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ABSTRACT. In the present article, the authors develop a convenient engineering tech-
nique for the analysis and synthesis of automatic control systems with fuzzy controllers,
developed on the basis of Yakubovich’s method for the study of absolute stability in non-
linear multichannel systems. Modification of this technique for a simplified model of fuzzy
PID controller (fuzzy P controller) is proposed. Here is a detailed mathematical foun-
dation of criteria for fuzzy systems in general, and for the fuzzy P controller offered
graphical-analytical method. The application of the developed methods is illustrated by
various examples.
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1. Introduction. In recent years, advances in engineering have allowed for relatively
active introduction of fuzzy controllers into a variety of industrial systems. By comparison
to these practical improvements, however, the development of the supporting theoretical
basis is lagging behind. Development of such theory is vital if efficient progress is to be
made with the analysis and synthesis of fuzzy controllers. Specialists are well aware that,
since there are certain problems with the tuning of classic PID controllers, which have
only three variable parameters, there are many more issues with fuzzy PID controllers,
due to the theoretically far greater number of variable settings. However, the advantage
of using this class of systems, as shown by the authors in [13,14,18,19], is obvious.

Over the last two decades, plenty of attention has been devoted to questions surrounding
the investigation of fuzzy control systems [1-4]. Amongst the resulting work in the stability
investigation, that of Tanaka [5-10] is the most noteworthy for its expansion upon both
V. M. Popov’s method and Lyapunov’s second method.

In the present article, the authors outline a convenient engineering technique for the
analysis and synthesis of automatic control systems (ACSs) with fuzzy controllers, devel-
oped on the basis of Yakubovich’s method for the study of absolute stability in nonlinear
multichannel systems [11], which is well-known in the literature. The main advantage of
this technique is its simplicity and applicability to the fuzzy system with any number of
control channels.

The proposed approach is based on the following basic provisions [12,13]:

— the transformations carried out in fuzzy controllers (FCs) are nonlinear in essence;

— by definition, the nonlinear transformations realized by FCs depend on individual
FCs’ settings, including the number of input and output terms, as well as the form and
relative placement of membership functions;
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— the creation of the FC, including the form of logical and linguistic models, and the
organization of follow-up processing, is performed according to one of the models proposed
by Mamdani, Larsen, Tsukamoto, and Sugeno [14];

— preliminary analysis shows that varying the model used has no significant impact on
the character of the nonlinear transformations.

The relevance of the study is also due to the fact that the fuzzy inference technology
makes it possible to provide a parallel interpretation of knowledge through specialized
hardware with high performance, which makes fuzzy logic extremely perspective for de-
velopment of intelligent fuzzy controllers for high-speed automatic control systems (ACS),
operating under the impact of various uncertainties.

2. Notation. ACS — automatic control system; NE — nonlinear element; FO — fuzzy
output; FC — fuzzy controller.

Weo(S) — transfer function of the control object; Wi p(s) — transfer matrix of 4 x h linear
parts in the ACS circuits; o, & — nonlinear elements’ input and output signals; h — the
number of NE; ¢(o) — transformation characteristics of the NE, nonlinear characteristics;

Bi, ..., PBr — sector boundaries, containing the characteristics of the nonlinear transforma-
tions realized by blocks FO;; u;l = diag (ufl, ceey u;l) — diagonal matrix with diagonal
elements ;. .., ' 74 = diag(ry, ..., ), Vg = diag(dy, . ..,J;) — diagonal matrices; w

— frequency; v — boundary of the sector containing steep part of the characteristic of the
nonlinear transformations implemented by blocks FO;; p; — large angle of linear sector of
approximated nonlinear transformation; p; — small angle of linear sector of approximated
nonlinear transformation.

