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ABSTRACT. This paper proposes an adaptive fuzzy prescribed performance control scheme
for the synchronization of uncertain chaotic gyros with unknown dead-zone input. In or-
der to eliminate the effects from external disturbance and dead-zone nonlinearity, we use
error transformation to transform the original constrained system into an equivalent un-
constrained one. Then, an adaptive fuzzy controller is designed for the equivalent uncon-
strained system, which can guarantee that the error remains an adjustable neighborhood
of the origin with the prescribed performance bounds. In addition, the performance accu-
racy can be adjusted by an appropriate choice of the design parameters of the controller.
Simulation results are provided to illustrate the effectiveness of the proposed method.
Keywords: Gyro, Unknown dead-zone input, Predefined performance, Adaptive fuzzy
control

1. Introduction. The gyro system as an attractive nonlinear system, receiving atten-
tion by researchers in recent years. The main reason is that Gyros are applied in the
navigational, aeronautical and space engineering domains. Recent research has confirmed
that various forms of gyro systems maybe exhibit a diverse range of dynamic behavior,
including both subharmonic and chaotic motions [1-3].

Recently, many researchers investigated the problem of the synchronization for two
chaotic gyros, because this synchronization is used in areas of secure communications [4]
and attitude control of long-duration spacecrafts [5].

Based on Lyapunov stability theory and Routh-Hurwitz criteria, Lei et al. [6] used
the active control scheme to synchronize two nonlinear gyros. Hsu et al. [7] proposed
a self-learning PID control system to dispel the approximation error between the ideal
controller and PID controller and achieve the system stability in the Lyapunov sense. In
practice, due to non-ideal characteristics of actuators used in physical implementations,
the implementation of control input is usually faced with the problem of nonlinearity in
control input. It has been shown that input nonlinearity, including saturation, backlash
and dead-zone, can cause a serious degradation of the system performance if the controller
is not well designed [8]. Therefore, it is clear that the effects of input nonlinearity must be
taken into account when analyzing and implementing a synchronization control scheme.
Moreover, the control gain of the controller may be unknown. For example, Yau [9]
proposed a fuzzy sliding mode control (FSMC) scheme for the synchronization of two
chaotic nonlinear gyros subject to uncertainties and external disturbances.
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Dead-zone with unknown parameters in physical components may severely limit the
performance of control, and its characteristics are quite commonly encountered in actua-
tors in practical control systems. Roopaei et al. [10] proposed the adaptive fuzzy sliding
mode control method to design a controller for the synchronization of chaotic gyros when
uncertainties, disturbances and dead-zone nonlinearity input were presented. Based on
the sliding mode control technique, Hung et al. [11] presented the control law such as two
gyros chaotic systems with dead-zone nonlinearity achieving projective synchronization.
However, the disadvantage of sliding mode controller is that the chatter will appear. In
order to overcome the shortcoming, we propose an adaptive prescribed performance con-
trol scheme to achieve the synchronization of two uncertain gyros systems with unknown
dead-zone input.

To the author’s best knowledge, there is few literature to research the synchronization
problem for uncertain gyros system with unknown control gain and unknown dead-zone
input.

To handle unknown nonlinear functions in gyro system, fuzzy logic systems will be used
in this paper. For adaptive fuzzy approaches, two of the main features are (i) they can be
used to deal with those nonlinear systems without satisfying the matching conditions and
(ii) they do not require the unknown nonlinear functions being linearly parameterized.

Compared with related works, there are three main contributions that are worth em-
phasizing:

(1) Compared with the results in [10,11], the uncertain gyros with unknown control
gain is considered.

(2) The prescribed performance function (PPF) is incorporated into the control design.

(3) The controller will not show singular problem and chatter phenomenon.

Inspired by [12-16], an improved prescribed performance function (PPF) is incorpo-
rated into the control design. An error transformed system is derived by applying the
PPF on the original error system. Consequently, the error rates of the original error
system can be guaranteed within the prescribed bound provided the transformed sys-
tem is stable. For this purpose, an adaptive prescribed performance control (APPC) is
designed for uncertain gyros in the presence of system uncertainties and external distur-
bance. A comparative example is given to emphasize the effectiveness of the proposed
APPC scheme.

