International Journal of Innovative
Computing, Information and Control ICIC International ©)2017 ISSN 1349-4198
Volume 13, Number 2, April 2017 pp. 365-379

DISTRIBUTED SRN MANAGER ON A RESILIENT SERVER
WITH MULTIPLE VIRTUALIZATION ENGINES

IDRIS WINARNO!, TAKESHI OKAMOTO?, YOSHIKAZU HATA!
AND YOSHITERU ISHIDA!

!Department of Computer Science and Engineering

Toyohashi University of Technology
1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
{idris; hata }@sys.cs.tut.ac.jp; ishidaQcs.tut.ac.jp
2Department of Information Network and Communication
Kanagawa Institute of Technology
1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
take4@nw.kanagawa-it.ac.jp

Received September 2016; revised December 2016

ABSTRACT. Presently, modern network servers run using virtualization technology since
this technology offers flexibility and ease of administration. However, we have to consider
that this technology also delivers a new problem that may hamper services that run on
the server. In our previous work, we introduced the combination of a self-repair network
model and virtualization technology to solve failures that can occur on the server. How-
ever, we need to increase the resilience of the server since the failure not only occurs in
the guest operating system, but also in the host operating system. We proposed a new
design for a resilient server with multiple virtualization engines and distributed the SRN
manager to all of the physical servers. The result shows that our new design is able to
remedy failures not only in the guest OS, but also in the host OS (virtualization engines).
Keywords: Virtualization engines, Self-repair network, Server, Fault-tolerant

1. Introduction. More and more people rely on an information system to satisfy their
needs in daily life. They can obtain information relating to commerce, education, news,
and a myriad of other topics via the Internet. This reality is evidenced by the forecasting
of the Cisco Visual Networking Index (Cisco VNI™) where it predicts that the level of
global TP traffic will surpass the zettabyte [1]. Cisco VNI™ also forecasts that the number
of devices connected to networks will be three times higher than the global population by
the year 2020. The computer (known as a server) serves the information system that is
accessed by users. This machine plays an important role, making it imperative to preserve
the operational existence of this machine.

The server can be constructed using either a traditional or a virtualization model. With
the traditional model, one physical server consists of a single operating system while on
the virtualization model, we can install more than one operating system inside a single
physical server depending on the availability of its hardware resources (e.g., processor and
memory). Consequently, many traditional servers have shifted to a virtualization model
since this model offers numerous tangible benefits (i.e., portability and energy efficiency).
Figure 1 illustrates the comparison between a traditional and virtualization model of a
server.

When we choose to use a virtualization model for our server, it does not mean that
our server will be spared from potential failure. By migrating our server model from
traditional to virtualization leads to a new problem. We have simulated a resilient server

365

366 I. WINARNO, T. OKAMOTO, Y. HATA AND Y. ISHIDA

Virtualization Server

Traditional Server

FIiGURE 1. Comparison between traditional and virtualization server models

with a homogenous guest operating system (OS) using XEN as the Virtual Machine
Monitor (VMM) [2] and Docker as the Container [3]. In the simulation, we implement
a Self-Repair Network (SRN) model [4] to solve the failure that occurs on the server.
Furthermore, we enhanced our work by increasing the diversity of the guest OS where we
created a heterogeneous guest OS [5]. However, this solution only rescues the server from
the perspective of the guest OS; in the other words, we also need to rescue the server from
the virtualization engine since there is a type of server failure that can be caused by the
virtualization engines themselves (e.g., CVE-2016-1571 [6]).

We start to build heterogeneous virtualization engines by utilizing multiple virtualiza-
tion engines (XEN as VMM and LXC as Container) to solve the problems that can occur
on them [7]. We equipped the virtualization engine with an application that operates
with a role to monitor and respond to failures called the SRN manager. In this work, the
SRN manager implements the SRN model that works to monitor and respond to all of
the virtualization engines. Since we use a single (centralized) SRN manager for all of the
virtualization engines and if the SRN manager has a problem, then all the virtualization
engines will operate without any supervision.

To solve the issues on the resilient server with the centralized SRN manager, where it
acts as a single central point for system failures, we were motivated to introduce a new
design for a resilient server with multiple virtualization engines by distributing (decen-
tralizing) the SRN manager in each of the physical server machines. The goal of this new
design is to increase the availability of the SRN manager on the resilient server so that it
is able to monitor and respond to failures occurring on the guest OS and the virtualization
engines.

