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ABSTRACT. This paper presents the design of a robust pole placement controller for lin-
ear and time invariant systems described by models whose parameters are unknown but
with known bounds, using only plant input and output signals. The main objective is to
locate the closed-loop poles within a region specified by an interval characteristic poly-
nomial, chosen based on performance specifications and whose stability is guaranteed by
Kharitonov’s theorem. The procedure to find a closed interval for each controller pa-
rameter is formulated as a nonlinear programming (NLP) problem and switching laws
based on the wariable structure adaptive pole placement control (VS-APPC) are used
to estimate the unknown plant parameters. This innovative strategy gives a fast and
non-oscillatory transient, smooth control signal and robustness to large model param-
eter variations. Moreover, the constraints imposed by the interval controller meet the
closed-loop performance requirements. Simulation results are presented for second order
nonminimum phase plants, to illustrate the properties of the proposed technique.
Keywords: Pole placement, Adaptive control, Robust control, Interval plants, Variable
structure systems, Sliding mode, Kharitonov’s theorem, Nonminimum phase plants

1. Introduction. Pole placement control (PPC) is a well-known and accepted control
strategy in the literature, since it provides satisfactory results in closed-loop, both on
transient and at steady state, when applied to linear time invariant (LTT) plants. Several
performance requirements can be satisfied by using dynamic output feedback to properly
place the closed-loop poles in the complex plane. As presented in [1, 2|, the solution
for the classical PPC can be reduced under appropriate conditions to the solution of a
Diophantine Equation, whose matricial formulation takes the form of a linear system,
Ax = b, where A is the Sylvester matrix associated with a particular system, z is the
vector of controller coefficients to be designed and b is the vector of the coefficients of a
characteristic polynomial. On the other hand, PPC robustness features depend on the
accuracy of the available plant model, and therefore, the selection of the closed-loop poles

485



486 F. S. JUNIOR, J. OLIVEIRA AND A. ARAUJO

[3]. For uncertain systems, the arbitrary choice of the closed-loop poles may result in a
poor controller design [4].

A common strategy is the inclusion of an estimation stage for the plant parameters,
usually with integral-based adaptive laws (gradient method, least-squares, etc.). This
combination leads to the scheme so-called adaptive pole placement control (APPC), which
is mainly developed in the indirect approach, where the control signal is a function of the
plant parameters estimates [5, 6]. Unlike model reference adaptive control (MRAC), which
is restricted to minimum phase plants (MPP), APPC is also suitable to nonminimum
phase plants (NPP), since no cancellation of zeros and poles is involved. Zeros in the right-
half (ZRH) of the complex s-plane cause a particular behavior in closed-loop and may
generate practical implications. For example, the attraction of poles to zeros limits the
magnitude of the feedback gain, in the root locus analysis [7], which implies a limitation
on the robustness of the closed-loop system. In an asymptotically stable transfer function,
each zero has a specific effect on the asymptotic response for certain inputs. Some impacts
of ZRH are evident in the step response, as initial undershoot, zero crossings and direction
reversals [8]. Uncertain ZRH in adaptive control increases the difficulty to get robustness,
since zero-pole cancellation is ineffective and may lead to unbounded signals. On the other
hand, the consideration of only minimum phase models makes the control design rather
conservative, since a simple first order Padé approximation of a time delay results in ZRH
for actual systems, such as a first order plus time delay (FOPDT) model. This fact is even
more highlighted for large parameter variations, for example in water level control along
irrigation channels [9]. For this problem, a second order plus time delay me”s
was considered, with each parameter constrained in a large interval: 0.01 < K < 0.1;
500s < T7 < 15000s; 10s <715 < 300s and 300s < 7 < 360s.

Usually LTI models treated in practical situations are approximations which are made
to simplify the design and analysis of the control system, since most real systems are non-
linear. From a nonlinear system, an LTT model can be obtained by fixing the operating
point and linearizing the system equations on it. As the operating point changes, the
parameters of the linear approximation also change. Therefore, there is significant uncer-
tainty about the “true” model of the plant and the controller must be designed to stabilize
the system for the entire range of expected variations in the plant parameters. In many
real situations, uncertainties in plant parameters are related to the physical properties of
the components that comprise the system. In addition, other perturbations of the plant
model must also be tolerated without disturbing the stability of the closed-loop. These
unstructured perturbations arise typically from truncating a complex model by retaining
only some of the dominant modes, which usually lie in the low frequency range [10]. The
tolerance of these cases of uncertainty is the problem of robust stability. The term robust
parametric stability refers to the ability of a control system to maintain stability despite
large variations of the plant parameters. Therefore, the main practical motivation of this
paper is to propose a robust adaptive controller to treat single-input single-output (SISO)
LTT systems with known parametric uncertainties, including nonminimum phase systems.
With this focus, the technique presented in this paper can be implemented in a wide range
of real practical situations.

With the advent of the celebrated Kharitonov’s theorem [11], which showed that the
Hurwitz stability of an entire family of polynomials of fixed but arbitrary degree cor-
responding to an entire box in the coefficient space could be verified by checking the
stability of four prescribed vertex polynomials [10], a large number of significant works
on the study of robust stability under real parametric uncertainties have been presented
[12, 13, 14, 15, 16, 17, 18]. Beside this, efficient computational solutions and results of the



ROBUST CONTROL FOR UNCERTAIN SYSTEMS 487

theory of linear interval equations [19, 20, 21, 22, 23, 24] have enabled the construction
of robust controllers for interval plants without too much difficulty. The interval analysis
has become a useful tool for dealing with many important problems in control systems
area, which has resulted in the increasing number of publications on its applications in
the last decades [25, 26, 27, 28, 29, 30].

When an uncertain model is considered, with each parameter constrained within a
known interval, the APPC scheme can be extended to locate the closed-loop poles in
a suitable region of the complex s-plane, and not to specific points. This behavior is
specified by the roots of an interval characteristic polynomial, and therefore the required
performance is more insensitive to parameter variations and disturbances affecting the
actual system.

