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ABSTRACT. In this research paper, a practical novel hybrid model to assess the value of
target threat degree was proposed. The model was based on modified particle swarm opti-
mization (MPSO) in combination with fuzzy recurrent wavelet neural network (FRWNN),
namely MPSO optimized fuzzy recurrent wavelet neural network (MPSO-FRWNN). More-
over, a single neuron employed in consequent part of each fuzzy rule of FRWNN is capable
of storing the previous data of the networks instead of conventional Takagi-Sugeno-Kang
(TSK) fuzzy model. This optimization mechanism involved a hybrid training procedure
integrating MPSO and gradient descent algorithm (GDA), which significantly enhances
the prediction or assessment accuracy. To locate a reasonably good region in the continu-
ous search space, a new adjustment scheme named MPSO algorithm is developed, which
includes two inline-PSO processes, and thus it can fit well with the consequent forecast-
ing learning based gradient descent optimization. Finally, conclusions of this study are
exposed by three comparative threat assessment experiments.

Keywords: Particle swarm optimization, Takagi-Sugeno-Kang fuzzy model, Gradient
descent algorithm, Threat assessment

1. Introduction. Target threat assessment is becoming an increasingly active area of
research in collaboration attack with the rapid development of science and technology.
Target threat assessment belongs to the third level information fusion model with a high
level, and thus its significance cannot be ignored. Threat assessment can judge our threat
degree according to the disposition of enemy’s forces or the weapons and equipment system
of the enemy as well as the possible action intentions of the enemy. Accurately evaluating
the enemy’s target is the essential prerequisite of exerting our operational effectiveness for
not only improving battlefield gains in modern warfare, but also plays an effective role in
monitoring modern warfare environmental as well as investigating allocation of force and
fire and providing relevant support for the task allocation and tactical decision.

In order to solve the problem of target threat assessment, there are several conventional
methods such as Bayesian network [1-3], intuitionistic fuzzy reasoning [4], multi-attribute
decision making [5-7], analytic hierarchy process [8], plan recognition [9], fuzzy logic the-
ory [10,11], support vector machine (SVM) [12], fuzzy neural network [13], radial basis
function (RBF) neural network [14], and wavelet neural network (WNN) [15]. Due to the
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use of constant weight vector or/and experience of experts in these models, [1-9] increase
ill-defined and subjective factors of the threat assessment significantly. Moreover, these
methods can yield inaccurate results and lead to large errors in explaining and reflect-
ing the complex relationship between evaluation metrics. Especially, the aforementioned
models cannot appropriately learn the intricate input/output mapping, because they lack
self-learning and self-adaptive capabilities. Fuzzy logic theory uses human-like reason-
ing and expert knowledge, which is an effective treatment process for nonlinear systems
characterized with uncertain and ill-defined information [10,11], but it cannot meet the
real-time requirement effectively. To overcome the limitation of statistical models and
learning ability and adapting capability, SVM [12] and artificial neural networks (ANNs)
[13,14] have attracted more attention for threat assessment. However, neural networks
revealed a number of drawbacks in the course of the use of the system model including
slow convergence rate and local minima easily in large-scale training epochs, as well as
difficulty to accurately describe the mapping rules which make it impossible to employ
them in real-time systems. Based on the wavelet transform, the threat assessment model
is constructed using WNN, in which wavelet functions are acted as activation functions of
the hidden neurons in the structure [15]. Wavelet functions are powerful tools for complex
nonlinear systems due to its excellent time-frequency two-dimensional analysis capability
or more accurate time-scale localization properties. The integration of the localization
properties of wavelet functions and flexibility of ANNs results in the merit of WNN [15]
over the ordinary ANNs and SVM [12].

Based on the TSK fuzzy model [16-18], researchers have proposed various architectures
for modeling and control of nonlinear systems. However, the major shortcoming of such
fuzzy model is that it cannot provide complete mapping capabilities to the nonlinear
complex systems and hence a considerable number of rules in consequence part are des-
perately needed to acquire the desired connecting mapping between inputs and outputs.
Additionally or alternatively, many researchers have proposed to substitute a WNN for the
consequent part of the TSK model. The obtained neural network is a fuzzy wavelet neural
network (FWNN), which inherits the advantages of WNNs and fuzzy logic and ANNs. To
enhance the function approximation and computation power as well as the generalization
ability in the complex processes, FWNN approach is proposed for forecasting long term
electricity consumption in a high energy consumption city [19]. However, the adjustment
for initialization of parameters of FWNN is unreasonable which lead to unsatisfactory
convergence rate. Furthermore, due to its feed-forward network architecture, it cannot
offer dynamic full mapping capabilities in dealing with the dynamic systems. In view
of the demerits of the feed-forward network architecture, the problem can be solved by
constructing a recurrent wavelet neural network (RWNN) in the consequent part of the
FWNN architecture which can capture the past dynamic behavior of the system [20,21].
For example, an FRWNN was applied to solving such problem as forecasting, function
approximation with system identification and control problems [22-24]. In [22], an FR-
WNN is proposed to solve threat assessment, but its convergence rate enormously rests
on the choice of the initial values of the network parameters to be optimized.