This work is organized as follows. First, in Section 2, we discuss the work that is related
to resilient servers and compare it to our own work. In Section 3, we review the types
of resilient server that we have developed, including the one with the centralized SRN
manager with multiple virtualization engines. Since the resilient server is implementing

DISTRIBUTED SRN MANAGER ON A RESILIENT SERVER 367

the SRN model, in Section 4 we explain the relationship between the SRN model and the
resilient server. Then we describe system design and the implementation of our work and
reveal the results of the experiment in Sections 5 and 6, respectively. Finally, Section 7
concludes our present work and explains our intended future work.

2. Related Work. There are several ways to make our server work even when there
is a system failure. The first way is in implementing a fault-tolerant system, where re-
dundancy is its primary element [8]. In contrast to the resilient server, the fault-tolerant
system focuses on “passive activity” where the system keeps functioning without sig-
nificant changes. Meanwhile, the resilient server focuses on “active activity” whereby
the system adapts to environmental changes by altering the fundamental structures to
preserve their function. A honeypot using N-version programming is one of the imple-
mentations of a fault-tolerant system [9] where it runs multiple OSes and web services.
Further, this project only runs in single virtualization engines called VMware; meanwhile
in our work, the server not only provides multiple OSes and web services, but also uses
multiple virtualization engines.

The other way to reduce the risk of server failure is by involving a virtualization tech-
nique. This technique can help the server in solving system failures, such as hang [5,7] and
cyber attack [10]. We can combine the fault-tolerant system and virtualization technique
to improve the availability of the server. This arrangement has already been introduced
by several vendors, e.g., VMware [11]. This combination can be achieved when there
is more than one physical server machine as primary and secondary machines (Figure
2). Remus [12] is one of the implementations of this combination. Since we have to use
more than one physical server machine, we need to utilize a virtualization manager ad-
ministrator to manage or control all the virtualization engines that run on each of the
physical server machines. However, this virtualization manager administrator works only

ADMINISTRATOR

FIGURE 2. Combination of fault-tolerant system and virtualization

368 I. WINARNO, T. OKAMOTO, Y. HATA AND Y. ISHIDA

with the same type of virtualization engines (e.g., VMM) [13]. Meanwhile, to increase the
availability of the server we need to use different types of virtualization engines (VMM
and Container) [7] and these virtualization engines should be under supervision by the
virtualization manager administrator that we refer to as the SRN Manager.

This work focuses on how to improve the existence of the SRN manager to monitor and
respond to failures on VMM and Container since we have to consider that the failure of
the server not only occurs on the guest OS of the virtual machine, but also on the host
OS (virtualization engines).

3. Resilient Server Types. As we explained earlier, the resilient server runs an active
activity to preserve its function when the failure occurs. The active activity intends
to adapt to environmental changes by changing fundamental methods or structure. We
implement an SRN model [4] as the active activity to the resilient server. This model is
inspired by the immunity-based system which is discussed further in Section 4.

The resilient server can be developed with the involvement of several kinds of technology.
In this work, we focus on developing a resilient server utilizing virtualization technology.
We can develop several types of resilient server by involving this technology. The types
of the resilient server that can be realized by utilizing specific combinations with several
parameters include:

a) Virtualization engine: software that provides an environment where the virtual ma-
chine can be run.

b) Guest OS: a virtual machine that is used to create the server.

c¢) Application (service): an application that provides a service, e.g., web server.

As shown in Figure 3, the combination of each parameter on type #1 to #8 shows that
diversity becomes high. For example, type #1 has the same specification (homogeneous)

Virtualization Application
Engine SURSCE (Service) Type #

-=> 1

--> 2

FIGURE 3. Types of resilient server with three parameter combination

DISTRIBUTED SRN MANAGER ON A RESILIENT SERVER 369

on each parameter so that we can call type #1 as a homogeneous resilient server. Mean-
while, types #2 to #8 have different specifications on each parameter (heterogeneous) so
that we can call them heterogeneous resilient servers. Since type #8 of the resilient server
shows that this type is the most heterogeneous combination compared to the other types,
consequently, this work only focuses on resilient server type #8. Moreover, system design
and implementation of resilient server type #8 will be explained further in Section 5.

4. Resilient Server with a Self-Repair Network Model. The resilient server that
we previously developed [2,3,5,7] is equipped with an application called an SRN Manager
that implements a Self-Repair Network (SRN) model. This application has to monitor
and respond to failures that occur on the virtual machine that operates as the server.
This virtual machine runs a guest OS that we henceforth refer to as a node. There are
four models of the SRN model that we will implement in this work which are described
as follows.

