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ABSTRACT. In astronomical image processing, to solve the problem of slow convergence
speed and poor denoising performance in compressed sensing iterative curvelet threshold-
ing (ICT) algorithm, an improved ICT reconstruction algorithm with high performance
is proposed. A Dai-Yuan stepsize is used by algorithm to accelerate its convergence speed.
To improve the quality of the reconstructed image, a new curvelet threshold is proposed
to select the curvelet coefficients of astronomical image. Meanwhile, the total variation
method is employed to adjust the reconstructed image in each iteration for suppressing
the pseudo-gibbs effect in the reconstructed image. Number experimental results demon-
strate that the algorithm proposed is superior to the traditional ICT algorithm, which
can achieve better denoising performance with a fast convergence speed and effectively
protect the image detailed features. Furthermore, even with a lower compression ratio,
the proposed algorithm can still obtain a higher peak signal to noise ratio (PSNR).
Keywords: High resolution, Compressed sensing, Curvelet thresholding, Denoising,
Astronomical image

1. Introduction. Research on astronomical image plays an important role in astronomy,
which is a direct way to get astronomical information. However, since the high resolu-
tion astronomical image acquired by CMOS or CCD camera is often contaminated by
noise when they are transmitted from the satellite to the earth station, it is inconvenient
to distinguish the detailed feature in the astronomical image from the received image.
Therefore, the image denoising method is often used to remove noise while retaining the
important image features as much as possible. However, for high dimensional signal, due
to the lack of enough valid data or the prior information of the signal, most denoising
methods might fail to restore a high quality signal [1, 2]. To solve the problem of high di-
mensional signal reconstruction effectively, the scientists have been exploring an intrinsic
low dimensional structure in high dimensional signal, and then the original high dimen-
sional signal can be accurately reconstructed only by using the low dimensional structure.
Sparsity [3, 4] is probably the easiest model for making full use of reduced dimensionality.

Based on the sparsity of the signal, Donoho proposed a new sampling theory: com-
pressed sensing (CS) [1, 2, 3, 5] in 2006. It states that if a signal is sparse or compressible,
then it can be accurately reconstructed only by using a few observations. To be specific,
if the signal is sparse in a sparsity transform, a low measurement matrix can be used
to sample the signal. At the same time, the original signal can be accurately recovered
from these few observations by using a reconstruction algorithm. The tradition Shan-
non/Nyquist sampling theorem requires the sampling rate at least two times faster than
the signal bandwidth, whereas the CS does not need to obey it. The CS theory mainly
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consists of three important parts: sparsity transform, measurement matrix and the re-
construction algorithm. In this paper, what is focused is how to design a reconstruction
algorithm with high performance.

After several years of development, many recovery algorithms have been presented,
such as iterative shrinkage/thresholding (IST) algorithms [6, 7, 8, 9], linear programming
methods [10, 11], gradient decreasing methods [12], nonconvex algorithm [13], and greedy
pursuits methods [14]. Among these CS reconstruction algorithms, IST algorithms are of-
ten used by the scholars for signal reconstruction since it is very universal and quite simple
to be implemented. Additionally, most sparse transforms can be easily incorporated to
the IST framework. These advantages make it one of the most effective tools for dealing
with the linear inverse problem. However, the IST methods do not function very well in
terms of the denoising performance. Through the analysis of IST algorithms, it can be
found that most of them mainly use the wavelets for sparse representation. However, the
curvelet [15] has better sparse performance than that of wavelet. In the curvelet domain,
the signal corresponds to the relatively large curvelet coefficient while noise corresponds
to the small curvelet coefficient. Therefore, the curvelet thresholding method [15, 16] can
remove the noise in the original image more effectively.

Based on the advantage of curvelet transform, various CS iterative curvelet shrink-
age/thresholding (ICT) reconstruction algorithms have been proposed for solving the
problem of signal denoising and reconstruction. For example, ICT algorithm with chi-
squared cumulation distribution function [17] and ICT sparse reconstruction algorithm [18]
can achieve better image denoising performance; the two-step ICT algorithm [19] and im-
proved ICT algorithm [20] are proposed for remote sensing image denoising which can
bring good results; iterative curvelet algorithm based on the adapt bivariate shrinkage
threshold [21], compressed sensing seismic data denoising ICT method [22] and iterative
3D curvelet thresholding method [23] is put forward for seismic data denoising, which can
effectively remove the noise in seismic data. From the research on these algorithms, the
following problems are considered.

(1) Most scholars mainly focus on the denoising and reconstruction performance, but the
convergence speed of the algorithm is very slow. For an excellent denoising reconstruction
algorithm, fast convergence speed is very important.

