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Abstract. Since the local feature-based methods recognize interior content and utilize
the rich information of the sketches and 2D views of 3D model, this paper proposes a
novel sketch-based 3D model retrieval algorithm which utilizes local feature descriptors
to describe the object shape. Firstly, we propose PCA-DAISY descriptor to create the
efficient local feature descriptors. The DAISY descriptor consists of a vector from the
convolved orientation maps with Gaussian filters. The Principal Component Analysis
(PCA) technique is applied to reduce the dimensionality of DAISY descriptor, which is
not only useful in reducing the dimensionality, but also beneficial in reducing the error
rate. Then, our Fisher coding algorithm quantizes the PCA-DAISY descriptor by using
the Gaussian Mixture Model (GMM), which can be understood as a “probabilistic visual
vocabulary” and brings large improvements in accuracy. The experimental results demon-
strate that our approach which combines these two algorithms significantly outperforms
several latest sketch-based retrieval approaches.
Keywords: Sketch-based 3D model retrieval, Local feature-based methods, PCA-DAI-
SY descriptor, Fisher coding algorithm

1. Introduction. Currently, 3D model retrieval is important for many applications such
as industrial design, engineering, and manufacturing area. The most popular way for
retrieving 3D models is example-based paradigm, where the user provides an existing 3D
model as query input and the retrieval system [1] can return similar 3D models from the
database. However, it is difficult for a user to have an appropriate example 3D model
at hand. An alternative way is to use 2D sketch as a query where users can describe
a target 3D model by quickly drawing it. However, a 2D sketch is merely a coarse and
simple representation which only contains partial information [2] of an original 3D model.
Hence, it is more challenging to realize a sketch-based retrieval than an example-based
retrieval.

For the sketch-based 3D model retrieval method, how to create feature descriptors [3]
between sketches and 2D views of 3D model is crucial. The local feature-based methods
utilize the rich information in the sketches and recognize interior content of 2D views of
3D models. In this paper, we contrast several local feature descriptors, including SIFT
descriptor [4], GLOH descriptor [5], SURF descriptor [6] and DAISY descriptor [7]. The
SIFT [8] and GLOH descriptors [9] both have much computationally demanding and
without systematic exploration of the space, which so far have been used to match a few
seed points or to provide constraints on the reconstruction. The SURF descriptor [10] is
computationally effective with respect to computing the descriptor’s value at every pixel,
but all gradients contribute equally to their respective bins, which results in damaging
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information when used for dense computation. Comparatively, the DAISY descriptor
[11] can achieve computational efficiency without performance loss by the convolved ori-
entation maps with Gaussian kernels. However, the local descriptors often have large
dimensionality, which means they are unable to achieve the highly discriminative and
computationally efficient goal with low storage.

The local feature descriptors are often combined with vector quantization to create
“visual words” for searching 3D model databases. Eitz et al. [12] used Gabor filter
as a feature extraction tool to encode information of input sketch and 2D views of 3D
models, and then each 2D view was represented as a histogram of visual word frequency.
Liu et al. [13] used bag-of-features techniques to convert each 3D CAD model into a
vocabulary of visual words, and defined the importance weight of each visual word based
on sketching history of users. Lian et al. [14] proposed a novel visual similarity-based 3D
shape retrieval method using clock matching and bag-of-features, and then each image
was described as a word histogram obtained by the vector quantization of the image’s
salient local features. Jing and Wang [15] used the local shape descriptor to map a visual
word from the visual dictionary according to the minimum distance, and the 3D CAD
model was described by a histogram of occurrences of these visual words. Although
the bag-of-features framework works generally well, there are still two problems: firstly,
the loss of spatial information when representing the images as histograms of quantized
features, which means, the granularity of the distinction and expression brought by the
“hard clustering” is insufficient; secondly, it lacks feature’s discriminative power, either
because of feature’s intrinsic limitation to tolerate large variation of object appearance,
or due to the degradation caused by feature quantization.