3. Investigating the Absolute Stability of the Equilibrium Position of an ACS
with Type-1 Fuzzy Controller. Figure 1(a) shows the initial structure of an ACS with
fuzzy PID controller, and Figure 1(b) shows the post-transform structure. Here, we see
that the transfer function of the control object W, (S) is introduced into all the separate
parallel circuits. This structure for an ACS matches that of multi-channel nonlinear
systems, for which absolute stability criteria can be modified as considered in [11].

The equations describing this sort of nonlinear ACS have the form

o(s) = —Wrp(s)&(s), (1)
£ = (o), (2)

where the scalar vectors of the nonlinear elements’ input and output signals are o =
(aj)?:p £ = (@-);.L:l, h is the number of NE;, and Wi,p(s) is the transfer matrix of h x h
linear parts in the ACS circuits. Equation (1) describes the transformation in the linear
stationary part of the system, and Equation (2) defines the transformation characteristics
of the nonlinear elements NE;.

It should be noted that the nonlinear characteristics ¢;(o;), realized by fuzzy calcula-
tors, are limited in amplitude. As such, if o; — oo, the lower boundary of the sector can

be equated to zero. It follows that

(0. )

j
if o # 0 and ¢(0) = 0, or alternatively

(Bo(t) = ¢(o,1))p(o,1) = 0 (3a)

Based on the results of [12], condition (3) can be represented as seen in Figure 1(c), which
shows that the nonlinear characteristic ¢;(c;) lies within the sector [0, 5;].
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FIGURE 1. (a) Block diagram of an ACS with fuzzy PID-regulator, (b)
block diagram of post-transformation ACS with fuzzy controller, and (c)
the nonlinear characteristic ¢;(c;) as represented by a fuzzy calculator

System (1), or the position of equilibrium of system (1) is absolutely stable in the angle
(sector) [0, 5] if the zero solution of system (1) is asymptotically stable in the whole for
any nonlinear function ¢;(0;) satisfying the condition (3) [15-17].

If, during tuning of a fuzzy controller, a fuzzy calculator realizes the nonlinear trans-
formation ¢;(o;) but fails to satisfy condition (3), additional structural changes become
necessary. Naturally, to maintain the condition of equivalence of both initial and trans-
formed structures, the linear part of the system requires corresponding amendments.
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For an ACS with FC, the absolute stability criteria of the equilibrium position can be
expressed as follows.

Let the equation of the linear part of the ACS take the form (1), and the nonlinear
characteristics ¢;(o;) of the fuzzy controller corresponding to (2), satisfy condition (3).
Let all the poles of the matrix elements Wi, p(s) be situated on the left-hand half-space,
or have one pole on the imaginary axis (with stable or neutral linear parts in every
circuit). We introduce the diagonal matrix u;l = diag (ufl, . ..,u,:l) with diagonal
elements p; ', ..., 1, ", (where ,uj’l = 0, if y; = o00), and also the diagonal matrices
14 = diag(my,...,m),% = diag(Py,...,9;), where all 7; > 0. Let us suppose that for
some 7; > 0, ¥; and that for all —co < w < +o00, except where w = 0, the following
relations are performed

det {7qpy " + Re [(14 + jwig) Wrp(jw)]} # 0,
where — oo <w < 400, w#0, (4)

Taiy" + Re {19(1 JLI{:OjW[WLP(jW)]} > 0.

The h x h-matrix on the left side of inequality (4) is positively defined, i.e., all its principal
minors are positive. The ACS with FC combination in question is thus asymptotically
stable on the whole.