The organization of this paper is described as follows. In Section 2, system model is
derived, and the assumptions are also given. In Section 3, a robust fuzzy adaptive feedback
control approach is developed, and the stability of the closed-loop system is proved. The
simulation results are presented to demonstrate the effectiveness of the proposed control
scheme in Section 4. Conclusions are presented in Section 5.

2. System Descriptions and Problem Formulations. The symmetric gyroscope
mounted on a vibrating base is shown in Figure 1. The dynamics of a symmetrical
gyro with linear-plus-cubic damping of the angle # can be expressed as

(1 — cos)?

) —Bsin9+019+0293:fsinwtsinﬂ, (1)
sin

§+a2

where f sinwt represents a parametric excitation, 019 and 0293 are linear and nonlinear

damping terms, respectively, and «o? ((1 — cos 0)?/ sin® 9) — Bsin @ is a nonlinear resilience

force. This gyro system exhibits complex irregular motion when f = 35.7, o = 100,
X T

B=1,c =0.5, co =0.05 w =2 and states initial values of [9(0),0(0)] = [-1,1]%, see

Figure 2.
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FIGURE 1. A schematic diagram of a symmetric gyroscope
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FIGURE 2. Phase plane trajectory of chaotic gyro

AT
For simplicity, we introduce the following notations: x = [z, 2] = [9, 9] , and then

the dynamic model of (1) can be described by the following equations

n ®)
By = h(x1) — 129 — 223 + (B + fsin(wt)) sin(z)
where h(z1) = —a? ((1 — cos(z1))"/ sin®(z1)) — Bsin(z).
Let fi(t,z) = h(x1) — c13 — cox3 + (B + f sin(wt)) sin(x1), and consider two coupled,
chaotic gyro systems of the form
Ty = T
3
{i'Z:fl(tax)a ( )
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{3:/1 =Y (4)

U2 = fi(t,y) +d(t,y) + g(t, y)T(u(t)),

where d(t,y) is external disturbance, ¢(t,y) is unknown control gain, and I'(u(t)) is the
dead-zone nonlinearity in the control input and described as follows:

m(u(t) — by), for u(t) > by,
['(u(t)) =< 0, for by < u(t) < by, (5)
m(u(t) — by), for u(t) < by,

where m stands for the right and the left slope, and b; and by represent the breakpoints
of the input nonlinearity.

Assumption 2.1. The dead-zone parameters: m > 0, by and by are all unknown bounded
constants.

Obviously, I'(u(t)) can be rewritten as

Pu(t)) = mu(t) + p(u(?)),
where p(u(t)) can be calculated as

—mby,  for u(t) > by
p(u(t)) =< —mu(t), for by < u(t) < b (6)
—mby,  for u(t) < by

From Assumption 2.1, there exists an unknown positive constant d* such as |p(u(t))| <
d-.

Let e = [e; ey)”

= [y1 — 71 y2 — 72]7, and the error dynamic equation can be written as:

{@ = £ty = 1) + gt pymu(t) + (6, )o(u(t), g

where fZ(ta y) = fl (ta y) + d(ta y)

The objective of this paper is to construct a controller for system (7) such that the
system states y; and x; can be synchronized and all the signals in the closed-loop system
remain bounded.

To meet the objective, the following assumptions are made for system (7).

Assumption 2.2. The state vectors x and y are measurable.
Assumption 2.3. fi(t,z), f2(t,y) and g(t,y) are unknown but bounded.
Assumption 2.4. The control gain g(t,y) # 0 for all t and y.

Remark 2.1. It is known from the property of the dead-zone that the range of the dead-
zone is relatively small. Therefore, Assumption 2.1 will always hold. Assumptions 2.2
and 2.8 are fairly common for the synchronization problem, see [9,10)].

Remark 2.2. In [10], the unknown control gain g(t,y) is assumed as g(t,y) = 1. And
the method is sliding mode control scheme, so the chattering phenomena cannot be elimi-
nated. In this paper, we employ prescribed performance control which can overcome these
problems.
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Prescribed performance.

Definition 2.1. A smooth function p(t) : R™ — R is called a prescribed performance
function (PPF) if u(t) is decreasing and tlim w(t) = poo-
—00

In this paper, we select pu(t) as

p(t) = (o — oo)e ™" + Hoo, (8)
where f1p > 1o and k > 0 are design parameters.
It is sufficient to achieve the control objective if condition (9) holds

—Ominft(t) < e1(t) < Omaxpe(t), Vt >0, 9)
where O, and d,,.x are design constants.