This paper is motivated by some previous works that combined traditional adaptive
control schemes with a nonlinear control technique called variable structure control (VSC),
which is based on the relay system theory [31], in order to improve the transient perfor-
mance and robustness, thus exploiting the best of each technique. Following this concept,
it was proposed the variable structure model reference adaptive control (VS-MRAC) [32],
where only the plant input and output are measurable and switching laws are used to
replace the integral adaptive laws of MRAC scheme [33], which in its original description
presents slow and oscillatory transient. The VS-MRAC scheme provides interesting fea-
tures of robustness as well as a good transient performance [34]. Recently, other studies
were based on the original VS-MRAC scheme to propose improvements to the project,
mainly modifications to get a smooth control signal and in such a way that chatter-
ing can be reduced or eliminated. The dual mode adaptive robust controller (DMARC)
[35] proposes a smooth transition between VS-MRAC (on transient stage) and MRAC
(at steady-state stage) schemes. These controllers are based on direct adaptive control
[5, 6]. Both controllers were also designed based on indirect adaptive control approach,
IVS-MRAC [36] and IDMRAC [37]. The basic idea is the possibility of an easier design
process, since bounds for the relays amplitudes and initial conditions are easily calculated
due to their direct relation with the physical plant parameters, reflected in the model.

This paper presents a VS-APPC [38, 39, 40] strategy for SISO LTI uncertain systems
modeled by proper transfer functions with unknown coefficients, but constrained to known
real intervals, called interval variable structure adaptive pole placement control (IVS-
APPC). Similar conditions were treated in [4, 41], where the main idea is to design a
controller which attempts to keep the closed-loop poles within a convex region specified
by an interval characteristic polynomial, whose stability is guaranteed by Kharitonov’s
theorem. Likewise VS-APPC scheme, here the estimates of the unknown plant parameters
are generated by switching laws, instead of the adaptive laws used in the APPC design.
Moreover, the VS-APPC design is extended in the sense that, given an interval plant and
an interval characteristic polynomial, it is possible to obtain an interval controller as well,
which meets the control objective, i.e., we can obtain upper and lower limits for each
coefficient of the control law, by solving an NLP problem, which ensures that the closed-
loop poles are placed in a desired region, even in the presence of large model parameter
variations.

The rest of this paper is organized as follows. Section 2 presents the problem formu-
lations and main assumptions. Sections 3 and 4 present the necessary steps to design
the adaptive laws to estimate the plant parameters. Section 5 is dedicated to the pole
placement control design for interval plants, using the polynomial approach. Section 6
presents the entire IVS-APPC design, and numerical examples to illustrate the properties
of the proposal are presented in Section 7. Finally, Section 8 concludes this paper.
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Notation: A closed real interval is represented as [a] = [a™,a™], where the endpoints
a” and at are known real quantities. The center or nominal value of [a] is represented
as a® = 3 (a* +a”) and the radius is represented as a” = 3 (a™ —a~). For a polynomial
A(s) of degree n, [A(s)] represents the correspondent interval polynomial of A(s), i.e.,
each interval coefficient [a;] of [A(s)] contains the correspondent coefficient a; of A(s),
and therefore we can say that a; € [q;] for i = 0,1,...,n, and A(s) € [A(s)]. An
interval matrix is defined as [A] := {[a;;]}, where [a;;] = [am, am] for each 4,j. Another
representation for [A] is [A] = [A, AT] = {A: A~ <A< A"}, where A~ := {[a;;] } and
A" :={[af]}. The center and radius matrices of [A] are given by A, := 1 (AT + A7) and
A, :=1(AT — A7), and consequently [A] = [A. — A,, A. + A,]. Given an interval vector
[0] € R", V([o]) denotes the set of all 2" vertices of [o], then each element i of the vertice
v; € V([o]) is the lower or upper limit of [o;], for i =1,...,nand j =1,...,2™

2. Problem Statement and Preliminaries. Let us consider the SISO LTI plant de-
scribed by the transfer function

Z

R(s)

where Z(s) is a polynomial of degree m and R(s) is a monic polynomial of degree n, with
m < n, which are represented as

y=G(s)u, G(s)=

Z(8) = Bu 18" 4.+ Bis+ Bo (2)

R(s)=s"+ap_ 18" ' +...+ s+ (3)

where the coefficients 5, 1,...,01, 50 and «, 1,...,a1,«y are unknown. If Z(s) has
degree m < n —1, then the coefficients ;, fori =n—1,n—2,..., m+ 1 are equal to zero.

Let us assume that the unknown coefficients of G/(s) have bounded uncertainties, i.e.,
are constrained to known closed intervals, such that §; € [f;] = [5{, Bﬂ and o; € (o] =

[a Q; ] for i = 0,1,...,n — 1. Therefore, we can represent the interval plant [G(s)],
such that G(s) € [G(s)], as follows:
n—1
[G(S)] _ [Z(S)] o [5n—1] S +.+ [51]8 + [BO] (4)

[R(s)] s"™+ [an 1]s" 1+ ...+ [aa]s + [a]

The objective of this paper is to design a robust adaptive control law that keeps the
closed-loop poles within a convex region specified by the roots of a monic Hurwitz in-
terval characteristic polynomial [B(s)], chosen based on the closed-loop performance re-
quirements and whose stability is guaranteed by Kharitonov’s theorem [11], despite the
presence of certain parameter variations, and the plant output y follows a reference signal
r € L, that is assumed to satisfy:

Qm(s)r=0 (5)
where @Q),,(s) is a known monic polynomial of degree ¢, called internal model of r [42].
For example, when r = constant, Q,,(s) = s. When r = ¢, Q,,(s) = s* and when

r = Asin(wpt) for some constants A and wy, then Q,,(s) = s? + w?.

The properties of the system associated with G(s) depend very much on the properties
of Z(s) and R(s). Therefore, to meet the control objective, the following assumptions
about the plant are necessary, in a manner similar to that of traditional APPC [5]:

A1: [R(s)] is a monic interval polynomial whose degree n is known.

A2: [Z(s)] is an interval polynomial whose degree m < n is known.

A3: [ (s)] and [R(s)] are coprime.

A4: (),(s) and [Z(s)] are coprime.
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The fact that [R(s)] is monic and has known degree, described in assumption A1, to-
gether with assumption A2 indicates that at most 2n parameters are required to uniquely
specify the I/O properties of (1). The parameterization of the plant considered in this
paper and presented in Section 3 is based on assumption A1l. Moreover, the knowledge
of n is used to choose the order of the controller polynomials and, consequently, the order
of the characteristic polynomial, as will be presented in Section 5.

Assumptions A3 and A4 are related to the coprimeness of polynomials. Two polyno-
mials are said to be coprime (or relatively prime) if they have no common factors other
than a constant [5]. This property is necessary for [Z(s)] and [R(s)], and consequently
for Z(s) and R(s), so that the calculation of the adaptive controller parameters at each
instant of time ¢ by using Diophantine equation has a unique solution, as shown by the
following properties.