To solve these problems, the bag-of-features framework is replaced by the Fisher coding
algorithm [16]. This paper proposes a novel sketch-based 3D model retrieval approach
which combines the PCA-DAISY descriptor with Fisher coding algorithm to recognize
local region information. Firstly, our DAISY descriptor adopts the Gaussian filters [17]
which reduce the amount of computation and implements the convolutions efficiently.
The theory of Principal Component Analysis (PCA) [18] is not only useful in reducing
the dimensionality, but also beneficial in reducing the error rate, due to the fact that
the PCA removes the noise dimensions which often contribute to the error. Then, our
Fisher coding algorithm quantizes the local feature descriptors using the Gaussian Mixture
Model (GMM) [19] which can be understood as a “probabilistic visual vocabulary” and
brings large improvements in accuracy. Additionally, the Fisher coding algorithm can be
computed from much smaller vocabularies, which leads to a lower computational cost.
To evaluate our approach, we test our approach on the public standard dataset and also
compare with other leading 3D model retrieval approaches. The experimental results
demonstrate that our approach is significantly better than any other retrieval techniques.

2. Problem Statement and Preliminaries. The framework of sketch-based 3D model
retrieval based on PCA-DAISY descriptor and Fisher coding algorithm is proposed, as
shown in Figure 1.

The 2D query sketch framework contains four modules, respectively 2D query sketch
input module, PCA-DAISY descriptor module, Fisher coding algorithm module and 2D
sketch vector quantization set module. The 2D query sketch input module would get user’s
retrieval intention with hand drawing or mouse drawing. The PCA-DAISY descriptor
module creates the efficient local feature descriptors of the 2D query sketch. The Fisher
coding algorithm module quantizes the PCA-DAISY descriptor of 2D query sketch. The
2D sketch vector quantization set module stores the PCA-DAISY vector quantization set
of 2D sketch.
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Figure 1. The framework of our sketch-based 3D model retrieval

The 3D model framework contains five modules, respectively 3D model set module,
2D projection views of 3D model module, PCA-DAISY descriptor module, Fisher coding
algorithm module and 2D projection views vector quantization set module. The 3D
model set module contains 3D model files from the National Taiwan University (NTU)
[20] database. The 2D projection views of 3D model module utilize sphere algorithm and
2D sketch-3D model alignment [21] algorithm to generate 2D views for the 3D model. The
PCA-DAISY descriptor module creates the efficient local feature descriptors of 2D views
of 3D model. The Fisher coding algorithm module quantizes the PCA-DAISY descriptor
of 2D views of 3D model. The 2D projection views vector quantization set module stores
the PCA-DAISY vector quantization set of 2D projection views of 3D model, which we
use to compare the similarity with the 2D sketch vector quantization set.

Moreover, we also include two other modules which are similarity comparison module
and retrieval results module. The similarity comparison module adopts the Efficient
Manifold Ranking (EMR) [22] algorithm to calculate the similarity between the 2D sketch
vector quantization set and 2D projection views vector quantization set. The retrieval
results module provides users a list of retrieved 3D models’ results.

2.1. Pre-processing. In the database each 3D model has an arbitrary position, orienta-
tion and scale in the spatial space, and it is necessary to normalize each 3D model before
projecting them into 2D views. After 3D models in the database have been normalized,
we compare the query sketch with 162 projection views of each 3D model [23] using sphere
algorithm. Firstly, we set a 3D model at the centre of a sphere, and lay a virtual camera
above the 3D model. Then, we rotate the model 360 degrees at 20 degrees per step (in
both longitude and latitude directions). In the longitude directions, we rotate the model
18 times at 20 degrees per step. In the latitude directions, we rotate the model 9 times
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Figure 2. The sphere algorithm of 3D model projection views

at 20 degrees per step. Finally, it generates a total of 162 (9 × 18 = 162) 2D projection
views which covers all sides of this 3D model, as is shown in Figure 2.

To enhance the retrieval accuracy and performance, we adopt 2D sketch-3D model
alignment algorithm [24] to choose the candidate views from the 162 2D projection views
of 3D model. We choose candidate views by keeping a certain percentage T with top
similarities between the sketch and all the 2D projection views, e.g., T = 20% means that
the number of our candidate views is 162 ∗ 20% ≈ 32.

2.2. PCA-DAISY descriptor. Firstly, we give a more formal definition of our DAISY
descriptor. Then, we compute the matrix of principal components based on DAISY
descriptor with the training set. During increasing the dimensionality, the best dimen-
sionality of PCA-DAISY descriptor can be found since the minimum error rate of the
training set appears.