4.1. Self-repair model. This model has an ability to repair a failure that occurs on the
nodes by itself. One of the failures that can be solved using this model is hang failure.
This failure occurs when the node cannot respond to a request from users. There are a
number of possible events that can cause hang failures such as infinite loops and indefinite
wait [14]. Since we use virtualization technology, we can utilize the virtualization engine
to reset the node that encounters the hang failure. The SRN manager that monitors the
node will detect the hang failure and instruct the virtualization engine to reset the node.
However, despite the node running normally after being reset by the virtualization engine,
this solution cannot guarantee that the same hang failure will not occur again until the
system administrator finds the actual cause.

4.2. Mutual-repair model. The second model of SRN is a mutual-repair model that
has an ability to repair the other nodes. This ability can be used to solve a problem that
occurs on a node, for example, copying the normal part of a node to the abnormal node
so that the abnormal node can work normally. However, it is hard to realize this model
since all of the nodes have to be identical (homogeneous). An alteration of files on the
web contents by the attacker is another failure that possibly occurs on the server. The
attacker tries to modify web content by inserting an iframe element to redirect a user’s
access to their exploit kit server. Once the users have been successfully redirected to their
exploit kit server, they can attack various vulnerabilities on the user’s PC. The alteration
can be detected using a security toolkit such as Tripwire. When the Tripwire detects the
missing or modified files, then the compromised node can copy the missing or modified
file from the normal node. However, copying files from the other nodes is not a complete
solution to solve this problem since we have to be aware of the “double edged sword”
phenomena [4].

4.3. Mixed-repair model. This model contains a combination of two basic models of
the SRN including the self-repair and mutual-repair model. In other words, a mized-repair
model has two abilities for repairing the node from the failure. We can use these abilities
to solve a problem that occurs on a node such as a denial of service (DoS) attack. This
attack is meant to hamper particular services, such as a web server, by flooding a lot of
TCP packets making the service unable to process further connections from other users.
Several researchers use a firewall feature inside the operating system (e.g., iptables) to
solve this problem [15,16]. Therefore, we can utilize iptables to drop a DoS packet to
secure the nodes with a limited scenario of DoS attack (i.e., TCP DoS attack). Since
mized-repair is used to solve a DoS attack, then self-repair is indicated by adding the

370 I. WINARNO, T. OKAMOTO, Y. HATA AND Y. ISHIDA

attackers IP address to the firewall rule of the node itself. After that, information of the
attackers [P address is sent to the virtualization engines in order to secure the other nodes
by dropping all of the DoS packets indicating a mutual-repair.

4.4. Switching-repair model. The fourth model of SRN is the switching-repair model
where this model has an ability to migrate the faulty node to the normal node. In the
other words, we stop the faulty node and replace it with a normal node. This solution
creates a higher cost of operation compared to other models since we need to provide a
normal node to replace the faulty node. Therefore, we only use this model if the self-
repair, mutual-repair and mized-repair models are unable to solve the problem. Further,
this solution targets the heterogeneous nodes and offers higher resilience than the other
models.

5. System Design and Implementation. As we mentioned in Section 2 the server
malfunction not only occurs on the application or guest OS, but also occurs on the host
OS (virtualization engine). When the virtualization engine is faulty, then this condition
will lead to all of the guest OS’s inside the host OS to cease functioning. To address the
problem that possibly occurs on the virtualization engines, we need to provide multiple
virtualization engines for the resilient server. We built the resilient server with multiple
virtualization engines (type #8) and placed the SRN manager to monitor and respond to
failures. As the SRN manager plays an important role on the resilient server, we need to
increase the availability of the SRN manager by modifying its availability from centralized
to distributed. The difference between the centralized and distributed positions of the
SRN manager and a description of the SRN manager is outlined as follows.

5.1. Centralized SRN manager. Figure 4 shows the design of a centralized SRN man-
ager on type #8 of the resilient server. There are three physical servers used; two of them
are used for the operation of virtualization engines while the other one is used for the SRN
manager. Further, two types of virtualization engine are placed on each of the physical

INTERNET

SRN \
. Manager I

FiGURE 4. Centralized SRN manager on type #8 of the resilient server

DISTRIBUTED SRN MANAGER ON A RESILIENT SERVER 371

servers in this paper: VMM and Container. We use XEN as VMM and LXC as Container.
Meanwhile, the SRN manager has to monitor and respond to failures occurring on both
of the virtualization engines that run on separate physical servers. This design implies a
single point of failure since only a single SRN manager is run. When the SRN manager
encounters a failure, there is no SRN manager available to respond to a failure that occurs
on both of the virtualization engines simultaneously.