Lemma 2.1. (Bezout Identity) Two polynomials a(s) and b(s) are coprime if and only if
there exist polynomials ¢(s) and d(s) such that

c(s)a(s) +d(s)b(s) =1
Proof: For a proof of Lemma 2.1, see [43, 44].

Theorem 2.1. If a(s) and b(s) are coprime and of degree n, and ny, respectively, where
ng > Ny, then for any given arbitrary polynomial a*(s) of degree ng« > ng, the polynomial
equation

a(s)l(s) + b(s)p(s) = a*(s)
known as Diophantine equation, has a unique solution l(s) and p(s) whose degrees n; and
ny, respectively, satisfy the constraints n, < ng, n; < max(ng — ng,ny — 1).

Proof: The proof of Theorem 2.1 can be found in [5].

Therefore, the fact that [Z(s)] and [R(s)] are coprime described in assumption A3,
together with Theorem 2.1 makes it possible to choose an arbitrary pole placement in the
complex s-plane and implies that the solution of the adaptive controller polynomials at
each instant of time ¢ is unique, provided that restrictions are imposed on the degrees of
controller polynomials.

Assumption A4 aims to guarantee that [Z(s)] and Q,,(s)[R(s)] are coprime so that
the property presented in Theorem 2.1 is satisfied. For example, if y is required to track
the reference signal r = 2 + sin(2t), then Q,,(s) = s (s* + 4) and, therefore, [Z(s)] should
not have s or s? + 4 as a factor. The idea behind the internal model principle is that
by including the factor 1/Q,,(s) in the compensator C(s), we can null the effect of r on
the tracking error e; = y — r [5]. This principle will be considered in the control design
presented in Section 5.

Let us now consider two interval polynomials given by [C(s)] and [D(s)], such that

n n

) =[] DE) =Y [dr,df] s

whose ezposed edges [10] are represented as

C (s) = ic{si, Ct(s) = icj’si
=0 1=0

D (s) = idisi, D*(s) = id;“si
i=0 1=0
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with coefficients lumped in the vectors

T T
- _ [ - - + o[ + ot
¢ =len 100, =gl gl e ]
- — [q- J- - =17 + [+ gt + g+ 7
d-=[d,,d,_\,....d7,dy| , dY=dt,d}_,, ... df di]

Next, we have some important properties of robust nonsingularity of interval matrices
and robust coprimeness of interval polynomials.

Definition 2.1. [45] The spectral set of [C(s)], denoted as S([C(s)]), is defined as the set
of all roots of [C(s)], when the coefficients of [C(s)] assume values in [c] = [¢™,cT].

Theorem 2.2. (Edge Theorem) The spectral set S[C(s)] of an interval polynomial [C(s)]
is limited by the roots of their edges C~(s) and C*(s).

Proof: Readers are referred to [10].

Lemma 2.2. [45] Two interval polynomials [C(s)] and [D(s)] are robustly coprime if
S([Cls)) nS(D(s)]) = @

A trial-and-error visual approach based on the edge theorem to determine the robust
coprimeness of interval polynomials is suggested in [10]. A simple sufficient condition for
robust coprimeness based on interval analysis results is presented below.

Lemma 2.3. [45] Two interval polynomials [C(s)] and [D(s)] are robustly coprime if their
interval Sylvester resultant [A] associated is robustly nonsingular.

Proof: Suppose that [A] is robustly nonsingular. Then all Sylvester resultants in
[A~, A*] are nonsingular, implying that [C'(s)] and [D(s)] are robustly coprime.

Lemma 2.4. [45] A square interval matriz [A] is said to be robustly nonsingular (or
reqular) if all matrices A € [A] are nonsingular.

A sufficient condition for checking the robust nonsingularity of an interval matrix [A],
with center matrix A. and radius matrix A,, described in [46], is given by

p (|Ac_1|Ar) <1 (6)

where p(A) := max {|}\| : det(\] — A) = 0}.

The problem of determining the robust nonsingularity of an interval matrix [A] € R?"*%?
has been extensively addressed in [47]. Unfortunately, all known necessary and sufficient
conditions for robust nonsingularity present exponential behavior, i.e., it is necessary to
solve at least 22" problems of some sort. Some considerations and algorithms on necessary
and sufficient conditions that deal with solving the problem of determining whether an
interval matrix is robustly nonsingular or if two polynomials are robustly coprime are
presented in [45].

3. Parametric Model. The first step for designing on-line parameter estimators is to
select an appropriate parameterization of the plant model. The plant model is parame-
terized with respect to some unknown parameter vector 6*. In this section, we consider
a very useful plant parameterization where parameters to be estimated are lumped to-
gether and separated from I/O signals of the plant [5]. In this case, #* represents the
unknown coefficients of the numerator and denominator of the plant model transfer func-
tion (1). For the estimation and control problem treated in this paper, this type of plant
parameterization is more convenient than others.
We can express (1) as an nth-order differential equation given by

y(n) = —anfly(nfl) — . Oé1y(1) — apY + 5n71u(n71) +...F Blu(l) + Bou (7)
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where y(t) £ L y(t) and u® (t) £ Lu(t).

Equation (7) may be rewritten in the following compact form:

= 05" + 05y (8)
where
9;’: [ﬁnfla-"aﬁlaﬁﬂ]—r; 9;: [anfla---;alaaﬂ]—r
and
n— n— T n— n— T
% = [u( 1)7 u( 2)7 cee ,u(l), u] ) ¢y = [_y( 1)7 —y( 2), R —y(l), —y]

The coefficient vector of G(s) is defined as

-
a [%Tﬁj = [Ba-t15- -+, Bos n1t, - - .,cvo]T € R*™ (9)

and the coefficient vector of [G(s)] is defined as

* «7 1 ®11 T T 2n
0= [[03) 7, 18207] = (1B [Bol, lono ), fo]) T € R (10)
Let us now consider the monic Hurwitz polynomial of degree n
A(s) = 8" 4+ Xyys" P+ F Ais + X
whose coefficients are the elements of the vector A = [\, 1,..., A, \g]". Therefore, adding
the term (A(s) — s™)y in both sides of (8), we obtain
Y+ Xy e Aoy = 05T+ 0Ty + Ay - Aoy

which can be rewritten as

y=W(s) (QET@Z}u + 92T¢y - )‘Td}y) (11)

where .
1
Wis) = =
( ) A(S) s" + )\n_lsnfl +...+ )\13 + )\0
Let us assume that 0, 0, and A are constant vectors. Multiplying both sides of (11)
by a polynomial L(s) and rearranging the equation, we rewrite (11) in the form of the

following linear parametric model, which will be used in the next sections:

y=W(s)L(s) (05 du + 05 &y — A 0y) (12)

where
¢u - Lil(s)wua ¢y = Lil(s)wy
and the polynomial L(s) has to be chosen so that L~!(s) is a proper stable transfer
function and W (s)L(s) is a proper and strictly positive real (SPR) transfer function. For
example, when
1