2.2.1. DAISY descriptor. For an input image I, we first compute N orientation maps
Gr. Gr (u, v) represents the image gradient norm at location (u, v) for direction r. The
orientation maps Gr (1 ≤ r ≤ N) are written as [25]:

Gr =

(
∂I

∂r

)+

= max

(
∂I

∂r
, 0

)
(1)

where the operator (.)+ represents that (a)+ = max(a, 0).
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We obtain convolved orientation maps for different sized regions, which use each orien-
tation map Gr to convolve with Gaussian kernels of different values.

Gσ
r = Gσ ∗ Gr = Gσ ∗

(
∂I

∂r

)+

(2)

where Gσ is a Gaussian kernel, different values σ are used to control the size of the regions.
In order to reduce the amount of computation and implement the convolutions effi-

ciently, we adopt the Gaussian filters in the DAISY descriptor. Firstly, the Gaussian
filters are separable, which is the best choice of the weighting function. Moreover, we
can compute the orientation maps for different sizes at low cost, because convolutions
with a large Gaussian kernel can be obtained from several consecutive convolutions with
smaller kernels. More specifically, if we have already computed Gσ1

r , then we can efficiently
compute Gσ2

r (σ2 > σ1) by convolving Gσ1
r :

Gσ2
r = Gσ2 ∗

(
∂I

∂r

)+

= Gσ ∗ Gσ1 ∗
(

∂I

∂r

)+

= Gσ ∗ Gσ1
r (3)

with σ =
√

σ2
2 − σ2

1.
Let hσ (u, v) represent the vector made of the values at location (u, v) in the orientation

maps after convolution by a Gaussian kernel of standard deviation σ:

hσ (u, v) = [Gσ
1 (u, v) , Gσ

2 (u, v) , . . . , Gσ
N (u, v)]T (4)

where Gσ
1 , Gσ

2 and Gσ
N denote the σ-convolved orientation maps in different directions.

We normalize these vectors to unit norm, and denote the normalized vectors by h̃σ (u, v).
As depicted by Figure 3, at the centre of concentric circles, the DAISY descriptor

consists of a vector made of values from the convolved orientation maps. Each circle
represents a region where the radius is proportional to the standard deviations of the
Gaussian kernels. The ‘+’ sign represents the locations where we sample the convolved
orientation maps centre. By overlapping the regions we achieve smooth transitions be-
tween the regions and a degree of rotational robustness.

Figure 3. The DAISY descriptor
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The DAISY descriptor D (u0, v0) for location (u0, v0) is defined as the concatenation of

h̃ vectors:

D (u0, v0) =
[
h̃T

σ1
(u0, v0),

h̃T
σ1

(l1 (u0, v0, R1)) , . . . , h̃T
σ1

(lT (u0, v0, R1)) ,

h̃T
σ2

(l1 (u0, v0, R2)) , . . . , h̃T
σ2

(lT (u0, v0, R2)) ,

. . . ,

h̃T
σQ

(l1 (u0, v0, RQ)) , . . . , h̃T
σQ

(lT (u0, v0, RQ))
]

(5)

where lj (u0, v0, Rk) represents the location which is from the (u0, v0) in the direction given
by j (1 ≤ j ≤ T ) with distance Rk (1 ≤ k ≤ Q). T represents the number of directions at
a single layer. Q represents the number of circular layers.

2.2.2. PCA-DAISY descriptor. The DAISY descriptor D (u0, v0) consists of h̃(j) (j = 1,

2, . . . , m). Let m represent the number of convolved orientation maps vectors h̃(j). The

h̃(j) include some convolved orientation maps Gσ
i (u0, v0) (i = 1, 2, . . . , n). Let n represent

the number of convolved orientation map Gσ
i (u0, v0). Therefore, we define n × m matrix

D = (dij) (i = 1, 2, . . . , n; j = 1, 2, . . . , m) for the DAISY descriptor. The correlation
matrix RD of matrix D can be defined as [18]:

RD = (rij) (i, j = 1, 2, . . . , m) (6)

where

rij =
Sij√
SiiSjj

(7)

Sij =
1

n

n∑
k=1

(
dki − di

) (
dkj − dj

)
(8)

di =
1

m

m∑
j=1

dij (9)

dj =
1

n

n∑
i=1

dij (10)

Obviously RD is a symmetric matrix, which means the eigenvectors of RD are orthog-
onal. We compute the eigenvalue λk (k = 1, 2, . . . , p) of RD and make λk in descending
order. Then we get the corresponding eigenvectors vk = (vk1, vk2, . . . , vkm)′ of eigenvalue
λk.