(2) The image reconstructed by the thresholding denoising methods will result in the
false gibbs phenomenon due to the lack of translation invariance property of curvelet
transform, it is difficult to obtain some important image details from the reconstructed
image. However, the image detail features are very important in the analysis of astro-
nomical images. Therefore, it is very necessary to suppress the false gibbs phenomenon
in astronomical image denoising.

This paper proposes a high performance improved ICT algorithm for suppressing the
false gibbs phenomenon and improving the convergence speed of ICT algorithm. At the
same time, the algorithm proposed is applied for solving the problem of astronomical
image denoising and reconstruction. In this paper, the Dai-Yuan stepsize [24, 25] is used
to solve the problem of the convergence speed of the algorithm proposed, which can ef-
fectively accelerate the convergence speed of the steepest descent method. To further
improve the denoising performance in the algorithm proposed, a new curvelet thresh-
old with high performance is proposed to select the curvelet coefficient of the original
image. In remote sensing image denoising and reconstruction, the total variation (TV)
method [26] can effectively suppress the false gibbs phenomenon. Therefore, this paper
uses the TV method to adjust the reconstructed image in each iteration. By combining
the above techniques, the algorithm proposed can achieve better denoising performance
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and faster convergence speed. To confirm the validity of the proposed algorithm, the
detailed theoretical analysis, simulation and experiments are performed.

The remainder of this article is organized as follows. In Section 2, the basic theoretical
knowledge is introduced. The algorithm research and design are presented in Section
3. Afterwards, to demonstrate the effectiveness of the proposed algorithm, number ex-
periments on high resolution astronomical images are shown in Section 4. Finally, the
conclusions are drawn in Section 5.

2. The Basic Theoretical Knowledge.

2.1. The CS denoising model. The classical denoising problem can be stated as fol-
lows:
y=z+e, (1)
where x represents the original signal of size N x 1, e denotes the noise which is generally
considered as Gauss white noise and y is the N x 1 noisy observations. For high dimen-
sional signal, it is difficult to obtain enough valid information of the original signal from
the high dimensional noisy observations since the value of N is very large.
In this article, high dimensional signal denoising with incomplete measurements is con-
sidered, which reads
y=dx +e. (2)
Here, ® is an M x N (M << N) CS measurement matrix. It can be found that the
recovery of the original signal z is an ill-conditioned linear inverse problem since M << N.
However, the CS states that the original signal x can be reconstructed with high accuracy
from the few observations y if x can be represented by a sparsity transform ¥ and if the
measurement matrix ® satisfies the restricted isometry property (RIP) [4, 10, 27]. In such
a condition, Formula (2) can be rewritten as

y=0r +e=dUV 'z +e=0s+e, (3)

where s = W !z is the sparse coefficient. Here, ® = ®¥ can be regarded as a CS
measurement matrix to directly observe the sparse coefficient s. More specifically, if the
signal is K-sparse, in the circumstances where y is only a linear combination of the K
columns of © whose corresponding of the sparse coefficients s; is non-zero. If the priori
information that the K entries of the transform coefficient s are non-zero is known, then
an M x K linear system of equations can be obtained to get these non-zero entries.
Under this condition, the unknown K equals or less than the number of equations M.
Furthermore, the RIP can guarantee that the M x K system is well-conditioned, which
is a necessary and sufficient condition for perfect recovery.

One of the commonly used methods to solve the CS problem (2) or (3) is the /;-norm
minimization with sparsity constraints

.1 -
min {31y = @+ Nl . @

or the recovery of the sparse coefficient s

) 1
min { 51l — @[3 -+ Al | )

The first term in the /; norm minimization recovery problem (4) or (5) is a penalty term,
which is used to calculate the discrepancy between the observation and the solution; the
second term is a regularization term, which represents the prior information of the original
signal, and A is an adjustment regularization parameter.
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2.2. The iteration stepsize. The steepest descent (SD) method [24, 25, 28] is one of
the simplest gradient methods for optimization. Its mathematical expression can be given
by
Tiv1 = T — Bifi (6)
Here, f; = f(z;) represents the gradient vector of arbitrarily object function x at the
current, iteration z;. [3; > 0 is the iteration stepsize, which should satisfy the following
condition

k(T — B;) = mﬁin k(zi — Bfi). (7)
For the function k = £[|®x — y||3, it can be obtained that
1£ill3

Jp— T P .=
fz P (@xl y)a ﬁz (fz)T@fz : (8)