(s+1)(s+3)(s+5)

W(s) =

we can choose L(s) as

L(s) = (s+2)(s+4)
which implies that W (s)L(s) is an SPR transfer function. The motivation for introducing
L(s) in the parametric model is to be able to use the SPR-Lyapunov design approach to
construct the adaptive laws for estimating 05 and 0y, [5], as will be presented in the next
section. Therefore, the next step of the parameter estimation design, fundamental part
in the adaptive control design, starts from the parametric model built in (12).
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4. Parameter Estimation. In this section, we present the second step of the on-line
estimation procedure: to generate on-line estimates of the plant parameters by using
appropriate adaptive laws, which are designed to minimize the error between the system
response y(t) and its estimate §(¢) which is generated by a parameterized model whose
format is the same as the parametric model in (12). The estimates vector #(t) is adjusted
continuously so that ¢(¢) approaches y(t) as ¢ increases. The proposal presented in this
paper generates the plant parameters estimates using switching laws [39], instead the
traditional integral laws [33], in order to add the characteristics of VSC [31] to the adaptive
control design.

The design approach known as SPR-Lyapunov is used in this section to design adaptive
laws for estimating the plant parameters in the parametric model (12). This approach
allows to treat the parameter estimation part independently of the control part, which
allows to combine various estimation and control designs, splitting the complexity of each
part and thus simplifying the analysis and the design of adaptive control schemes.

The parametric model in (1) may be rewritten in many different forms giving rise to
different equations for generating an estimate for y(¢). By considering the parameteri-
zation of the plant given by (12), let us now consider an equation which has the same
format of (12) to estimate y(t), but with estimates instead of the true parameters, known
as the series-parallel model and widely used for parameter estimation [48], given by

§=W(s)L(s) (060 + 000, — \T0,) (13)

where ég and 0, are the on-line estimates of 05 and 0,

respectively, and form the esti-
. 1T
mates vector 6 = [Gg, 02] € R?". The estimation error, which reflects the parametric

uncertainty, is defined as
€L =Y — ?j (14)
Therefore, substituting for y and ¢ in (14), we obtain

er = W()L(s) (85 60+ 070y — N6y — B3 60 — 016, + 2", )

ie.,
e1 = W(s)L(s) (~0F 60— 076, ) (15)
where ég = ég — 05 and 0, = éa — 0%, or the following compact model:
e = W(s)L(s) (—équ) (16)

j aul T 71T
Whereﬁz[ﬁﬁ,ﬁa] andgzﬁz[u,gby] .

A state-space representation of (16) is given by

¢= A+ B, (—é%) (a7
6 =Cle

where A,, B, and C, are the matrices associated with the transfer function W (s)L(s) =
Cl(sI — A,) 'B..

By using the Kalman-Yakubovich-Popov lemma [49, 50], the SPR property of W (s)L(s)
guarantees that
AZPe + PeAe = _2Qe
{ P.B, = C, (18)

where P, = P > 0 for some matrix Q, = Q. > 0.
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Let us now consider the following Lyapunov-like function for the differential Equation
(17):

-
Pe
V(e == (19)
The time derivative V along the solution of (17) is given by
. 1
V(e) =3 (¢"Pee + € Pué)
1 ( AN T 3T )
=—||Ace+B.|—0" ¢ Pe+e¢ P, (Ae+ B, |—0 ¢
(s (7)) s (v ()

1 N
=5 (7 (PA+ ATR) e+ 2T PB, (070))
= —¢' Q.e+¢ P.B, (—§T¢>
It follows from (18) that P,B, = C,, which implies that €' P,B, = €' C, = ¢,. Therefore,
(20) can be written as

V(e) = — €' Q.e — qéngS

2n

_ T _ h. _ p* )

- € Qee ; |:01 9z:| 61¢z (21)
n—1 n—1

= - GTQeG - Z |:Bz - @'] 61¢u,n7i - Z [@i - ai] 61¢y,n7i
1=0 1=0

Although the plant parameters are assumed to be unknown, the closed intervals in which
each plant coefficient is contained are known. In traditional adaptive control schemes, the
parameter estimates are generated by integral laws (gradient method, least-squares, etc.)

[5, 6]. In this paper, we consider the following switching laws for 0 [39]:

Bi - Bisgn (61¢u,nfi) + Blc, Bz > |Bz+ - ﬁﬂ (22)
G = qsgn (e10y ) +0f, @ > |of” — of]
fori=0,1,...,n — 1. Therefore, we have
n—1
Vie)= — € Qee — Z [3z‘|€1¢u,n—z’| + Bi€1Pun—i — 5i€1¢u,n—z’]
i=0

n—1
- Z [il€1 Gy n—i| + afe1dyn—i — Ci€1yn—i]
i=0
As shown in (22), B; > |8} — B¢| and @; > |oyf — af| for i = 0,1,...,n — 1. Therefore,
we have that §; > |5¢ — ;| and @; > |af — a4, and we obtain

V(e) < —€'Qee < 0 (23)

that guarantees ¢ = 0 as an asymptotically stable equilibrium state in the large, which
implies that e € L, and € € L. Since €; = C’Je, we have that ¢, € Lo, and ¢; € L.

Remark 4.1. With the use of switching laws to generate the plant parameters estimates,
we cannot quarantee the convergence to the true plant parameters. However, the conver-
gence of 1 to y is gquaranteed.
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With the analysis and equations presented in this section, we conclude the parameter
estimation design, which can be combined with a wide variety of control schemes. In the
control approach presented in this paper, referred to as indirect adaptive control [5, 6], the
plant parameters are estimated on-line by using the switching laws in (22) and used to
calculate the controller parameters of a pole placement control law, as will be presented
in the next sections.

5. Interval Pole Placement Control. The purpose of this section is to design a control
law that can meet the pole placement for SISO LTI plants whose parameters are unknown
but with bounds constrained to known intervals. The form of the control law and the
mapping between interval plant and controller parameters presented in this section are
the same as those used in the known plant parameter case, when a PPC law is considered
[5, 6]. Therefore, the control design presented in this section is the basis for the proposed
control technique of this paper, since the control law is exactly the same for both designs,
as will be presented in Section 6.