According to the theory of PCA, the contribution rate Cq of qth principal component
is defined as:

Cq =
λq

p∑
k=1

λk

(11)

The cumulative contribution rate Sq of first q principal component is defined as:

Sq =

q∑
k=1

λk

p∑
k=1

λk

(12)
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If the cumulative contribution rate Sq ≥ 85%, the weight fj (j = 1, 2, . . . , m) of the

convolved orientation maps vectors h̃(j) in the DAISY descriptor matrix D can be defined
as:

fj =
v2

1jλ1 + v2
2jλ2 + · · · + v2

qjλq

λ1 + λ2 + · · · + λq

(j = 1, 2, . . . , m) (13)

According to the dimension weight fj (j = 1, 2, . . . , m), we find the best dimensionality
L for the DAISY descriptor by computing the error rate of the training set.

2.3. Fisher coding algorithm. We define X = {x1, x2, . . . , xT} to be the set of PCA-
DAISY descriptors extracted from an image. Let us assume that X can be modeled by
a probability density function µλ with parameters λ. Then the PCA-DAISY descriptors
set X can be described by the gradient vector [26]:

GX
λ =

1

T
∇λ log µλ (X) (14)

where the dimensionality of this vector depends on the number of parameters λ.
In order to realize the gradient vector normalization, we define the Fisher information

matrix Fλ:

Fλ = Ex∼µλ

[
GX

λ GX′

λ

]
(15)

The normalized Fisher vector is:

gX
λ = F

−1/2
λ GX

λ = F
−1/2
λ ∇λ log µλ (X) (16)

where µλ (X) is a Gaussian mixture model, and λ = {ωl, µl,
∑

l , l = 1, 2, . . . , K}.

µλ (x) =
K∑

l=1

ωl (x) µl (x) (17)

where
K∑

l=1

ωl = 1. ωl, µl,
∑

l (l = 1, 2, . . . , K) are respectively the mixture weight, mean

vector and covariance matrix of Gaussian µl. We set L to represent the dimensionality of
the PCA-DAISY descriptor in each location:

µl (x) =
1

(2π)L/2 |Σl|1/2
e(−1/2(x−µl)

′ ∑−1
l (x−µl)) (18)

Let γt (i) be the probability of PCA-DAISY descriptor xt to Gaussian i:

γt (i) =
ωiµi (xt)∑K

j=1 ωjµj (xt)
(19)

We define gX
µ,i and gX

σ,i represent the L-dimensional gradient of Gaussian i with respect
to the mean µi and standard deviation σi:

gX
µ,i =

1

T
√

ωi

T∑
t=1

γt (i)

(
xt − µi

σi

)
(20)

gX
σ,i =

1

T
√

2ωi

T∑
t=1

γt (i)

[
(xt − µi)

2

σ2
i

− 1

]
(21)

The final gradient vector gX
λ is the concatenation of the gX

µ,i and gX
σ,i vectors for i =

1, 2, . . . , K. Therefore, gX
λ represents 2KL-dimensional gradient vector.
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2.4. Similarity comparison of fisher vectors. In this paper, we adopt the Efficient
Manifold Ranking (EMR) [27] algorithm to calculate the similarity between images and
give the final retrieve results.

There are two reasons to choose the EMR algorithm which is used to compare the
similarity of Fisher vectors. Firstly, some methods only consider the data similarity, like
directly calculated Euclidean distance between images, which ignore the internal structure
of the Fisher vector. In contrast, the Manifold Ranking (MR) algorithm is a graph-based
ranking algorithm, which has excellent performance and feasibility on a variety of data
types. Secondly, the MR algorithm significantly limits its applicability to a large amount
of data sets. Xu et al. [27] overcome the shortcomings of MR from two perspectives:
scalable graph construction and efficient computation. They propose a new algorithm
named Efficient Manifold Ranking (EMR), which builds an anchor graph on the data set
instead of the traditional k-nearest neighbor graph, and designs a new form of adjacency
matrix utilized to speed up the ranking computation.