5.2. Distributed SRN manager. In order to eliminate the risk that appears in type
#8 of the resilient server with a centralized SRN manager, we modify the design so that
the SRN manager is distributed to all of the physical servers as shown in Figure 5. Only
two physical servers are used in this design while in the centralized SRN manager we use
three physical servers. Details of their technical specifications refer to our previous work
[7] and is shown in Table 1. However, this table shows that node id’s #5 to #8 have the
same version due to the LXC characteristic which uses a shared kernel of the host OS.
This condition will likely lead to trouble when the LXC kernel has a vulnerability that
allows privilege escalation because the host OS and all of the nodes can be compromised.

Ficure 5. Distributed SRN manager on type #8 of the resilient server

TABLE 1. Technical specification of the physical server machine [7]

. .. Build
Vlrtual.lzatlon Node Guest OS number Kernel version |Application
Engines ID #
(release)
VMM: XEN 4.1 Debian
on Debian GNU 1 GNU/Linux 7.8 (Wheezy) 3.2.0-4-amd64 Apache
- untu . recise .11.0-15-generic
/Linux 7.8 with | o |, 12.04 (Precise)| 3.11.0-15-generi Apache
kernel version: Tomcat
3.9.0-4-amd64 3 Fedora 22 1.0.4-301.1c22.x86 64| Nginx
4 Windows 7 7601 - I1S
Container: LXC 5 %er{)t_OS 6.7 (Final) 3.16.0-4-686-pae Igightflp
1.0.6 on Debian | ¢ GNS Ilf?n 8 (Jessie) 3.16.0-4-686-pac Tpac ‘E
GNU/Linux 8.3 /Linux omca
with kernel version: | Fedora 162% . 3.16.0-4-686-pae Apache
3.16.0-4-686-pae ' -4-686- i
p 8 Ubuntu (Xenial Xerus) 3.16.0-4-686-pae Nginx

372 I. WINARNO, T. OKAMOTO, Y. HATA AND Y. ISHIDA

To address this problem, we should apply mandatory access control (e.g., AppArmor) for
the LXC.

Since every physical server or virtualization engine is equipped with the SRN manager,
then it should determine which one of the physical servers will operate as the primary
SRN manager. If the primary SRN manager stops operating then the secondary SRN
manager will replace the position.

5.3. SRN manager. Since the SRN manager is placed in each of the physical servers,
then the SRN managers should determine their operation as either a primary or secondary
SRN manager. To achieve this, they need to communicate and decide which will become
the primary SRN manager. Algorithm 1 shows the communication between two SRN
managers. The communication starts by sending a broadcast signal to the network. The
SRN manager informs their priority number (line 5 of Algorithm 1). When the SRN
manager listens to the other SRN manager, that has a higher priority number, then
the lower priority number should change their status to an idle position (lines 7 and 8
of Algorithm 1). Further, when the primary SRN manager that has the highest priority
number is working, it will trigger the other scripts (Algorithms 2, 3 and 4) to activate their
function to monitor and respond to failures occurring on the server (line 6 of Algorithm

1).

Algorithm 1 Pseudo-code implementation of the script for communication
between SRN Manager

1 bripAddr < defineBroadcastIpAddress()
2 listenTimeout < generateRandomValue()
3 priority < definePriority()
4 repeat
5 sendActiveSrnmSignal (brlpAddr, priority)
6 activeSrnm < TRUE
7 check <+ isThereAnyActiveSrnmSignal WithHigherPriority ()
8 if check = TRUE then
9 otherSrnmlisActive < TRUE
10 repeat
11 140
12 repeat
13 otherSrnmlIsActive < listenToActiveSrnmSignal(brIpAddr)
14 activeSrnm < FALSE
15 1< 1+1
16 until listenTimeout < i
17 until otherSrnmlsActive = FALSE
18 end if

19 until scriptIsStopped

We create several scenarios of failure of the server that are similar to those used in our
previous works, including hang, DoS attack, and malware. Furthermore, the failures that
are described in these scenarios not only occur in the guest OS (node) but also in the
host OS (virtualization engine). Since we use a distributed SRN manager, we need to
modify our previous algorithm [5]. The modification aims to adapt to the new design of
the SRN manager as shown in lines 4 and 5 of Algorithms 2, 3, and 4. We also need to
consider implementation of Algorithms 2, 3, and 4, since we use multiple virtualization
engines. For example, in Algorithm 2 (hang scenario), when the credibility (R) of the