Let us consider the polynomial approach [5] to design the following pole placement
control law:

Le(s)
U= =5 ST (6 (24)
Qun(5)Le(s)
where e; = y — r is the tracking error; Q),,(s) is the internal model of r, which has degree

ist
q and satisfies assumption A4; P.(s ) and L.(s) are polynomials (Wlth L.(s) monic) of
degree n +q¢—1 and n — 1, respectively.
Applying (24) to the interval plant (4), we obtain the closed-loop plant equation:

P.(s)[2(5) i
Qn() L)) + B Z()]

The objective now is to choose P.(s) and L.(s) in the characteristic equation
Pe(s

Qm (5) Le(5)[R(s)] + Pe(s)[Z(5)] = [F(s)] (26)

such that the roots of the closed-loop system characteristic polynomial [F(s)] are con-
tained in the region specified by the roots of a given monic Hurwitz interval characteristic
polynomial [B(s)] of degree 2n+q—1, i.e., S([F(s)]) € S([B(s)]). The interval coefficients
of [B(s)] are lumped in the interval vector [b] = [b~,b"], where

bi = |:b27n+q727 ey bfa ba] ! ’ b+ = [b;nJrqua ety b;ra bﬂT (27)

Therefore, in other words, if we denote [f] = [f~T, f*T|T = [[fonsq2ls---»[f1], [fo] " as
the vector of interval coefficients of [F'(s)] in (26), the following relationships must be
satisfied:

y= (25)

b < fi. fiT <O (28)
fort=0,1,...,2n+q — 2.

Equations of the form (26) are referred to as Diophantine equations [5, 6] and are
widely used in the algebraic design of controllers for LTT plants. Of course the size of
each interval coefficient of [B(s)] would have to be adjusted to ensure that the system
performance remains satisfactory [41].

The cofficients of L.(s) and P.(s) in Equation (26) can be found by the following
inequality:

by < [Ag]ws < b:— (29)
where [A;] = [A;, Al] is the interval Sylvester matrix of dimension 2(n + ¢) x 2(n + q)
associated to the polynomials Q,,(s)[R(s)] and [Z(s)], whose lower and upper limiting
matrices A7 and A] are obtained when the coefficients of [A] are replaced by their lower
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and upper values, respectively; the vectors by and b are associated to the interval char-
acteristic polynomial [B(s)]; and the vector z; is associated to the controller polynomials
P.(s) and L.(s), i.e.,

[ [7n+q] 0 [5n+q] 0 ]
[(n] 0 ] 0
[AJ=| [l Dasad Bl e [Basdl (30)
0 : 0 :
; - ] e [B]
0 (0] 0 [Bo] |
by =[0,...,0, 1,67 T]T =0,...,0,1, by g9y bonigoss - -, by by ] T € REH (31)
q q
bY =10,...,0,1,67T]T =[0,...,0,1,b%, 09, b3 sgszs-- -, b, 0] € R (32)
q q
ry=100,...,0,1,2"]" € R¥*+2 (33)
q
T = [ln—27 ln—37 ey lOapn—I—q—lapn—I—q—Za v 7p17p0]T € RZTH»Q?I (34)

where [v;] = [y;, %], for i =0,1,...,n+¢—1, are the coefficients of Qp,(s)[R(s)] — s"*4
and [; and p; are the coefficients of

Pu(8) = puiqg 18"+ 4+ pis+ o

Le(s) = 8" 4 ly 98" 24+ ...+ lis+ 1
As Q. (s)[R(s)] is a monic interval polynomial and Z(s) has degree m < n, we have that
[Yntql =1 and [Busg] = [Bpsg-1] =+ + = [Bm1] = 0 in (30).

The approach presented in this section is similar to that presented in [5], where the
closed-loop poles are designed to be placed in fixed positions, which is not always possible
due to the controller adaptation and the possible parametric variations of the plant.
However, with the approach presented here, we conclude that any vector x,, constant or
not, which meets the condition in (29) can be selected as it ensures the pole placement in
the region delimited by the roots of [B(s)], even if there are parametric variations within
the known ranges described in [G(s)].

The pole placement control design presented in this section is used together with the pa-
rameter estimation design presented in Section 4 to form the IVS-APPC design, presented
in the next section.

6. IVS-APPC Design. In this section, we present the interval VS-APPC design, which
is the main contribution of this paper. This approach combines the PPC law for the known
interval parameter case (Section 5) with adaptive laws that generate on-line estimates
for the unknown plant parameters (Section 4). All steps of the design are summarized
as follows: Subsection 6.1 presents Kharitonov’s theorem, which is used to choose a
monic Hurwitz interval characteristic polynomial and therefore, the closed-loop poles;
in Subsection 6.2, an algorithm to find an interval controller that guarantees the desired
pole placement is presented for SISO LTI interval plants; in Subsection 6.3, the parameter
estimation design presented in Section 4 is reviewed; and in Subsection 6.4 the mapping
between the parameter estimates and the controller parameters as well as the IVS-APPC
law are presented.
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6.1. Interval characteristic polynomial. Given an interval plant, the next step is to
define an interval characteristic polynomial [B(s)] that must be chosen so that all roots
have negative real part. This guarantee can be obtained by Kharitonov’s theorem [11],
which says that an interval polynomial represented as

[A(8)] = 8" + [0, 1]s" T+ ...+ [61]s + [0]

where [§;] = [57 63“], for i =0,1,...,n — 1, is Hurwitz if and only if the following four

177
extreme polynomials are Hurwitz:

Al(s) =8"+ ... 46,8+ 655>+ 65>+, 546,

Ag(s) =s"+ ...+ 078" + 078> + 658> + 6 s+ 65
Az(s)=s"+...+0;s" +05s> + 0,87+ 675+ 87
Ay(s)=s"+...+0s" +07> + 0,87+ 6 s+ 87

During the last few decades, Kharitonov’s theorem has been one of the most popular
approaches to investigate stability of interval systems, since the stability analysis of an
entire family of infinite interval polynomials can be simplified to the stability verification of
four extreme polynomials, regardless of the polynomials degree. Many important results
derived from Kharitonov’s theorem have been reported in the closed-loop system stability
analysis [10, 51].

6.2. Interval controller. As we have shown in Section 5, an infinite number of solutions
for z that satisfy the inequality in (29) can be found, i.e., we can obtain an infinite number
of vectors x5 that guarantee the desired regional pole placement described by [B(s)].