To design a high performance stepsize for superlinear convergence, Barzilai and Bor-
wein [24, 28] use the data in the previous iteration to decide the iteration stepsize in the
current iteration. Meanwhile, the iteration (6) can be viewed as

Tiv1 = x; — D, f;. (9)

Here, D; = ;1. To guarantee D); possessing certain quasi-Newton property, it is re-
quired to satisfy the following condition

’
si1 — Dif 4

min

2 (10)

. —1 ’
min HDZ Si—1— fiq

- (11)

Here, s;_1 = x; —x;_1 and fi'_1 = f; — fi—1. The following two stepsizes can be obtained
from D; = ;I and the restrictive condition (10) and (11)

st f

BZ_BBI — 17,1 171, (12)
1 fizill3
||8z'—1||§

pPP? = S (13)
SzT—lfi—l

The two stepsizes above are the famous BB stepsizes. Subsequently, to further improve
the convergence speed of the SD method, Yuan proposes an improved stepsize 3°Y (Dai-
Yuan stepsize) [25] based on the BB stepsizes, so we have

DY __ ﬁi, mod(i,4) =1lor?2
b = { D others, (14)

70

where P = 2 is a new stepsize. It has been
V(1 Bi—1=1/8:)2+AlIfil13/ (Bi—1ll fi—1112)2+1/Bi—1+1/Bi

verified that the SD method with Dai-Yuan stepsize converges faster than that with BB
stepsizes [25].

3. The Algorithm Research and Design.

3.1. The classical ICT algorithm. Curvelet transform [15, 29, 30] is a new geometric
multi-scale transform, which has been proved to have better sparse performance than that
of wavelet. In addition, the curvelet has excellent identification ability of directions, which
make it capable of capturing the image detail features more efficiently. For the image in
C?/C? space, it also can provide an efficient, stable and optimized representation [31].
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The curvelet transform mainly contains the first generation and the second generation
versions. The first generation curvelet is difficult to be implemented due to that its de-
composition and synthesis process are more complicated. Subsequently, Candes proposed
the second generation discrete curvelt transform [29], which is easier to be used and
understood. Unlike the first generation curvelet, the second generation curvelet primarily
operates on the frequency domain. What is more, it does not need the ridgelet transform
within its achievement process. Additionally, the curvelet coefficients using local Fourier
transform can also be directly obtained. In this paper, the second generation curvelt
transform is considered as the sparsity transform W.

Different from wavelet which has two parameters, the curvelet contains three pa-
rameters Suppose z € R, the curvelet at scale 277, orientation 6, and the position
xk = Re (kl X 279 ko x 27 7/2) can be defined by

0 (1) = @; [Rgl (x — x,?’”)] , 1=0,1,... (15)

where ¢ is a waveform oscillatory in the horizontal direction and bell-shaped along the
vertical direction. Ry, is a rotation matrix whose rotation angle is f; = 27 x 270/2 x |
(0 < 6, < 27) and Ry Uis inverse transform of Ry,. Since the family of curvelet function
builds a tight frame, the following representation can be given for arbitrary function z,
ie.,

T = Z <z, Pk > PGk)- (16)
(J:l:k)
Here, < z, () > represents the inner product between x and ¢ x), which is used to
calculate the curvelet coefficients of x.
Let o, = x; 1 + ;@7 (y — ®x;_1); thus the classical ICT algorithm can be expressed as
follows:
Tiv1 = Suy (T5) Z Hyw (< @i, 0 >) k) (17)
(4:4,k)
where p; represents the search stepsize, and Hyy(.) is the shrinkage threshold operator.

3.2. The proposed algorithm. y; in the classical ICT algorithm is generally set to 1
for convenience of calculations but affects the convergence speed. Hence, the Dai-Yuan
stepsize is applied to the ICT algorithm for accelerating its convergence speed. At the
same time, Hyy (.) is considered as the curvelet threshold operator [15, 19, 32] is given by

- Ch, |C/\| Z T
HW(C,\) —{ 0, |C,\| <T, (18)

where T' = koo is the curvelet threshold, and ¢, is the curvelet coefficient. o represents
the standard deviation of noise. o, is the noise standard deviation after curvelet transform,
which can be estimated by the Monte-Carlo simulation method [15]. k is a scale-dependent
parameter, which is set to 4 for the first scale and 3 for others. It is very simple for setting
the value of k. In this paper, a new adjustable parameter k; = ﬁ is proposed to
adjust the threshold in each iteration. Therefore, a decreasing curvelet threshold can be
defined by
doyo

eli—1)/Q’
where ¢ is the iteration index and () is the total number of iterations.