Here is inequality (4) in explicit form:

Tlﬂfl 0 . 0
0 oust o 0
det 2 )
0 0 . Th/L,:I (5)
To + jw192 0 tr 0
0 Ty + jwiy - 0
+Re e Wip(jw) | § #0
0 0 Th + jwiy,
and
7-1#1—1 0 - 0 W 0O -+ 0
0 T —1 s 0 0 19 v e
212 + Re L lim joWrp(jw) [ >0
0 0 e Th,u;;l 0 0 - U
(6)
where
i Wco(jw) WCO(jw) . WCO(jw) ]
Jw Jw Jw,
WLP(jW) = Wco(]w) WCO(jw) o Wco(](ﬂ) . (7)
| Wt Weo(jw)  jw T Weo(jw) -+ ju P Weo(jw) |

Calculating the determinant (5) where 7; > 0, we obtain
1 1
1 + 51Re (ﬁWco(jw)> + ﬁlﬁlijej—me(jW) + BgReWco(jw)

+ D2 faRe(jwWeo(jw)) + ... + BaRe ((jw)"*Weo (juw)) ®)
+ 9 BnjwRe ((jw)h’QWCO(jw)) #0, —0o<w<4o00, wFD0,
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where [i,..., [, are the sector boundaries, containing the characteristics of the nonlin-
ear transformations realized by blocks FO; (i = 1,...,h) in the structure of the fuzzy
controller. If the principal minors of the matrix are calculated on the left-hand side of
inequality (6) and checked for positivity, provided that 5; > 0, and i = 1,..., h, we obtain
the following system of inequalities:

(14 9,5Re ( lim Wco(jw)> >0,
1+ 9, 5 Re ( lim Weo (j ) + 9,8,Re (U}Lrgojwwco(jw)) >0,

1+ 9, 5 Re ( lim W (jo ) + 9,8,Re (Ujli_)rgojw Wco(jw)>
(i

+9385Re ( lim (o) Weo (jw)) >0, (9)

1+ 9.5, Re (wh_)rgo Wco(jw)> + 993 Re (wli_)rgoijco(ij

4.+ OnBaRe ( lim (jw)hflww(jw)) > 0.
\ w—r00
As an example, let us investigate the absolute stability of the equilibrium position of an
ACS (Figure 1(a)) with a fuzzy PID controller and a third-order industrial control object:
Weo(s) = 15[(s 4+ 1)(0.55 4+ 1)(0.1s + 1)]*. The fuzzy controller’s settings are presented
in Figure 2 for FOq, in Figure 3 for FO,, and in Figure 4 for FOs;.

| Lmft ' mi2 ' mt3  mf4 1 ' mt2 ' mi3 " mth
ost { ost

0 n n n n n 0 : : n n n

A5 A0 5 0 5 10 15 2 1 0 1 2

16 @)

=0.2 A

1. If {input? i 1) then (output] is mfl)
2. If (input? is mif2) then (output? is mf2)
3. (input? i mnf3) then (output] is mf3) , )
4. 1f {input? iz mf4) then (output? iz mfd) 20 -10 0 10 20

(c) (d)

FIGURE 2. Input linguistic variable (a), output linguistic variable (b), pro-
duction rules (c), and nonlinear transformation (d) in the integral channel
of fuzzy PID controller
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FIGURE 3. Input linguistic variable (a), output linguistic variable (b), pro-
duction rules (c), and non-linear transformation (d) in the proportional
channel of fuzzy PID controller
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FIGURE 4. Input linguistic variable (a), output linguistic variable (b), pro-
duction rules (c), nonlinear transformation (d) in the differential channel of
fuzzy PID controller
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The control object’s frequency response takes the form:
. —0.65w? + 1 , —0.05w? + 1.6w
Weo(jw)=15 —
(w2 +1)(0.25w2 + 1) (0.01w? + 1) (w24 1) (0.25w2 + 1) (0.01w? + 1)

The absolute stability conditions of equilibrium positions (8) and (9) for the investigated
ACS take the following form:

L 1s(s 0.05w2 — 1.6 Yy —0.65w2 + 1
w2 +1) (0.25w2 +1) (0.01w? +1) 71 (w? + 1)(0.25w? + 1)(0.01w? + 1)
—0.65w% + 1 —0.05w* 4 1.6w?
+ B + Y239 e

(w2 +1)(0.25w2 + 1)(0.01w? + 1) (w2 +1)(0.25w2 + 1)(0.01w? + 1)
—0.05w* + 1.6w? 0.65w* — w?