This section presents an algorithm that finds an interval controller [z;], given an interval
plant and an interval characteristic polynomial. The interval controller defines lower and
upper limits for each control law parameter, which may have constant value or not, so
that the pole placement is guaranteed even with parametric uncertainties. To achieve this
objective, an NLP problem must be constructed by using the coefficients of an interval
plant and an interval characteristic polynomial and can be solved by using the Matlab®
function called fmincon, which seeks to find a minimum of a nonlinear multivariable
function subject to linear inequalities of type Az < b.

If we denote S(&) as the Sylvester matrix associated to the polynomials @, (s) X (s) and
Y'(s), where the coefficients of Y (s)/X (s) are the elements of £, we have from (30) that
[As] = S ([#*]). This notation is important to describe the following theorem.

Theorem 6.1. [41] Assuming that [As|zs are multilinear functions of [0*] then
by < [Agzs < b
holds for all 0* € [0*] if and only if
by < S(vi)zs < by (35)
where v; € V([0*]), fori=0,1,...,2*.
Proof: Readers are referred to [41] or [10].

Remark 6.1. [41] If x5 represents an interval controller and appears multilinearly in
[As]xs, the conditions given in (35) need be verified only at the vertices of xs. Therefore, to
verify if an interval controller described by [x;,;] meets the pole placement control objective,
we check only if the vertices of [x;,:] meet the conditions given in (35).
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The fmincon function sintax requires that the constraints defined in Equation (29) be
expressed in the form Az < b. Therefore, based on Theorem 6.1 we have the inequality

Af!L’s S bf (36)

A bt

Af_[—Az]’ bf_[—bf
where the matrix A; is constructed replacing the interval coefficients of [A4] by their lower
and upper values, so that each line i of [A,] is replaced by 2" lines that represent all the
combinations of lower and upper values of the interval coefficients that appear in the line
i of [As], where r is the number of interval coefficients in the line i of [A,]. If we denote

A;;; as the line j derivated from the line i of [A,], the following constraints must be
satisfied:

with

b;z S Al,i,jxs S b;r’z (37)

where b ; and bj,i represent the elements ¢ of the vectors b; and b, respectively. Therefore,
after all the constraints of (29) are contructed as in (37), the elements of vectors b, and
b are the lower and upper limits of all constraints, respectively.

With Equation (36) constructed, we need to define the objective functions, whose min-
imum values will represent the lower and upper limits of a temporary interval controller
described by [x;;]. To determine the interval vector [x;,;] through the fmincon function,
we consider two objective functions: fui, to find the lower limit of [2;,;] and fiax to find
the upper limit of [z,], which are given by:

2n+2q . — l ) 2
Lmin = min fmin(x)a fmin(x) - (Zil),Z) (38)

Iy <z<uy Up; — lb,i

2n-+2q o N 2
Tmax = Min fmax(x)a fmax(x): Z (M) (39)

ly<z<up —
1=

where the vectors [, u, € R?"*27 are the lower and upper bounds to fetch the vectors
Tmin and ZTmay, S0 that the solutions are always in the ranges [, < Tmin < up and [, <
Tmax < Up, and are used as initial points for fiin(2) and fiax(2), respectively. Since we
want to find the largest possible intervals for the parameters of the interval controller,
it is recommended that [, and wu;, be initialized so that the range u;,,; — [, is large, for
1=1,2,...,2n+ 2q.

After finding an interval vector [z;,/] = [2]. 2] ]T by fmincon, it is necessary to check
its validity, i.e., in case of any vertice x € V([x;,;]) that does not satisfy the inequality in
(36), a new search must be performed, since in this case with [z;,;] we cannot guarantee
the desired closed-loop pole placement. If a new search is necessary, the vectors [, and u,
are updated t0 Zmin and Tyay, respectively, reducing the search space. If [z;,] represents
a valid controller, we have that [z,] = [1;] = [,z ], which is described similarly
to (33):

min’ *“max

[z,] =[0,...,0,1,[z]"]" € R#"+% (40)

q

(@] = [[In-2), sl - [o], Pag-1]; [Pasq2ls -, [po]] T € RO (41)

The complete routine to find the interval controller is presented in Algorithm 1.
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Algorithm 1 Search for [z]

1: found =10
2: while found =0 do
3: Tmin = min  fmin(x) such that b, < [Ag]lx < bfF

ly<z<uy

4: Tpax = Min  fraxc(x) such that by < [A ]z < bF
ly<z<up

5: [xznt] = [xr—rrlinvl‘r—rrlax !

6: for all vy € V([0*]) do

7 for all v, € V([z;n]) do

8: if (S(vg)vy < ;) or (S(vg)v, > b)) then

9: lb = Zmin

10: Up = Tmax

11: go to 2

12: end if

13: end for

14: end for
15: found =1

-
16: [.CUS] = [xr—rrlinaxr—rrla,x]

17: end while

6.3. Parametric model and adaptive laws. As we have shown in Section 4, the
adaptive laws design is based on a parametric model for §*, which is represented as

y=W(s)L(s) (05" ¢u + 05 dy — AT6y) (42)

where W (s)L(s) is an SPR transfer function constructed with the stable polynomials A(s)
and L(s), and

1 1
Wis) = AGS) 8™+ An1s™ L.+ Ais + Ao
A=Aty AL Ao]
Gu=L""(5)0u, ¢y =L "(s)h,
o = [u Dy .,u(l),uf, Wy = [~y D ), _y]r
05 = Bacts- s B Bo) Ty 0 = [ty an, 0]

To estimate the output signal y, a series-parallel model is constructed based on para-
metric model in (42), i.e., the estimate 3 is generated by a model whose true coefficients
are substituted by the estimates as follows:

§=W(E)L(s) (060 + 000, — \T6) (43)

where

~

-
A 5 5 A . A A qT
95: [anla-"aﬁlaﬁﬂ] ) 9(1: [anfla"'aalaom]

are the estimated plant parameter vectors that are calculated by the following switching

laws [39]:

N T (44)
i = ausgn (€10yn—) +of, @ > | — o

{ Bi = Bisgn (€10un—i) + 65, Bi > |8 — B¢

where the estimation error is calculated as ¢, =y — 4.
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The switching laws in (44) generate on-line estimates ég and 6, of the coefficient vectors,
05 of Z(s) and 0}, of R(s), respectively, to form the estimated plant polynomials