DISTRIBUTED SRN MANAGER ON A RESILIENT SERVER 373

node is higher than the threshold (line 7 of Algorithm 2) then the node will be defined as
the hang node. The SRN manager will respond to this failure by resetting the hang node
(line 8 of Algorithm 2). If the hang node is running under VMM (XEN) then the SRN
manager resets the hang node using the following commands:

xm destroy <domain>

xm start <domain>

Meanwhile, when a failure is detected on a node that is running under the container

(LXC) then the way to reset the hang node is by using the following commands:

1lxc-stop -n <container_name>

lxc-start -n <container_name>

Algorithm 2 Pseudo-code implementation of the script for hang scenario
with the distributed SRN manager

1 R+0
2 threshold < 0.5
3 repeat
4 activeSrnm < checkTheSrnmStatus()
5 if receiveRespondRequest = FALSE and activeSrnm = TRUE then
6 if R > 1 then
7 if R > threshold then
8 reset TheHangNode()
9 makeAReport ToTheAdministrator()
10 end if
11 else
12 R+ R+0.1
13 end if
14 else
15 if R <0 then
16 R+ R-0.1
17 end if
18 end if

19 wuntil scriptIsStopped

The same condition also occurs to Algorithm 3 at line 8 where it shows the response
of the SRN manager when a DoS attack is detected. The node will be defined as an
attacked node when the credibility is higher than the threshold (line 7 of Algorithm 3).
The credibility of the node will increase if the number of existing connections (N,) is
higher than the allowed maximum number of connections (I.) as shown in Algorithm 3
at line 5. When a DoS attack is detected, then the SRN manager will respond to the DoS
attack by adding the suspected IP address of the attacker to the firewall rule in the node
that is being attacked using the iptables command. However, to prevent the attacker
from attacking the other nodes, then the SRN manager needs to place the suspected IP
address on the firewall rule on both virtualization engines (VMM and container).

6. Experimental Results and Discussions. We test our design (type #8 of the re-
silient server) shown in Figure 5 to know the response of the SRN manager when the
services (application), nodes (guest OS) and virtualization engine (host OS) encounter a
failure based on the scenario explained previously. The server failure includes hang, DoS,
and malware. The experimental results of the failure scenarios are shown as follows.

374 I. WINARNO, T. OKAMOTO, Y. HATA AND Y. ISHIDA

Algorithm 3 Pseudo-code implementation of the script for DoS scenario with
the distributed SRN manager

1 R«0
2 threshold < 0.5
3 repeat
4 activeSrnm < checkTheSrnmStatus()
5 if N. > I. and activeSrnm = TRUE then
6 if R > 1 then
7 if R < threshold then
8 addTheSuspectedIpToFirewall()
9 makeAReportToTheAdministrator()
10 end if
11 else
12 R<+ R+0.1
13 end if
14 else
15 if R <0 then
16 R+ R—-0.1
17 end if
18 end if

19 until scriptIsStopped

Algorithm 4 Pseudo-code implementation of the script for Malware scenario
with the distributed SRN manager

1 R«<0
2 threshold < 0.5
3 repeat
4 activeSrnm < checkTheSrnmStatus()
5 if detectMalware = TRUE and activeSrnm = TRUE then
6 cleanTheMalware()
7 R+ R+0.1
8 if R > threshold then
9 isFound < findNormalNodeWithSameAppsButDifferentOs()
10 if isFound = TRUE then
11 switchTheAbnormalNodeWithStandbyNode()
12 makeAReportToTheAdministrator()
13 else
14 isolateTheNode()
15 makeAReportToTheAdministrator()
16 end if
17 end if
18 else
19 if R <0 then
20 R+ R—-0.1
21 end if
22 end if

23 until scriptIsStopped

DISTRIBUTED SRN MANAGER ON A RESILIENT SERVER 375

6.1. Hang. There are several possibilities that can trigger a hang condition such as ex-
ploitation of a vulnerability, misconfiguration of a service, physical failures, and unknown
reasons. In this scenario, we only focus on the hang condition caused by an unknown
reason, since the other possibilities are unable to be solved using self-repair but may be
able to be solved using switch-repair. Further, although the node can be successfully re-
set, it cannot be guaranteed that the hang problem is permanently solved. We use ICMP
ping to ensure the responsiveness of the guest OS and the host OS. Meanwhile, TCP
and UDP ping are used to ensure the responsiveness of the application that runs on the
guest OS. To simulate the hang scenario, we use the halt command to trigger a hang
condition. The halt command applied not only to the node (guest OS) but also to the
virtualization engine (host OS) so that all the nodes under VMM (XEN) stop running as
shown in Table 2. When the SRN manager on VMM stops running, the SRN manager
switches to the secondary SRN manager that is running under the container (LXC) and
switches the failed nodes (X) to the normal node (O) that have the identical services.

