HoP Ey 0 e4Hy e4doHy 0
E, 0 0 0 0 0
Ty = ;o Toy = oy,
Ei+ EsMyK +e,HyP 0 0 e4Hy e4doHy 0O
E, 0 0 0 0 0

wyy = PAy + AP+ Ny + N] + (1 + 1)Q + do X1y + (61 + £2)PD, D] P + ¢, PH, P,
W21 :AfP_NITI—‘FNZ—‘FdQXQI, Wog = —N2 _Ng_Q—i_dQXQZ

Pre- and post-multiplying (26) by the matrix diag {P~', P=', I, I,1,1,I,1,1,I}, and
pre- and post-multiplying (10) by the matrix diag { P~', P~!, P='}, then we can get (21)



NON-FRAGILE ROBUST H,, CONTROL 285

and (27) )
X11 * *
\I’Q = X21 XQQ * Z 0. (27)
NT NI pizp-
Obviously, since there has nonlinear term P~'ZP~! in (30), it is not strict linear matrix
inequalities.
Note that Z and P are positive matrix, and then we can obtain (Z~!' — P~HV(Z~! —
P~1) > 0, which implies
Plzpt>2pt -7t (28)
From (27) and (28), we can get (22). If (21) and (22) are true and from Theorem 3.1,

system (8) is robustly stochastically stable and has an H,, performance . The proof is
complete.

3.3. The optimization of performance. Let ¢ = v2, and we can obtain the minimum
disturbance rejection rate ymn, = +/e of system (8), which satisfies non-fragile fault-
tolerant H,, control if the following optimization problem holds.

mine

st (21), (22), P>0, @>0, Z>0, X>0, >0 (:=1,2,3,4) (29)

4. Numerical Example. In this section, a numerical example is provided to illustrate
the effectiveness of the proposed design method. Consider the discrete-time networked
control system (8), in which the system parameters are given as follows:

0 01 0.2 0 10
AO_[—O.M 0.9]’ Al_[o 0.1]’ BO_[U 1]’

0.01 0.02 0.1 0.2 0.2 0.1 0.2 0.2
D= {0.02 0.02]’ b= {0.3 0.1]’ b2 = [0.3 0.2]’ By = {0.1 0.2]’

0.01 0.02 0.5
Ee= {0.01 0.02 ]  R= {0.3
The nonlinearities F; and F'(k) are chosen as follows:

n= (o] /o rw =0 gy |

], C=[0101], D=06, di=1, dy=4.

0.3 60 <k<65
0  otherwise

The actuators fault matrices are given in Tables 1 and 2. By solving the linear matrix
inequalities (21) and (22) in Theorem 3.2, the state feedback controller K and H,, per-
formance v can be obtained. The results obtained can be optimized and we can get K*,
~v* which are listed in Tables 1 and 2.

The exogenous disturbance w(k) =

TABLE 1. K* and v* for M = diag{0.9,1.1} with different variance

Expectation M = diag{0.9,1.1} M = diag{0.9,1.1} M = diag{0.9,1.1}

Variance 62 =0 62 = 0.09 62 = 0.36
e 0.304 —0.138 0.304 —0.138 0.304 —0.138
0.117 —0.481 0.117 —0.481 0.117 —0.481

v* 1.6205 1.6220 1.6263
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TABLE 2. K*and v* for M = diag{1,1} with different variance

Expectation M = diag{1,1} M = diag{1,1} M = diag{1,1}

Variance 62 =0 62 = 0.09 62 = 0.36
- [()274 —0.125] [0.274 —0.124] [0.274 —0.124]
0.120 —0.529 0.120 —0.529 0.129 —0.589
v 1.6214 1.6228 1.6272

From Tables 1 and 2, we can see that +* in Table 1 is smaller than that in Table 2
when the variance is the same. In other words, the capability of disturbance rejection
with the actuators having partial failures is better than with the actuators being normal
in the effect of H,, fault-tolerant controller. Therefore, it can be seen that the proposed
method provides the desired H,, control.

Assume that the initial states of the system are x(0) = [ 1 —0.5 |, and the state
trajectories of the networked control systems stabilized by the above controllers in Table
1 are shown in Figures 1-3.

]T

x1
(']
-
— 0.5
e
2
o
.\ A
2 o P e ;
-
o
-0.5 ¢ ' i . :
0 20 40 60 80 100

Step k

FIGURE 1. The system state when M = diag{0.9,1.1} and 6? = 0

xl
el
(']
-
— 0.5
-
2
o
.
@ B} aa———, b
- '
« {
-0.5¢" ' i . :
0 20 40 60 80 100

Step k

FIGURE 2. The system state when M = diag{0.9,1.1} and 62 = 0.09
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x1
- X2

System State x1,x2
=

0 20 40 60 80 100
Step k

FIGURE 3. The system state when M = diag{0.9, 1.1} and §? = 0.36

It can be seen that the system with random actuator faults is stable in the end even hav-
ing exogenous disturbance under the effects of the designed controller, which demonstrates
the usefulness of the method presented in this article. Besides, when the actuator faults’
expectation is the same, the bigger the variance is, the faster the system becomes stable
from Figures 1-3. Therefore, the proposed method provides the desired fault-tolerant
control.

5. Conclusions. In this paper, the effects of time-delay, the exogenous disturbance,
norm-bounded parameter uncertainties, stochastic nonlinearities and random actuator
faults are considered. By constructing an appropriate Lyapunov-Krasovskii function, the
sufficient conditions for the existence of the non-fragile robust fault-tolerant H,, con-
troller are obtained in terms of LMIs. The numerical example shows the feasibility of
the proposed method. Further, the output feedback guaranteed cost control and model
predictive control strategies for NCSs will be our future topics of research.
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