In summary, the proposed algorithm can be summarized as follows.
Step 1: Initialization. Setting the iterative index ¢ = 1 and the reconstructed image
xg = 0. After a series of experiments, when the number of iterations is larger than 30,
the peak signal to noise ratio (PSNR) and convergence speed of the algorithm proposed

T =kioyo = (19)
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growth are not very obvious. Therefore, to save the reconstruction time, the total number
of iterations @ is set to 30.

Step 2: Updating the decreasing curvelet threshold 7" and the iteration stepsize B‘?Y.
Step 3: Calculating the estimation

Th =xg1 + BT (y — Pagy). (20)
Step 4: Applying the threshold for the estimation
Tq = Sug(1y). (21)
Step 5: Adjusting the reconstructed image using the TV method.
T
_ 9TV (zg) (22)

¢ = oz, ¢’

where p is the TV stepsize. The TV (z,) can be calculated by

TV(e,) =Y \/[xq(m 4 1,n) — ag(my n)]2 + [wg(m, n 4+ 1) — x,(m, n)]2.

Step 6: If ¢ < @, g = q+ 1 and return to Step 2; else, output the reconstructed image.

4. The Experiment and Analysis. In this paper, several simulations are conducted
to verify the effectiveness of the algorithm proposed. To assess the performance of the
proposed algorithm, it is compared with ICT algorithm, ICT with the decreasing threshold
(DICT) [20] and ICT with curvelet hard threshold (CICT). The compression ratio is firstly
set to 0.3, and test a 1024 x 1024 standard Lena image with noise level & = 10. Figure 1(a)
shows the original Lena image. The noisy image is shown in Figure 1(b). Figures 1(c)-
1(f) show the recovery image using different algorithms respectively. It can be seen that
compared with other three algorithms, the proposed algorithm can effectively suppress the
effect of pseudo-gibbs effect and reconstruct a clearer Lena image with relatively higher
PSNR. Exclusive inadequacy is the longer reconstruction time (RT).

In terms of astronomical image, compression ratio and the noise level remain unchanged
and a 1024 x 1024 moon image is tested. The reconstructed results from different algo-
rithms are compared in Figure 2. The same conclusion can be obtained that the proposed
algorithm is better than other algorithms in terms of PSNR and visual quality since the
lunar craters and dark spots in Figure 2(f) are visible clearly while the RT is still longer.

The noise level is kept constant, Figures 3(a) and 3(b) show the PSNR and recovery
error from different algorithms when compression ratio changes respectively, which imply
that better reconstruction performance with the increase of compression ratio can still be
obtained by the proposed algorithm.

The reconstruction time of different algorithms with the increase of compression ratio is
compared in Figure 4(a), which implies that as the compression ratio increases, the RT of
different algorithms grows longer and longer. However, compared with other algorithms,
the proposed algorithm takes longer recovery time. Figure 4(b) shows PSNR of different
algorithms as iteration number increases. As comparison, the recovered result of the
proposed algorithm with BB stepsize (Proposed+BB) is also presented. It can be seen
that the Dai-Yuan stepsize can not only accelerate the convergence speed of the proposed
algorithm, but also can improve the algorithm reconstruction performance. Meanwhile,
it can be noticed that when iterative number is 30, the PSNR and convergence speed of
different algorithms change little.

The Jupiter image is tested, and the compression ratio is considered to be 0.1 and
0 = 10. The reconstructed image and evaluation criteria in Figure 5 imply that the
proposed algorithm still can obtain high PSNR and better visual effect relatively under
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(a) The original image (b) The noisy image (c) ICT, PSNR = 30.18 dB, RT
=943s

(d) CICT, PSNR = 31.87 dB, (e) DICT, PSNR = 32.72 dB, (f) Proposed, PSNR = 35.07
RT = 11.19 s RT = 13.58 s dB, RT = 17.86 s

F1GURE 1. The reconstructed images from different algorithms

(a) The original image (b) The noisy image (c) ICT, PSNR = 29.57 dB, RT
= 10.61 s

(d) CICT, PSNR = 31.54 dB, (e) DICT, PSNR = 32.18 dB, (f) Proposed, PSNR = 34.72
RT = 12.53 s RT = 14.17 s dB, RT = 18.34 s

F1GURE 2. The reconstructed images from different algorithms
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FiGURE 4. Comparison of the reconstructed results from different algorithms

the circumstances of lower compression ratio. In addition, the gap of reconstruction time
between different algorithms is smaller. The same conclusion can also be demonstrated
by the objective criteria in Figure 3(a) and Figure 4(a) which imply that the lower com-
pression ratio is, the more obvious the advantage of the algorithm proposed is.