3. Main Results. Our sketch-based 3D model retrieval benchmark is built on the well-
known National Taiwan University (NTU) [20] database and the latest collection of human
sketches. The NTU benchmark contains a database of 1833 3D models, which was clus-
tered into 47 classes like human body, chair, table, cup, car, airplane, bird, and flower.
Our approach collects 4700 human-drawing sketches, and categorizes into 47 classes, each
with 100 sketches. We randomly select 70% sketches and 3D models from each class for
training and use the remaining 30% sketches and 3D models per class for testing.

We implement our sketch-based 3D model retrieval method in C++ under Windows.
The system consists by a computer with an Intel Xeon CPU E5520@2.27 GHz and 12.0
GB of RAM. We provide users’ interface with hand drawing or mouse drawing, which
is convenient for users to draw and modify the query sketches. As shown in Figure 4,
the left side of the interface is a canvas for sketching the model. The user can erase and

Figure 4. Our sketch-based 3D model retrieval system
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modify if they do not satisfy with the drawn sketch. The right side is displaying page for
the retrieved 3D models with a relevant JPEG image. The user can click the blue button
to download the corresponding 3D model.

3.1. Experimental preparation. We considered classical Precision and Recall metrics
averaged over the set of processed queries [28] to measure the retrieval effectiveness. Recall
measures the ability of the system to retrieve all models that are relevant. Precision
measures the ability of the system to retrieve only models that are relevant. They are
defined as:

Recall =
relevant correctly retrieved

all relevant
(22)

Precision =
relevant correctly retrieved

all retrieved
(23)

Different projection view numbers have significant influence on the retrieval perfor-
mance. Funkhouser et al. [29] obtained 13 orthogonal views for each model. Yoon et al.
[30] used 14 views. Lee and Funkhouser [31] matched a sketch with 24 possible orthogo-
nal contour views. Daras and Axenopoulos [32] extracted 32 views for each model from
uniformly distributed viewpoints. Chen et al. [33] used light field descriptors to generate
60 views for each 3D model.

We apply different view numbers to measure the retrieval results, as shown in Figure 5.
Compared with these previous approaches, our sphere algorithm with 162 views achieves
better retrieval performance. After comparing and averaging over the entire “Recall”
axis, the Precision value of our sphere algorithm is 30.41%, 28.72%, 24.71%, 21.05% and
11.15% higher than those of 13 views’ approach, 14 views’ approach, 24 views’ approach,
32 views’ approach and 60 views’ approach.

Before the retrieval stage, we set the candidate projection views percentage T = 20%
that is, keeping top 162 ∗ 20% ≈ 32 candidate projection views in the retrieval process.

Figure 5. View numbers performance comparison result
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Figure 6. Examples of sketch-based retrieval results

Through 32 candidate projection views sketch-based retrieval, Figure 6 shows example
sketches and 3D models of car, lamp, plane and chair in the benchmark. The left part
of the figure shows the query sketches, and the right part shows the top 20 retrieved 3D
models.

3.2. Computation of PCA-DAISY descriptor. Refer to Section 2.2.1, the DAISY
descriptor is parameterized with its radius R, number of rings Q, number of histograms
in a ring T , number of bins in each histogram H, number of histograms used in the
DAISY descriptor S = Q ∗T +1, and the total size of the DAISY descriptor DL = S ∗H.
For example, we use the parameter set R = 15, Q = 3, T = 8, H = 8, which create a
DL = 200 length DAISY descriptor.

In this section, we compare the computation time of DAISY, SIFT, GLOH and SURF
descriptors. As shown in Table 1, the DAISY descriptor gives better results than SIFT,
GLOH and SURF descriptors. The DAISY descriptor takes less than 4 seconds to perform
the computations over all the pixels of an 800 × 600 image, whereas the SIFT descriptor
takes over 240 seconds. The efficiency of DAISY comes from the separable convolutions
computations which avoid computing the common histograms to nearby descriptors more
than once.