Remark 2.3. The transient and steady-state performances can be designed a priori by
tuning the parameters dmin, Omax, 10, K, Moo-

To represent (9) by an equality form, we employ an error transformation as
ei(t) = u(t)s(z), (10)
where z is the transformed error, and s(-) is smooth, strictly increasing function, and
satisfies the following condition
—Omin < $(2) < Omax, Vz € Ly,
lim, . $(2) = —Omin, (11)
lim, 1 $(2) = Omax-

Note that s(z) are strictly increasing functions, and we have

()

Note that for any initial condition e(0), if parameters pg, Omin and dpnax are selected
such that —0min(0) < €1(0) < dmaxpt(0) and z can be controlled to be bounded, then
—Omin < $(2) < Omax holds. Thus, the condition —Ominp(t) < e1(t) < Omaxp(t) can
be guaranteed. Now, the synchronization problem of system (7) is now transformed to
stabilize the transformed system (12).

Differentiating (12) with respect to time ¢ yields

—1 1 .
_ 05 1 [62 - 761(’5)“(’5)] . (13)
o (=0 10 u(t)
w(t)
Let 0 < r = ajl_(tl) ﬁ < T, and 7, is a positive constant. Then (13) can be rewritten
- o(5)
Z.’:T|:€2—M:|. (14)
0

Moreover, we obtain

=rF +rfo(t,y) —rfi(t, ) +rg(t,y)mu+rg(t, y)p(u), (15)

where Fy = L (ey — eqfi/p) — (e2ft/p + erjipe/p* — e11*/p*) is known nonlinear function,
fi(t,z), fat,y), g(t,y) are unknown nonlinear functions and m is an unknown positive
constant.

Remark 2.4. In general, s(z) is chosen as s(z) = ®==Canc— S we can calculate

that r = 1/(”61“1“)271/()‘75“‘“) such that 0 < r < 75“‘3"”3“1‘_‘ , where A = £,
1" Moo OmaxOmin 1
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3. Main Results. Define the filtered error as
v=1z+ 2,

where ¢+ > 0 is a positive constant. The transformed error z is bounded as long as v is
bounded.

Let g1 (t,y) = g(t,y)m, if fi(t,z), f2(t,y), g(t,y), m and d* are known, we can consider
the following control law

L (ez — M) + Fy + folt,y) — fi1(t,z) + kov + ussign(v)

u=— : (16)

g91(t,)
where us; = |g(t,y)|d* and ko is a designed positive constant. Consider the Lyapunov
function Vy = 3%, and substituting (16) into 7, we have Vo = v = —rkov? — r(Jv|u, —

vg(t,y)p(u)) < —rkor* < 0. So, v is bounded. And then the objective can achieve.

Due to the fact that fi(¢,z), f2(t,y), g(t,y), m and d* are unknown, we need to use
fuzzy logic system to approximate the nonlinear unknown functions. We can use the
following fuzzy systems to approximate fi(¢,x), fo(t,y), g1(t,y) and us:

fi(2.07) = 0065, ), fo(.07,) = 00,05 (v),

(17)
91 (9:00) = 050 ), s (9,00,) = 0200 (),

where 97, (z), V7, (y), ¥, (y) and 1, (y) are fuzzy function vectors, and 9 9f2, 0;1 and

é{ are the parameter vectors of each fuzzy system design later.
Now, we can modify the control law (16) as follows:

[L <62 - %) v+ Fiv+ fo <y, éf2> v—fi (x, éh) v+ kov? + |v|is (y, éus) + ur] v

_V2§1 (yaégl) + 51/2 + U%

u = y

(18)

where £ = e+ ‘gl (y, égl) , € is a small positive constant, and u, is an auxiliary controller,

which will be designed later.

Remark 3.1. For control law (18), —v%§, (y,égl> + &v? + u? is not equal to zero. So,
this design can avoid the singular problem.

Optimal parameters é}l, HA}Q, é;l and HAZS can be defined such that

é;;l = argrgin sup fl(t,.%') - fl <l‘, éfl)

fr
07, = argmin sup | fo(t.y) — o (
f2 (

05, = argmin |sup |g:(t,y) — g

091

(19)

0;, = argmin |sup |u, (t.y) — i, (v.0., ) ||
Ou, -
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~

]?eﬁne the parameter estimation errors éfl = éj;l — éfl, §f2 = é}z — éfQ, égl = é;‘l — 04,

0., = é;‘; — éus and the fuzzy approximation errors as follows:
€fr = fl(tax) - fl (l',e*l) y Efy = fZ(tay) - f2 (ya ;2> )

6g1 — gl(ta y) - gl (ya 92;1) ) Cus = Us(t, y) - '&s (ya 923) .