When testing more astronomical images, Tables 1 and 2 show PSNR from different
algorithms with the increase of compression ratio and ¢ respectively, which demonstrate
that the proposed algorithm still can achieve better performance for different astronomical
images.

In the research on the reconstruction performance of the proposed algorithm for the
detailed feature of astronomical image, a 512 x 512 local detailed feature image is taken
from the original high resolution moon image as the experimental image. Considering
that compression ratio is 0.3 and & = 10, the reconstructed results from DICT and the
proposed algorithm are compared in Figure 6.

It can be seen that the proposed algorithm can preserve more astronomical image edge
and texture features than DICT.
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TABLE 1. PSNR versus compression ratio

Compression ratio
0.1 0.2 0.3 0.4 0.5 0.6
ICT 25.69 27.13 30.15 31.19 33.53 34.62
CICT 27.07 29.79 32.03 34.28 34.93 36.14

Original image Algorithm

Jupiter DICT  27.15 29.43 32.49 34.77 35.82 37.64
Proposed 30.02 33.21 3571 36.83 37.94 39.52

ICT  24.18 26.64 2823 30.85 32.13 33.8%

Satuen CICT  26.84 29.36 31.52 33.45 34.82 36.29
DICT  27.01 29.19 32.12 34.37 36.18 37.94

Proposed 29.63 31.19 33.58 36.41 38.36 40.13

ICT  25.71 27.94 29.52 30.87 32.02 34.38

o CICT  27.13 28.85 30.34 32.17 35.05 37.63

DICT 27.86 28.91 31.46 33.82 36.15 38.29
Proposed 30.12 32.18 34.26 35.92 38.09 40.87

TABLE 2. PSNR versus o

~

o
10 20 30 40 20

ICT 29.57 29.01 27.82 26.38 24.15
CI1ICT 31.54 30.93 28.62 27.15 25.84

Original image Algorithm

Moon DICT  32.18 31.59 30.72 28.94 27.83
Proposed 34.72 34.15 32.85 31.43 29.67

ICT  30.15 29.67 27.45 25.82 23.83

Jupiter CICT  32.03 31.66 29.12 27.13 25.48
DICT 3249 31.84 29.69 27.27 25.61

Proposed 35.71 34.98 32.57 30.16 27.77

TCT 2823 27.74 25.43 24.16 22.08

St CICT  31.52 30.99 28.87 26.19 24.65
DICT 3212 31.86 30.62 27.12 25.19

Proposed 33.58 32.98 30.94 28.96 27.15

TCT  29.52 29.12 27.19 24.83 22.01

Mars CICT  30.34 29.83 28.17 26.15 24.16

DICT 31.46 30.94 29.43 27.28 24.88
Proposed 34.26 33.53 31.95 29.47 27.76

At the same time, combined with Figure 2 and Figure 6, it can be seen that with the
astronomical image resolution reduction, the proposed algorithm can achieve better de-
noising and reconstruction performance. Meanwhile, it takes relatively less reconstruction
time.

5. Conclusions. In this paper, the CS theory is applied for solving the problem of high
resolution astronomical image denoising. Simultaneously, an iterative curvelet threshold-
ing algorithm with high performance is proposed. The experimental result demonstrates
that the proposed algorithm can recover a clear astronomical image with a fast conver-
gence speed. When compression ratio is lower, higher PSNR can still be obtained.

The deep space exploration can benefit from the proposed algorithm. The high resolu-
tion astronomical image can be compressed with a lower compression ratio for saving the
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(a) The original image (b) The noisy image (c) ICT, PSNR = 25.69 dB, RT
=534s

(d) CICT, PSNR = 27.07 dB, (e) DICT, PSNR = 27.15 dB, (f) Proposed, PSNR = 30.02
RT =7.125s RT =8.15s dB, RT =12.36 s

F1GURE 5. The reconstructed images from different algorithms

(a) The original image (b) The noisy image

(¢c) DICT, PSNR = 39.53 (d) Proposed, PSNR =
dB, RT = 248 s 42.59 dB, RT = 6.78 s

FI1GURE 6. The reconstructed images from different algorithms
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limited storage space on the satellite or other deep space exploration equipments (such
as Mars rover). When the image is transmitted to the ground station, the proposed al-
gorithm can be used to recover a clear high resolution astronomical image. The only
drawback to the proposed algorithm is longer reconstruction time. Therefore, how to
improve the reconstruction speed is the direction of future efforts.
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