When the resilient server uses the centralized SRN manager, then it will be vulnerable
to hang failure as shown in Table 3. This table shows that a resilient server where the
SRN manager is in an abnormal state (X) whereby the guest OS that is having a hang
failure on both virtualization engines is unable to be recovered (reset/migrate).

6.2. Denial of service (DoS). In this scenario, we assume that the DoS attack is based
on the TCP connection. There are various applications that we can use to simulate DoS
attacks such as slowhttptest [17], slowloris [18], and httperf [19]. When an attacker

TABLE 2. Experimental result of the hang failure with the distributed SRN manager

Virt. |Node | Guest | Guest OS GS(;St 13[1212 SRN Man. SRN
Engine |[ID #| OS |Credibility State Stat(; Respond Model
1 Debian 0.9 X Migrate |switch-repair
2 |Ubuntu 0.9 X Migrate |switch-repair
VMM 3 Fedora 0.9 X X Migrate |switch-repair
4 |Win. 7 0.9 X Migrate |switch-repair
5 |CentOS 0.6 X Reset self-repair
) 6 Debian 0 O — —
Container 7 Fodora 0 0 @) — —
8 |Ubuntu 0 O — —

TABLE 3. Experimental result of the hang failure with the centralized SRN manager

Guest | SRN

Virt. |Node| Guest | Guest OS OS | Man SRN Man. SRN
Engine |ID #| OS |Credibility State State; Respond Model
1 | Debian 0.6 X (unable to respond)| —
2 |Ubuntu 0.6 X (unable to respond)| —
VMM 3 | Fedora 0.6 X (unable to respond)| —
4 |Win. 7 0.6 X (unable to respond)| —
5 |CentOS 0.6 X X [(unable to respond)] —
_ 6 | Debian 0 O (unable to respond)| —
Container 7 Fodora 0 O (unable to respond)| —
8 |Ubuntu 0 O (unable to respond)| —

376 I. WINARNO, T. OKAMOTO, Y. HATA AND Y. ISHIDA
TABLE 4. Experimental result of the DoS attack failure with the distributed
SRN manager
Virt. |Node|Guest | Guest OS G(‘;gSt s/f;l: SRN Man.| SRN
Engine |ID # | OS |Credibility State | State Respond Model
1 |Debian| 0.6 X Block Tgfl;fl;;gjj)’”
2 |Ubuntu 0.1) Block (ﬂ?;txiji_r:fpa;;)
VMM X —— .
3 |Fedora 0 0 Block (ﬂ?ﬁzgl_’f; o)
. mixed-repair
4 | Win. 7 0 O Block (mutual-repair)
5 |CentOS 0 O Block mzxed—repaz.r
(mutual-repair)
6 |Debian 0 O Block (TZZ%ZZ:; a;;;)
Container O red- ‘
7 | Fedora 0 0 Block mized-repair
(mutual-repair)
8 |Ubuntu 0 O Block mzxed—repaz.r
(mutual-repair)
TABLE 5. Experimental result of the DoS attack failure with the centralized
SRN manager
Virt. |Node| Guest | Guest OS GS(;St &121: SRN Man. SRN
Engine |ID # | OS |Credibility State | State Respond Model
1 | Debian 0.6 X (unable to respond)| —
2 |Ubuntu 0.6 X (unable to respond)| —
VMM 3 | Fedora 0 O (unable to respond)| —
4 [Win. 7 0 O (unable to respond)| —
5 |CentOS 0 O X [(unable to respond)| —
. 6 | Debian 0 O (unable to respond)| —
Container 7 Fedora 0 O (unable to respond)| —
8 |Ubuntu 0 O (unable to respond)| —

attacks one of the nodes under VMM or container then the SRN manager will respond
by adding the suspected IP address of the attacker to the firewall rule inside the attacked
node. In addition, at the same time, the SRN manager also adds the suspected IP address
to the firewall rule on both virtualization engines (VMM and container). Table 4 shows
that node id #1 is being attacked (X), and the SRN manager responds to protect the
normal nodes (O) by notifying the IP address of the attacker to the virtualization engines.

Although one of the SRN managers is being attacked making it unable to protect the
normal nodes, then the other SRN manager will replace its position. In contrast to the
resilient server with the distributed SRN manager, Table 5 shows the resilient server with
a centralized SRN manager unable to protect the normal node since the SRN manager is
in the abnormal state (X).