Assumption 3.1. The fuzzy approzimation errors €y, €4,, €, and &,, are bounded.

(20)

. L(ez—m)u—l—Flu-l—fg(y,éf2)1/—f1(x,éfl)V+kou2+|u\zls(y,éus)+ur
Let U/O — B —I/2g1(y7é91)+£y2+uz
Substituting (18) and (20) into v©, we can obtain

, and we have u = wugyv.

vir = rv <L <62 — %) + P+ folt,y) — [t z) + g1 (t, y)u+ g(t, y)ﬂ(U))
= (v (ftea) = i (5.00)) v (et~ o (101
+ 12 <91 (t,y) — i (y égl)> wy — kot + Evug + uug
gt o) = e () )

N ~ N (21)
= r( — kov® — w0 ¥y, (x) + 07,0 (y) + V0L ug — ep v+ epv + £,V U0

+ €0+t =+ vg(t)o(w) = Wl + 17 (1~ 0 (116..)) )
_ ( — ko — V% g, () + B0 ) + V167 0,

+ VQHNngwgl (y)uo + vg(t,y)p(u) — |v|us + uug — u, + A)

where A = —e v +ep,v + £, V2ug + EV%ug + Ve, .

According to Assumption 3.1, there exist unknown positive constants £y,, £y,, &5, and
Eu, such that |ep| < &, lep| < &g, leg] < & and |e,,| < &,,, respectively. Let
g1 =2E&p +E&p, +Ey,, €2 = &g, and we design u, as follows:

. Uy . sr

ur:—rugur+r<1—u%+g2ﬂ>, g:_u%+§2n’ (22)
where u,(0) # 0, IT = |v|é; + 12 (62 + £) |uo|, and £; and &, are the estimates of £, and &,
respectively. For unknown parameters 0y, 0y,, 0,4,, 0., €1 and £,, we choose the following
adaptation laws:

éfl = _K/flrl/wfl (ZL‘), éf2 = HfQTwaQ (y)a égl = ’igerQUowgl (y)a (23)

A - A A 2

Ou, = Ku, Ty, (Y), €1 = ke rlV|, &2 = Ke,m%|ugl,
where Ky, Kf,, Kg,, Ku,, ke, and k., are positive constants. So, we obtain the following
theorem.

Theorem 3.1. Consider the error system (7). Suppose that Assumptions 2.1-2.4 and 3.1
are satisfied. Then the control law (18), with robust controller u, and the adaptation law
(23) can ensure that all signals in the closed-loop system are bounded, and the error state
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e(t) remains in a neighborhood of the origin within the prescribed performance bounds for
all t > 0.

Proof: Consider a Lyapunov function as V = V; + V5, where

L(, 1 o~ = J 1 o~ 1 =
V= 5 {l/ + Kl—flgflgfl + K_hghgh + /{—glgglggl + Kl—usgusgus , (24)
and . . .
2 e1 Ke,
where 1 = &1 — £, and &y = g9 — &5.
The time derivative of V] is given by
. . 1~T; 1~T; 1~T; 1~T;
‘/1 = VvV — {H—flﬁflﬁfl + I{—hebﬁh + H—mﬁgzﬁm + H—useuseus . (26)
Substituting (21) and (23) into (26), we have
Vi = —korv? + rvg(t,y)p(u) — r|v|us — ru, + rugu? + rA. (27)

Notice that
A <ei|v| + (g9 + V2 |ug| = &1|v| + Eav2|uo| + TI,

. (28)
rvg(t, y)p(u) < rlvllg(t,y)ld” = rlv|us.
Substituting (28) into (27), one can obtain
Vi < —korv? — ru, + rugu? + &1 |v| 4+ réqv?|ug| + 11 (29)
The time derivative of V5 is
. 1 . 1
Vé = UT{JJT + §§' - élél — 5252. (30)
Substituting (22) and (23) into (30), one gets
Vo = —rulug + ru, — &7|v| — Erv?|ug| — Il (31)
Combining (29) and (31) gives _
V(t) < —korv?. (32)

Therefore, V() is always negative, which implies that z € Ly,. Then, according to the
properties of function s(z), we know that —dmin < $(2) < dmax- Then, one can conclude
that the objective of the error system (7) with prescribed error performance (9) is achieved.
This completes the proof.