Z(s) = Bors" . 4 Bis + By
R(s) =" 4, 15"+ .+ as + Qo

6.4. Calculation of controller parameters. For the calculation of controller param-
eters to be performed, the plant parameters estimates and the characteristic polynomial
are necessary. In the proposal presented in this paper, the characteristic polynomial used
to solve the Diophantine equation in each instant of time ¢ is the nominal (or center)
polynomial of [B(s)], whose coefficients are the center of the coefficients of [B(s)], i.e.,

Be(s) = "M 405, o™ 4 4 b + b (45)

where bf = (bi_ + b:r) /2, for i =0,1,...,2n+ ¢ — 2, and the coefficient vector of B.(s) is
defined as .

b = [b5pq_ss - b7, O] (46)
Therefore, the calculation of the controller parameters in each instant of time ¢ is per-

formed as follows: A
Ty = A7'DC (47)

b =10,...,0,1,b°T]" € R+ (48)

q

where

and A, is the Sylvester matrix formed with the coefficients of the estimated plant poly-
nomials (Z(s) and Q,,(s)R(s)), i.e.,

’A)/nJrq 0 BnJrq 0
N 0 By 0
As=| 4 Yntq  Po Br+q (49)
0 0 :
: N 5:1
L 0 ’70 0 Bg
where 4,1q_1,...,% are the coefficients of Q,,(s)R(s) — s"*9, 4,4 = 1 and B,Hq =
6n+q71 == 6m+1 =0.

Although the estimates of #* guarantee that g follows y, we do not have the guarantee

that the controller parameters calculated as in (47) will lie in [z4], i.e., Z5 € [z4]. Therefore,
the controller parameters are calculated as presented in Algorithm 2.

Algorithm 2 Calculation of 7

DX = A;lbg
. if 2, <z, ; then

1

2

3: i‘s,i = .CL';Z

4: end if

5: if &,; > 27, then
6 +

7

‘/Lls,i - xs,i

. end if
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Therefore, the IVS-APPC control law is formed at each instant of time ¢ as

n+q71A )
> bis'
e, (50
Qm(s) <3”1 + > lisi>
i=0
where p; € [p)] = [p;,p/], for i = 0,1,....,n4+ ¢ —1, and i €[] = 1, 1F], for

j=0,1,...,n— 2, are the coefficients of

iy =10,...,0,1,2"]" € R*+2 (51)

q
5, 7 7 7o N T 2n+q—1
Tr = |:ln727 lnf?n ) anpn+q717pn+q727 -y Do eR I (52)

7. Numerical Examples. This section presents simulation results for IVS-APPC and
VS-APPC [38, 39, 40] schemes applied to two nonminimum phase second order plants.
The IVS-APPC design presented in Section 6, as well as the VS-APPC design, can be ap-
plied without distinction to minimum and nonminimum phase plants, unlike VS-MRAC
scheme that is restricted to minimum phase plants. Therefore, in the simulations pre-
sented next we focus on nonminimum phase plants since the control of this system class
is one of the motivations of the proposed control design. Moreover, nonminimum phase
systems have important features [8] that make the control design a great challenge.

While IVS-APPC design aims to place the closed-loop poles in a region defined by the
interval polynomial [B(s)], VS-APPC design uses the nominal polynomial of [B(s)], i.e.,
a polynomial whose coefficients are the centers of the interval coefficients of [B(s)]. Both
simulations were carried out with plant and model initial conditions equal to zero and
with the same constants, an integration step h = 10 3s, which is used in the Euler method
for derivative approximations, and the reference signal r = 1 (Q,,(s) = s and ¢ = 1). The
parametric model for the plant was constructed with the SPR transfer function

L(s) s+ 2

W(s)L(s) = A(s)  (s+1)(s+3) (53)

and therefore we have

A=43]", ¢u=L ), u]", ¢y =L"(s)[-y,—y]"
and the control law has the form
. Pas® + P15 + Do

T s(s+1h) -

In Table 1 we have the average performance indexes used in this section to compare
IVS-APPC and VS-APPC schemes.

TABLE 1. Performance indexes

Integral of Absolute Error (IAE) TAE = ft“"‘”‘ leq (t)|dt
Integral of Squared Error (ISE) ISE = ftmax 2dt
Integral of Time Multiply Absolute Error (ITAE) | ITAE = [ fma 4 |dt

Integral of Time Multiply Squared Error (ITSE) |ITSE = [ o te1
Energy Consumption (E,) E, = ftm" |dt
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7.1. Nonminimum phase stable system. Initially, let us consider the plant described
by the transfer function

618+60 - 25 —10
2+ as+ay 2+ 8s+ 16

whose coefficients are assumed unknown but contained in known intervals that form the
following interval plant:

Gl = 6N Blst[fo] _ [16,28]s +[-10.3, 9.1
[R(s)]  s2+[au]s+[o] s+ [7.7,8.8]s+[15.5,16.9]

Besides tracking, the control objective is to place the closed-loop poles in the region
specified by the roots of the following interval polynomial, whose stability is guaranteed
by Kharitonov’s theorem:

[B(s)] = s* + [18,24]s® + [121.5, 216]s> 4 [364.5, 864]s + [410.0625,1296]  (56)

Considering [A] as the resultant Sylvester matrix associated to [Z(s)] and [R(s)], as
mentioned in Section 2, we have that p(|A;')|A,) = 0.2933 < 1, which guarantees that [A]
is nonsingular and, consequently, [R(s)] and [Z(s)] are robustly coprime interval polyno-
mials. Therefore, the interval plant and these findings are in agreement with assumptions
Al to A4.