@+ 10252 + (0012 1 1) Vs (w2 +1)(0.25w2 4+ 1)(0.01w? + 1)) 70,
(10)

+ B3

( —0.65w2 + 1
1+ 159
+ 150151 (w2 +1)(0.25w2 4+ 1)(0.01w? + 1)

—0.05w" + 1.6w?
1+15(9
* < 202 (w2 +1)(0.25w2 4+ 1)(0.01w? + 1)

9.5, —0.65w? + 1 > -0
(w2 +1)(0.25w2 + 1)(0.01w2 + 1) ’ (11)

0.65w?* + w?

(w2 +1)(0.25w% + 1)(0.01w? + 1)

—0.05w* + 1.6w?

(w2 +1)(0.25w2% + 1)(0.01w? + 1)
—0.65w? + 1

| T e T 0w + D001 £ 1)) > 0.

Figure 5(a) shows a graphical solution of inequality (10) for 5; = 0.2, 82 = 1, 3 = 0.3, and

Figure 5(b) demonstrates an example of its movement towards the position of equilibrium.

The position of equilibrium is absolutely stable.

We now re-configure the FC’s proportional channel as detailed in Figure 6. In this
case, B = 6. For 81 = 0.2, B = 6, 3 = 0.3, the graphical solution of inequality (10) is

>0,

1+ 15<19353

+12 39

15

10

0 H H H
-100 -50 o 50 100

FIGURE 5. A graphical solution of inequality (10) for g; = 0.2, fy = 1,
B3 = 0.3 and Weo(s) = 15[(s + 1)(0.55 +1)(0.1s +1)] " (a), and its free
movement towards the equilibrium position (b)
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FIGURE 6. Input linguistic variable (a), output linguistic variable (b), pro-
duction rules (c¢), and non-linear transformation (d) in the proportional
channel of fuzzy PID controller
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FIGURE 7. A graphical solution of inequality (10) for 5; = 0.2, 55 = 6, 3 =
0.3 and W, (s) = 15[(s 4+ 1)(0.55 + 1)(0.1s +1)] " (a) and free movement
towards the equilibrium position (b)

presented in Figure 7(a), and Figure 7(b) shows its free movement towards the equilibrium
position. Here, the condition of absolute stability is not fulfilled.

4. Investigating the Absolute Stability of Processes in ACSs with Type-1
Fuzzy Controllers. When investigating the absolute stability of processes in ACSs
with FCs — just as with investigation of the equilibrium position’s absolute stability —
the system’s structure is converted to the form presented in Figure 1(b). The nonlinear
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characteristics ¢;(0;) satisfy the sector restrictions.

0j
and
dg;(t) L

Thus, the absolute stability criteria for processes in an ACS with FC can be expressed as
follows.

Let the equations of the ACS’s linear part have the form (1), and the nonlinear char-
acteristics ¢;(o;) of the fuzzy regulator correspond to (12) and (13). Let all the poles
of the elements of the matrix Wy p(s) be arranged on the left-hand half-space, or have
one pole on the imaginary axis (with stable or neutral linear parts in all circuits), and
v = diag(y1,...,7) be the diagonal matrix with the indicated diagonal elements. Sup-
pose that condition (14), below, is performed for all —0o < w < 400, except w = 0.

det Re{[I + yWrp(jw)]} #0 (—00 < w < 400), w # 0, (14)

where [ is the identity matrix A X h.

As such, an ACS with FC as described by Equations (1) and (2) is exponentially
absolutely stable.

The absolute stability criteria for processes in an ACS with FC will take the following
matrix form:

e d P e 0y
det R {0 1J+L0 - %JWLP(J) #0 (15)

—o0 <w< 400, wFO.