Remark 3.2. Compared with the results in [9], the unknown dead-zone inputs are con-
sidered in the paper. Meanwhile, the singular problem will avoid by using the control law

(18).

4. Numerical Example. In this section, the numerical simulations are performed to
verify and demonstrate the effectiveness of the proposed control scheme. Firstly, we
employ the method of [15] to control error system (7). Firstly, we define a sliding surface:

g = k0€1 + €9, (33)

where kg is a designed positive constant. Let H(t,w) = fao(t,y) — fi(t,z) + g(t, y)p(u(t)),
w = [z7,y"]", and we need to assume that g, (¢,y) > o for all ¢ and y, where g is a positive
constant. So, the error system (7) can be rewritten as follows

{él - (34)

éy = H(t,w) + g1(t, y)u(t).
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The control law is designed as
U = U1 + Uo,

A A -1 2 .
Uy = —aq1 (y7 991) [6 + 0 (ya 991)2] [k162 +H (U), QH) + kOSIgn(U)] )

1 R
(63 + &g, lua] + [e + g1 (v, 991)2] [kleQ + H (w,0y) + klsign(a)]>

Ugy = — sign(o),
. (o)

éH = ,‘{HwH('LU)O', égl = /"39177%1 (y)U1U,

(35)
where H(w, 0y7) = 0505 (w), and g (w, 05,) = 67 1, (y). And there exist ¢4 and ey, such
that ‘H(t,w) - H (w,Hj‘q)‘ < ey and |gi1(t,y) — 91 (y,0;,)| < &4, respectively. In all the
simulation process, the initial values of the chaotic system are [z1(0), z2(0)]" = [-1,1]7,
[y1(0)7y2(0)]T = [17_1]T7 [ =357, o = 100, B =1, 1 = 0.5, ¢ = 0.05, w = 2,
g(t,x) = 2 —sin(zy), ko = k1 = ey = €4y, kg = Ky, = 2, € = 0.05, p = 0.5, m =7,
by = 1.25, by = 0.25, dmax = Omin = 1, u(t) = y(t) = 3.14e7 "™ +0.05. We define seven
Gaussian membership functions uniformly distributed on the interval [-7,7]. And we
choose the initial values of parameters of the fuzzy systems as 0y = 6,, = 0.1. Applying
the control method (35), the simulation results are shown in Figures 3 and 4, where Figure
3 expresses the curves of the error states e; and es; Figure 4 expresses the curves of the
controller I'(u(t)). From the simulation results in Figures 3 and 4, we know that the
tracking error e(t) violates the prescribed error bound y(¢) and cannot achieve the good

performances in the beginning stage. Moreover, the chatter phenomenon has not been
eliminated in Figure 4.
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FIGURE 3. The curves of e(t) under the method of (35)
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FIGURE 5. The curves of e(t) under the presented method (18)

Now, by using the presented control scheme (18), the simulation results are shown
in Figure 5 and Figure 6. From simulation results, we know that the presented control
method can guarantee that all the variables are bounded. Moreover, the error e(t) remains
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10

~10f, |

FIGURE 6. The curves of I'(u(t)) under the presented method (18)

within the prescribed performance bounds for all the time. And the chatter phenomenon
is eliminated.

All the aforementioned results clearly show that the presented PPF-based control
method (18) can obtain better regulation performance, i.e., e(t) can be retained within
the PPF bound, and achieves faster convergence performance compared to the method
(35). The simulation results show that the proposed prescribed transient and steady-state
performances are achieved. Thus, the numerical simulations verify theoretical analysis.

5. Conclusions. For the problem of the synchronization of two uncertain gyros with
unknown control gain and unknown dead-zone input, the adaptive fuzzy prescribed per-
formance control scheme has been considered. By using functions, we transform the
error system into an equivalent one, and apply the fuzzy logic systems to identifying the
unknown nonlinear functions. It is sufficient to guarantee the boundedness of all the vari-
ables in the closed-loop system. Simulation results have shown the effectiveness of the
proposed scheme. How to design the periodically intermittent adaptive control scheme for
the finite-time synchronization between two uncertain gyros systems is our next research
direction.
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