DISTRIBUTED SRN MANAGER ON A RESILIENT SERVER 377

6.3. Malware. The same situation occurs in this scenario where malware has the possi-
bility to infect either the node (guest OS) or the virtualization engine (host OS). When
malware is detected by the anti-malware (e.g., rkhunter and chkrootkit [20]) then the
SRN manager responds by cleaning the malware as shown by node id #1 in Table 6. If the
malware still resides after cleaning process, then the SRN manager responds by switching
the abnormal node (X) to the normal node (O) that has the same service as shown by
node id #2 in Table 6.

The worst case happens when the malware attacks the resilient server with the cen-
tralized SRN manager as shown in Table 7. When the malware successfully infects the
centralized SRN manager and cannot be cleaned or solved by the anti-malware then the
entire nodes are left without any supervision.

TABLE 6. Experimental result of the malware failure with the distributed
SRN manager

Virt. |Node| Guest | Guest OS GS(;St 13[121: SRN Man. SRN
Engine [ID # | OS |Credibility State State. Respond Model
1 Debian 0.6 X Clean self-repair
2 |Ubuntu 0.9 X Migrate |switch-repair
VMM 3 Fedora 0 O X — —
4 |Win. 7 0 O — —
5 |CentOS 0 O — —
) 6 | Debian 0 O — —
Container|— Fedora 0 0 0] — —
8 | Ubuntu 0 O — —

TABLE 7. Experimental result of the malware failure with the centralized
SRN manager

Guest | SRN

Virt. |Node| Guest | Guest OS OS | Man SRN Man. SRN
Engine |[ID #| OS |Credibility State State.a Respond Model
1 | Debian 0.6 X (unable to respond)| —
2 |Ubuntu 0.6 X (unable to respond)| —
VMM 3 | Fedora 0 O (unable to respond)| —
4 |Win. 7 0 O (unable to respond)| —
5 |CentOS 0 O X [(unable to respond)| —
. 6 | Debian 0 O (unable to respond)| —
Container 7 Fodora 0 O (unable to respond)| —
8 |Ubuntu 0 O (unable to respond)| —

We also tested our system by counting the time spent by the server recovering from
failure, especially in the hang scenario since it is required to reset the abnormal node
(self-repair) or even to switch to the normal node (switch-repair). We commence counting
when the virtualization engine resets the hang node, and the count is ended when the
service is ready to be accessed. After conducting 10 trials of the test, a node using Linux
OS spent 17.5 seconds on average and a node using Windows OS took 58.3 seconds on
average. The time spent shown by our system is acceptable because if we did it manually

378 I. WINARNO, T. OKAMOTO, Y. HATA AND Y. ISHIDA

TABLE 8. Comparison of resilient server types

Resilient Server
. Type #2 to #4 Type #8
Failure

Hang on the node (guest OS) self-repair self-repair
Hang on the Virtualization
Engine (host OS)

DoS on the node (guest OS) mized-repair mized-repair

DoS on the Virtualization

(unable to repair) | switching-repair

Engine (host OS) (unable to repair) mized-repair
self-repair, self-repair,
Malware on the node (guest OS) mutual-repair, mutual-repair,

switching-repair | switching-repair

Malware on the Virtualization

Engine (host OS) (unable to repair) | switching-repair

then we would need to add additional time for getting access to the host OS and inputting
the reset instruction to the virtualization engine.

Based on the experimental result of resilient server type #8 and compared to the
previous resilient server [5], this design is able to solve a failure that occurs not only on
the node (guest OS) but also in the host OS where the virtualization engine is running.
The distributed SRN manager that is placed on all of the physical servers can provide
higher availability than that seen in our previous work [7]. Further, this design is also
inspired by the diversity of operating systems [21] and an immunity-based system [22].
Table 8 shows a comparison of the resilient server between type #2 to #4 and type #8.
The resilient server type #8 is able to recover from limited scenarios of failure (i.e., hang,
DoS attack, and malware) by implementing an SRN model.

In order to increase the resilience of the server, we need to involve other mechanisms
or technologies, such as the Software-Defined Networking (SDN) concept that offers flex-
ibility to organize network topology so that the server is more resilient to failure. When
the server can organize the network using the SDN concept, then it can avoid particular
failure, e.g., DoS attack [23]. Moreover, we also have to consider physical failure due to
natural events (e.g., earthquakes, floods) that can disturb the functionality of the server.
To address this failure, we can implement a disaster recovery system where this system
provides two or more redundant fault-tolerant systems.