Calculating the determinant of matrix (15), we obtain an inequality which defines the
boundary of the absolute-stability for processes in an ACS with an FC and either neutral
or stable linear part:

1+ Re {71 (ﬁWco(jw)> + 'YZWco(jw) T h ((jw)h2Wco(jw)):| #0 (16)

—00 < w < 400, w#0.

Consider the example of an absolute stability investigation of processes in an ACS with
an industrial control object, which has the transfer function W,,(s) = 15[(s + 1)(0.5s
+1)(0.1s+1)] !, and where the fuzzy PID controller’s parameters correspond to v, = 0.3,
Yo = 2, Y3 = 0.7.

With such a system, inequality (16) is represented thus:

v3 (0.05w* + 1.6w?) + 75 (—0.65w? + 1) + 1 (0.05w? — 1.6)
(@2 + 1) (0.2502 + 1) (0.01w2 + 1)

1+15 £0 (17)

—o0o <w< 400, wFO.

Figure 8(b) demonstrates a graphical solution for inequality (17), where v = 0.3, 75 = 2,
v3 = 0.7. It is visible here that, for the processes of the ACS with FC in question, the
stability criterion is not fulfilled. Figure 8(a) demonstrates the transient at the control
object output, with the constant setpoint (h(t) = 1).
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FIGURE 8. Graph of the transient (a) and a graphical solution
of the condition of absolute stability of ACS processes We(s) =
15[(s 4 1)(0.55 4+ 1)(0.15 + 1)] ™" (b), where the nonlinear PID-controller’s
parameters correspond to v, = 0.3, 75 = 2, v3 = 0.7

Q¥

1

FPC = Wip(j)

(a) (b)

FIGURE 9. (a) Diagram of a control system with fuzzy P-controller, (b)
nonlinear transformation in the fuzzy P-controller

5. Investigating the Absolute Stability of an ACS with Fuzzy P-Controller.
An analysis of the practical accomplishments of both Russian and foreign specialists
demonstrates that in many cases, improvements to qualitative variables can be achieved
not only through use of fuzzy PID controllers (which are controllers of a general type), but
also by simplifying its modifications — for example, through use of a fuzzy P-controller, as
demonstrated by [18]. Such an improvement can be achieved by realizing the nonlinear
transformation (o) in the fuzzy P-controller, similar to that shown in Figure 9. In this
diagram, the transformation is approximated as two linear sectors, with one large angle
() and one small one (fi5).

It is clear that the above process of investigating absolute stability becomes significantly
simpler in the case of a fuzzy P-controller. To illustrate, the conditions of equilibrium
position absolute stability are presented in graph form in Figure 10(a). Figure 10(b)
presents the condition of process stability where Wi p(jw) is the transfer function of the
linear part of the system in question, and W;p(jw), the transfer function of the post-
transformation linear part of the same system. Examples of the movement of this system
towards the equilibrium position, and processes where 0 < ¢ < a and a < ¢ < b obtained
by this model, are presented in Figures 11(a) and 11(b).
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FiGure 10. Graphical investigation of absolute stability of the equilibrium
position (a) and processes (b) in ACS with fuzzy P-controller

A7 A7
ob)
wa)

(a) (b)

FIGURE 11. Examples of the system’s movement towards the equilibrium
position (a) and processes (b) where 0 <o <aanda <o <b

6. Conclusions. It will be clear that the condition of absolute stability is stronger for
the processes. Therefore, it is best to select this condition as a basis for calculating
the stability of a system with fuzzy P-controller. At the same time, the use of more
rigid conditions naturally leads to a reduction of the stability zone on the plane of the
gain factor, and a corresponding lack of steady state precision. However, it should be
emphasized that, if the absolute stability condition is broken, it does not follow that the
processes are unstable. It is therefore possible, in principle, to increase the system’s gain
factor such that the processes’ absolute stability condition is broken, but simultaneously
exercise control beyond the stability region using other methods. One example is the
harmonic balance [19] method, which yields fairly precise results for third-order (or higher)
control objects with transfer functions.
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