Table 1. Computation time in seconds

Image Size
Computation Time

DAISY SIFT GLOH SURF
800 × 600 4 243 248 213
1024 × 768 9 430 436 425
1280 × 960 11 648 655 631
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Figure 7. Variation of error rate with the increasing of dimensionality of
PCA-DAISY descriptor

Table 2. Error rates for DAISY descriptor with PCA

R Q T H
Without PCA With PCA

Error Dimensionality Error Dimensionality
15 3 8 8 20.6% 200 14.9% 45
15 3 4 4 26.6% 52 21.4% 21
15 2 4 8 23.6% 72 19.5% 26
15 2 4 4 28.6% 36 23.5% 19
10 3 8 8 19.2% 200 13.1% 36
10 3 8 4 21.2% 100 15.8% 28
5 2 8 4 24.3% 68 20.1% 24
5 2 4 4 27.4% 36 22.7% 17

We applied PCA techniques to reducing the dimensionality of DAISY descriptors, which
are computed by the NTU database of 2D views of 3D model. In Figure 7, as the
dimensionality of PCA-DAISY descriptor is increasing, the error rate on the training set
is changing progressively. We use these curves to determine the best dimensionality when
the minimum error is found. It can be seen that PCA is not only useful in reducing the
dimensionality, but also beneficial in reducing the error rate. Since the PCA removes the
noise dimensions which often contribute to the error.

Table 2 shows error rates for DAISY descriptor with PCA in different parameters,
including its radius R, number of rings Q, number of histograms in a ring T , number
of bins in each histogram H. In all cases it can be seen that PCA is able to reduce
both the error rate and the dimensionality. When considering about the parameter R,
we compare the results of R = 15, R = 10 and R = 5. The results show that the larger
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radius R would get a higher error rate with other parameters consistent, due to the fact
that the larger radius R would lead to a loss of discriminative power and a performance
drop. When considering about the parameter Q, we compare the results of Q = 3 and
Q = 2. We found that the more DAISY rings Q gives significantly better error rates.
When considering the parameter T , we compare the results of T = 8 and T = 4. We
found that the error rate reduces with the number of orientations T increasing up. When
considering about the parameter H, we compare the results of H = 8 and H = 4. We
found that the error rate reduces with the number of bins in each histogram H increasing
up. It is because the total size of the DAISY descriptor is decided by the parameters Q,
T and H.

3.3. Comparison with Fisher coding algorithm. In order to compare Fisher cod-
ing (FC) algorithm with bag-of-features (BOF) algorithm, firstly, through the Manifold
Ranking (MR) [27] algorithm, we compare the retrieval performance of FC algorithm
and BOF algorithm. Figure 8 shows the Precision-Recall plots of FC algorithm as well as
BOF algorithm by using MR algorithm. Secondly, through the Efficient Manifold Ranking
(EMR) [27] algorithm, we compare the retrieval performance of FC algorithm and BOF
algorithm. Figure 9 shows the Precision-Recall plots of FC algorithm as well as BOF
algorithm by using EMR algorithm. The experimental results of Figure 8 and Figure 9
demonstrate that FC algorithm is significantly superior to BOF algorithm.

The parameters of BOF algorithm are determined by k-means algorithm, set the pa-
rameter value K = 1000. For the BOF+EMR method, 500 anchors are used in the
retrieval process. The parameters of FC algorithm are determined by Gaussian mixture
model, set the parameter value K = 20. For the FC+EMR method, 1000 anchors are
used in the retrieval process.

Additionally, we combine our Fisher coding (FC) algorithm with EMR algorithm, MR
algorithm, and the algorithm which compares the Fisher vector by Euclidean distance.

Figure 8. Comparison FC with BOF algorithm by using MR
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Figure 9. Comparison FC with BOF algorithm by using EMR

Figure 10. Comparison EMR algorithm with other algorithms

The retrieval performance of these three algorithms was compared by us. Figure 10 shows
the Precision-Recall plots of FC+EMR algorithm, FC+MR algorithm and FC+Euclidean
distance algorithm. The experimental result demonstrates that combining EMR algorithm
with FC algorithm is significantly superior to the other two algorithms.
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3.4. Comparison with other approaches. We compare our approach with other four
leading sketch-based 3D model retrieval algorithms, which utilize local feature descriptors
to describe the object shape. Saavedra et al. (2011) [34] proposed a structure-based local
approach (STELA) for retrieving 3D models using a rough sketch as query. Saavedra et al.
(2012) [35] proposed a keyshape angular spatial descriptor (KASD) which took account
of the spatial distribution of keyshapes. Wang et al. (2013) [36] used an improved bag-
of-features method to extract local features and their latent semantic relations. Sang et
al. (2014) [37] utilized the sparse coding approach to represent the features of oriented
gradients.