Given the interval plant (55) and the interval characteristic polynomial (56), by using
Algorithm 1 with all elements of [, equal to —10% and all elements of u, equal to 103, we
obtain the following interval controller, which defines the lower and upper limits for the
controller coefficients:

G(s) =

(54)

(55)

Iy, IF 921.6949,  21.6999
W= | Pz P2 | | 40686, —4.0629
P, Py ~34.9951, —34.7561
Py, Py —94.0287, —48.5338

Figures 1 and 2 show the system behavior for IVS-APPC and VS-APPC schemes ap-
plied to (54), respectively. In both simulations the system behavior is displayed for 30s,
with a reference deviation to r = 2, from ¢ > 10s, and a sudden change in all plant param-
eters, which are still held within the respective ranges, as follows: f; = 2.8, fy = —9.1,
a; = 7.7 and ag = 16.9, from ¢ > 20s. The relay amplitudes were selected in accordance
with the restrictions imposed in (44): 3, = 0.61, By = 0.61, a; = 0.56 and ay = 0.71.
Figure 3 presents the behavior of the closed-loop poles for both controllers.
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FiGure 1. IVS-APPC behavior F1GURE 2. VS-APPC behavior
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FiGUurE 3. Closed-loop poles of IVS-APPC and VS-APPC — stable system

TABLE 2. Performance comparison — stable system

Interval VS-APPC | VS-APPC
IAE 1.4142e+-03 1.1843e+03
ISE 1.0153e+03 957.8595
ITAE 1.1976e+-04 9.7247e+03
ITSE 6.3639¢e+03 5.7704e+03
E, 8.6359¢e+04 8.6167e+04

As can be observed, IVS-APPC and VS-APPC schemes have similar transient and
steady-state behaviors, with robustness to fast variations in the reference signal and the
plant parameters. However, the closed-loop poles with VS-APPC scheme are very close
to the boundary and are more scattered along the defined region. An important aspect
of VS-APPC control law, presented in this simulation and in previous works [39, 40], is
that the control signal switching has much lower amplitude than the controllers based on
the VS-MRAC scheme [32, 34, 36]. This feature is very important because it allows the
application of the VS-APPC (and IVS-APPC) scheme in various industrial processes. In
Table 2 a comparison between IVS-APPC and VS-APPC schemes is presented based on
common performance indexes based on tracking error (IAE, ISE, ITAE, ITSE) and on
control signal (E,), confirming similar behavior shown in Figures 1 and 2, although the
VS-APPC scheme presents a slightly better performance than the IVS-APPC scheme in
terms of control signal variation (less switching).

7.2. Nonminimum phase unstable system. Now, let us consider a more difficult

system to control:
3s — 1
G(s) = —m— 57
(5) s2—5s+4+9 (57)
whose coefficients are assumed unknown but contained in the intervals coefficients of the

plant:

»

Z(s)]  [Bls+[8)  [2.8,33]s+[~1.3,—0.9]
[R(s)] 82+ [ou]s+[ao] 82+ [~1.4,-0.7]s +[8.2,9.3]

[G(s)] = (58)
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The control objective is to place the closed-loop poles in the region specified by the roots
of

[B(s)] = s* + [6,8]s® + [13.5, 24]s® + [13.5, 32]s + [5.0625, 16] (59)

Remark 7.1. In the control design for nonminimum phase plants, the choice of an in-
terval characteristic polynomial is a complicated task. In some cases, the choice of stable
interval characteristic polynomials can lead the closed-loop system to instability. For ex-
ample, when we use for the plant in (58) the same characteristic polynomial used for the
plant in (55), the system becomes unstable, with VS-APPC or IVS-APPC schemes. Addi-
tionally, during the search for the interval controller, the fmincon function may converge
to an infeasible point.

Considering [A] as the resultant Sylvester matrix associated to [Z(s)] and [R(s)], we
have that p(|A,')|A,) = 0.1696 < 1, which guarantees that [A] is nonsingular and,
consequently, [R(s)] and [Z(s)] are robustly coprime interval polynomials.

Given the interval plant (58) and choosing the interval characteristic polynomial (59),
by using Algorithm 1 with all elements of I, equal to —10% and all elements of u;, equal to
103, we obtain the following interval controller:

ly, Iy 6.3940,  6.4526
W)= | Pz i | _ | 03864, 0.6549
P, Py 5.6164, 5.8584
Py, P —0.4647, —8.2438

Figures 4 and 5 show the system behavior when IVS-APPC and VS-APPC schemes are
applied to (57), respectively. The reference signal is changed to r = 2, from ¢ > 20s, and
the plant parameters values are changed to g, = 3.3, By = —0.9, @y = —1.4 and oy = 8.2,
and thus remain contained in the intervals of (58), from ¢ > 40s. The relay amplitudes
were selected in accordance with the restrictions of (44): 3, = 0.26, B, = 0.21, a; = 0.36

and &y = 0.56.
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Both controllers have similar behavior during the first 40s, although the VS-APPC
control signal amplitude is greater than in the IVS-APPC case (see E, in Table 3).
Furthermore, abrupt and wide parametric variations at ¢ = 40s affect significantly the
VS-APPC performance (see error indexes in Table 3), making the plant output signal
quite oscillatory, and thus no longer following the reference signal. This fact can be
verified in Figure 6, where some poles are outside the region and quite scattered. In the
IVS-APPC case, the poles are more concentrated and thus keep the tracking objective
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F1GURE 6. Closed-loop poles of IVS-APPC and VS-APPC — unstable system

TABLE 3. Performance comparison - unstable system

Interval VS-APPC | VS-APPC
IAE 1.7509e+04 5.7773e+04
ISE 2.2385e+04 1.4738e+05

ITAE 3.6222e+405 2.3688e+06

ITSE 4.5487e+05 6.5545e+06

E, 8.4735e+05 8.4075e+05

despite the parameter variation. Therefore, based on this simulation, where we have
a very sensitive system to the adopted control design, we can conclude that the VS-
APPC scheme may lead the system to instability in some situations such as wide known
parametric variations (relays amplitude were chosen considering the range where the plant
parameters were contained) and inappropriate choice of the characteristic polynomial, as
the system is difficult to control.

8. Conclusions. This paper presents the design of a variable structure adaptive pole
placement controller for interval SISO LTI plants, called IVS-APPC. This scheme holds
some important characteristics of the original version of VS-APPC: is applicable to non-
minimum phase plants; presents good transient performance; presents smaller amplitude
control signal than the switching versions of VS-MRAC, without filtering; is robust to
parametric variations; its design can be applied without distinction to plants with any
order and relative degree. The previous computational effort of IVS-APPC design to
find an interval controller is rewarded by the guarantee of closed-loop pole placement in
a desired region, even if there are parametric variations within the known ranges of an
interval plant. On the other hand, the VS-APPC design does not require the determi-
nation of thresholds for the control law parameters, but does not guarantee satisfactory
performance in some cases if there are parametric variations, as shown by the simulation
results. Therefore, this paper presents a robust control alternative for the case where the
exact pole placement is necessary, thus fulfilling one of the VS-APPC deficiencies.

We can cite as future works for the control scheme presented in this paper: the ro-
bustness analysis to disturbances and unmodeled dynamics, optimization of controller
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parameters or plant parameters estimates, a systematic study based on performance cri-
teria to design the interval characteristic polynomial, comparison with other adaptive
control schemes and the practical implementation of the controller.
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