7. Conclusion. There were three parameters, including service (application), guest OS,
and virtualization engine that we used in this work to design a new type of resilient
server. The SRN manager that implements a Self-Repair Network model is utilized to
solve failures that possibly occur on the guest OS and virtualization engines. What is
different to our previous work is that we distributed the SRN manager to all of the physical
servers so that the availability of the SRN manager is higher than that of a centralized
SRN manager.

In the future, we will involve other technologies such as a software-defined networking
concept to obtain a higher level of server resilience not only in respect to the host but
also from the perspective of the entire network.

Acknowledgment. We would like to thank the anonymous reviewers for their valuable
comments and suggestions that greatly contributed to improving the presentation. We

DISTRIBUTED SRN MANAGER ON A RESILIENT SERVER 379

would like to thank to DIKTI (Indonesian Government for Higher Education) for the
BPPLN scholarship.

REFERENCES

[1] Cisco Systems, Cisco visual networking index: Forecast and methodology, White Paper, pp.2015-
2020, 2016.

[2] I. Winarno and Y. Ishida, Simulating resilient server using XEN virtualization, Procedia Computer
Science, vol.60, pp.1745-1752, 2015.

[3] I. Winarno, T. Okamoto, Y. Hata and Y. Ishida, Implementing SRN for resilient server on the virtual
environment using container, Intelligent System Research Progress Workshop, 2015.

[4] Y. Ishida, Self-Repair Network: A Mechanism Design, Springer, 2015.

[5] I. Winarno, T. Okamoto, Y. Hata and Y. Ishida, A resilient server based on virtualization with a
self-repair network model, International Journal of Innovative Computing, Information and Control,
vol.12; no.4, pp.1059-1071, 2016.

[6] CVE-2016-1571, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1571.

[7] I. Winarno, T. Okamoto, Y. Hata and Y. Ishida, Increasing the diversity of resilient server using
multiple virtualization engines, Procedia Computer Science, vol.96, pp.1701-1709, 2016.

[8] A. S. Tanenbaum and M. V. Steen, Distributed Systems: Principles and Paradigms, 2nd Edition,
Pearson, 2007.

[9] L. Nagy, R. Ford and W. Allen, N-version programming for the detection of zero-day exploits, Proc.
of IEEE Topical Conference on Cybersecurity, 2006.

[10] F. Sano, T. Okamoto, I. Winarno, Y. Hata and Y. Ishida, A cyber attack-resilient server inspired
by biological diversity, Journal of Artificial Life and Robotics, vol.21, no.3, pp.345-350, 2016.

[11] VMuware vSphere, http://www.vmware.com/products/vsphere/enhanced-app-performance.html.

[12] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson and A. Warfield, Remus: High availability
via asynchronous virtual machine replication, Proc. of the 5th USENIX Symposium on Network
System Design and Implementation, pp.161-174, 2008.

[13] J. D. Pike, D. Reeves and M. Gujarathi, Virtual machine manager for managing multiple virtual
machine configurations in the scalable enterprise, U.S. Patent No. 8,127,291, 2012.

[14] Y. Zhu, Y. Li, J. Xue, T. Tan, J. Shi, Y. Shen and C. Ma, What is system hang and how to handle
it, Proc. of the 2012 IEEE the 23rd International Symposium on Software Reliability Engineering,
pp.141-150, 2012.

[15] K. Chatterjee, Design and development of a framework to mitigate DoS/DDoS attacks using iptables
firewall, International Journal of Computer Science and Telecommunications, vol.4, no.3, pp.67-72,
2013.

[16] B. Q. M. Al-Musawi, Mitigating DoS/DDoS attacks using iptables, International Journal of Engi-
neering & Technology, vol.12, no.3, 2012.

[17] Slowhttptest Application Layer DoS Attack Simulator, https://code.google.com/p/slowhttptest/.

[18] Slowloris HTTP DoS, https://ha.ckers.org/slowloris.

[19] The httperf HTTP Load Generator, https://github.com/httperf/httperf.

[20] M. Cabak, V. Gazivoda and B. Krstajic, Security recommendation for an Ubuntu server-based
system, MREN Best Practice Document, 2016.

[21] C. Pu, A Specialization Toolkit to Increase the Diversity in Operating Systems, Ph.D. Thesis, Port-
land State University, 1996.

[22] Y. Ishida, Immunity-Based System: A Design Perspective, Springer, 2004.

[23] I. Winarno and Y. Ishida, Simulating resilient server using software-defined networking, Proc. of
International Conference on Advanced Informatics: Concepts, Theory and Application, 2016.