To have a comprehensive evaluation of our algorithm, we further provide the results for
other performance metrics including Nearest Neighbour (NN), First Tier (FT), Second
Tier (ST), E-measure (E), Discounted Cumulative Gain (DCG) and Average Precision
(AP). The meaning of the above performance metrics is as follows [28]. NN measures
the percentage of the closest matches that are relevant models. FT represents how much
percentage of a class has been retrieved among the top C list, where C is the cardinality
of the relevant class of the query sketch. It is defined as:

FT =
relevant correctly retrieved

top (C − 1) retrieved
(24)

ST represents how much percentage of a class has been retrieved among the top 2(C−1)
list, where C has the same meaning with FT metric.

ST =
relevant correctly retrieved

top 2(C − 1) retrieved
(25)

E is used to measure the performance of the retrieval results with a fixed length, e.g.,
the first 32 models. It combines both the Precision P and Recall R:

E = 2

/(
1

P
+

1

R

)
(26)

DCG is defined as the summed weighted value related to the positions of the relevant
models.

DCG = w1 +
P∑

k=2

wk

log2 k
(27)

where wk denotes weighted value of each retrieval result, and k denotes the index of
retrieval result. P is the number of retrieval result.

AP can be computed by counting the total area under the Precision-Recall curve. The
higher Precision-Recall curve would get a better AP value. We illustrate 3D models of
car, lamp, plane and chair in Figure 6 and the average comparison result is shown in
Table 3.

Table 3. Metrics for the performance comparison between our approach
and other approaches

Approaches NN FT ST E DCG AP
Our Approach 0.391 0.322 0.388 0.379 0.591 0.396

Wang’s Approach (2013) [36] 0.372 0.273 0.335 0.358 0.573 0.375
Saavedra’s Approach (2012) [35] 0.334 0.244 0.298 0.316 0.528 0.334
Saavedra’s Approach (2011) [34] 0.322 0.231 0.286 0.308 0.514 0.325

Sang’s Approach (2014) [37] 0.284 0.202 0.249 0.266 0.472 0.282
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Figure 11. Overall retrieval performance comparison result

It is obvious that our approach outperforms other leading sketch-based 3D model re-
trieval approaches. The approach of Wang (2013) utilized bag-of-features method which
lost part of spatial information when representing the images as histograms of quantized
features. Saavedra (2012) utilized the local descriptors relying on a set of keyshapes pre-
computed which would influence the accuracy of algorithm. Saavedra (2011) detected the
keyshape only using straight lines, and not considering other primitive shapes like arcs
and circular, which was quite sensitive to noise. Sang (2014) adopted the sparse coding
approach to represent the oriented gradients features which improved the efficiency but af-
fected the accuracy. Figure 11 shows the Precision-Recall plots of our approach as well as
other four leading sketch-based 3D model retrieval approaches. The experimental results
demonstrate that our approach is significantly better than any other retrieval techniques.

4. Conclusions. In this paper, we proposed a novel sketch-based 3D model retrieval
approach which combines the PCA-DAISY descriptor with Fisher coding algorithm to
recognize local region information. Firstly, our DAISY descriptor adopts the Gaussian
filters, which reduces the amount of computation and implements the convolutions effi-
ciently. The theory of PCA is not only useful in reducing the dimensionality, but also
beneficial in reducing the error rate, due to the fact that the PCA removes the noise di-
mensions which often contribute to the error. Then, our Fisher coding algorithm quantizes
the local feature descriptors using the Gaussian mixture model, which can be understood
as a “probabilistic visual vocabulary” and brings large improvements in accuracy. Addi-
tionally, the Fisher coding algorithm can be computed from much smaller vocabularies,
which leads to a lower computational cost. The experimental results demonstrate that
our approach significantly outperforms several latest sketch-based retrieval approaches.

Although our proposed approach achieves better performance than several latest sketch-
based retrieval approaches, diversified sketches [38] show that sketch-based 3D model
retrieval for realistic inputs is still a very hard problem. The future of our work is to
develop a user interaction feedback mechanism. After the users submit the query sketch,
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the system first provides a list of retrieved 3D models. Then, the users can refine the
retrieval results by selecting which 3D models they think are the good results. This
feedback mechanism can not only provide more desirable retrieved 3D models to the user,
but also enhance user interaction just by making some easy choices.
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