In 1995, Dr. Eberhart and Dr. Kennedy first proposed particle swarm optimization
(PSO), one of the stochastic search optimization algorithms, which was inspired by social
behavior of bird flocking, bee swarming and fish schooling, with self-adaptive character-
istic [25,26]. As demonstrated in the literature, the PSO and its modified optimization
techniques have successfully attracted more and more attention to achieve high efficiency
solver for global optimization problems in sundry scientific and engineering domains such
as artificial network training, and function optimization [27-29]. The above methods
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lighten the need for easy implementation under the absence of sufficient gradient infor-
mation. However, some demerits of PSO are unavoidable: analogous to other heuristic
algorithms, it takes such a long computation time compared with conventional gradient
descent method when a considerable accuracy was required; it is apt to sink into local
optimal solution at times, and the convergence speed dropped significantly during the
posterior evolving process of algorithm; the algorithm sometimes does not continue to
optimize while finding a near-optimum solution, and thus the flawed algorithm leads to a
restricted accuracy.

The aim of this paper is to propose a novel MPSO-FRWNN hybrid model for target
threat assessment, and in FRWNN we employed the concepts of fuzzy logic in combination
with a single neuron with the capability to capture the previous information of the network
in the consequent part. In our proposed FRWNN, the consequent of a conventional
TSK fuzzy model is substituted with a WNN consisting of a large number of neurons
resulting in the decrease of the reaction speed of the TSK fuzzy model to external input
changes. We have taken a hybrid learning algorithm lest the trial-and-error course and
the negative effect caused by random initialization of unknown parameters. Firstly, an
MPSO algorithm is developed to search a relatively good selection of the initial values
of the unknown parameters that need to be optimized. The two-layer inline-PSO stages
of MPSO algorithm demonstrate a faster convergence speed compared to the basic PSO,
and meanwhile the updating plan of the velocity and position of each particle gets a
more coordinated approach by using the following forecasting learning based gradient
descent algorithm. Secondly, the GDA is utilized to perform parameters adjustment of
the proposed FRWNN. By investigating the performance criterion of training and testing
signals during learning, a more reasonably good model is obtained in this research.

In brief, the main merits of the present paper are highlighted as follows.

(i) Compared to the basic PSO algorithm, MPSO is capable of optimizing high dimen-
sion complex problems with a relatively fast convergence speed and avoiding the phenom-
enon of premature convergence, which can guarantee unknown parameters to obtain a
reasonable optimal value.

(ii) Owing to the two layers adjustment plan, MPSO algorithm makes particles keep
some diversity along with the cramped search space in the surrounding global best po-
sition. Parameters in particles of MPSO fit well with the consequent gradient descent
optimization and arrive in the optimal solution promptly.

(iii) We develop a new threat assessment model based on MPSO-FRWNN. A hybrid
training algorithm which combined MPSO with GDA is applied to optimizing and train-
ing the proposed FRWNN. As a result, the novel assessment model with more reasonable
optimization parameters, lower computational cost, high flexibility, strong robust perfor-
mance as well as adaptive learning capacity can adapt relatively fast to sudden changes
from input variables of the system and meet the increasing requirements for quickly pro-
cessing information in complex combat environment.

The brief outline of the remaining sections is organized as follows. Section 2 introduces
the structure of FRWNN. Hybrid learning algorithm to optimize FRWNN is described in
Section 3. Target threat assessment using MPSO-FRWNN is given in Section 4. Model
simulation is provided in Section 5. Finally, the conclusions and future work are drawn
in Section 6.

2. Fuzzy Recurrent Wavelet Neural Network. The structure of FRWNN has been
shown in [22], which is a five-layer structure including a single hidden layer, where we use
a recurrent wavelet neural network structure as a consequent part based on the TSK fuzzy
model. In modified consequent part, the consequent part of each fuzzy rule is constructed
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by a single neuron that can capture the previous useful information of the network. Mean-
while, wavelet function is chosen as the activation function owing to its time-frequency
two-dimensional localization properties. In a single hidden layer, the previous data stored
by a single neuron is multiplied by a feedback factor and then re-input to the neuron of
a single hidden layer. Due to having the recurrent memory characteristics of a single hid-
den layer, the proposed network can evidently enhance the prediction accuracy to solve
complex dynamic problem.

The first layer is the input layer; neurons pass the input vector x = {x1, z2,...,zy,, } to
the next layer, which assumes that x; is the i-th input variable for s = 1 : N;,,. The second
layer selects the Gauss membership function as the activation function, and the A;; is a
linguistic term represented by a fuzzy membership function ju4,,(2;) for j =1: N,. And
the second layer contains the input membership function of the system, and the output
of each node is expressed as:

2
pa;; (T;) = exp <—M> , Yi=1:Ny,; j=1:N, (1)

where ¢;; denotes the center parameters and o;; represents scaling parameters for the
membership function associated with rule j. In the third layer each node denotes a fuzzy
rule, where R; is given rule for j =1 : NV;; the number of nodes is equivalent to the total
number of rules R; to Ry,. Each node output of the layer can be computed as:

uj(x):HuAij(xi), j=1:Ny,and 0 < p; <1 (2)

where [ [ stands for AND or min operation. The fourth layer is consequent part of the fuzzy
rules, and it is constructed by using a single hidden layer which utilizes wavelet activation
function in neurons of hidden layer, where Gaussian wavelet function was chosen as the
activation function. The each wavelet ¢;; of the fourth layer is represented as:

Pij éWij(zij("ﬁ)) = i ((uij(k) — t;;(k))/di;(k)), Vi=1:Np; j=1:N. (3)

where for the discrete time k
uij(k) = v;(k) +i(k —1) - 055(k), Vi=1:Np; j=1:N, (4)

where ¢;; is defined as translation parameter and d;; stands for dilation parameter in each
wavelet; 0;; is the weight of self-feedback loop described as the data storage rate. The
subscript ij describes the i-th input term of the j-th rule. Moreover, the input of the layer
consists of the memory term ¢;;(k — 1), which can record the past data of the networks.

In the product layer, the product of each wavelet function is then calculated as follows:

Nin
¥i(zi5) = H‘Pij ((ugj — ti) /dij), Vi=1:Ny; j=1:N, (5)
i=1

The output of the fourth layer can be described as:
’Uj(k):w]"’g[}j, ]:1 :N,u (6)

where parameter w; denotes connection weight between the product and the output layers.
The outputs of the fourth layer are multiplied by the node outputs of the third layer.
The product of each node of this layer can be computed as follows:

w;(z) = pj(x) -v;, j=1:N, (7)
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where fi;(z) is expressed as:
Ny
(o) = 150 | 3 150 ®)
7j=1

The fifth layer is the output layer of the FRWNN, and its overall output contributed
from each rule can be calculated as follows:

vk =Y i) v =3, )

3. Hybrid Learning Algorithm to Optimize FRWNN. This section discusses how
the proposed FWNN model is executed by the MPSO-FRWNN approach. It is well known
that the convergence rate of the GDA strongly depends on the selection of the initial values
of the unknown parameters to be optimized; thus, an MPSO approach is proposed for the
initialization of the FRWNN. In dealing with the continuous search space, the parameter
vector in proposed-FRWNN that needs to be adjusted is © = (c;5, 0u5, Wy, tij, dij, 0;5)-
All of the parameters are considered to be adjusted by using a hybrid algorithm which
combines initialization by a modified PSO algorithm with updating by gradient descent
algorithm.

3.1. Basic PSO algorithm. PSO is an evolutionary population-based algorithm by
mimicking birds’ feeding behavior, which was proposed to solve the global optimization
problem. How to maintain the optimal distances between each particle and its neigh-
bors is one of the main factors in PSO algorithm. Each particle’s position needs to be
optimized by renovating their position as devised for the objective performance function
in the search area. The fitness value of each particle position can be evaluated by the
fitness function to be optimized, which indicates the pros and cons of the particles as
well as velocities that direct the flying of the particles. A particle’s velocity represents
the important characteristic of PSO, which is optimized by comparing the former one to
guide the particle to reach its best position in every iteration. Initializing the algorithm
by a population of random solutions, then the system seeks out optimal by adjusting
generations. In each iteration, the basic PSO algorithm adjusts the velocity and positions
of all of particles having the form of expression (10) and (11) [25,26]:
o = wol + ey (pbestly, — af)) + cory (gbestl — af)) (10)
oyt = iy ot (11)
where ¢; and ¢, stand for the positive constants described as acceleration factors; r;
and 7y stand for two independent random numbers identically distributed in [0,1]; w
stands for the inertia weight coefficient considered as one variable or one constant of
iteration. Theoretical and empirical studies of inertia weight have demonstrated that a
relatively large w makes the algorithm keep more global exploring ability; meanwhile, a
relatively small w improves the convergence performance of PSO. In addition, along the
dth dimension of the ith particle at the iteration k, pbestf, is the best previous position,

xfj 1 is new position based on the previous =¥, and vfdﬂ is the new velocity based on

previous vf,. Meanwhile, along the dth dimension of the iteration k, gbest’ is the best

previous position among all particles in the swarm.
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3.2. The modified PSO (MPSO) algorithm. In this paper, we adopt MPSO with
the strategy of two-layer inline-PSO process to improve the basic PSO algorithm which
can overcome some defects of basic PSO algorithm such as the demerit of taking more
calculation time to get a relatively high accuracy. A good initialization of the proposed
FRWNN can be got by MPSO with relatively small population size and few number of
iterations, and then a GDA is utilized to acquired the final values of parameters which
make the model achieve the optimal satisfactory solution of the problem.

The merits of the hybrid learning algorithm to optimize FRWNN are clear to see.
Firstly, the neural network training by the use of hybrid learning algorithm to optimize
FRWNN features a rapid and steady training process than that adopting uniquely one op-
timization algorithm, namely, PSO or GDA, which is apt to be influenced by the stochastic
factors of training. Secondly, it may lead to a very slow convergence rate because of the
“similarity” deficiencies of particles in the course of the optimization procedure of PSO.
We can accelerate the convergence of process of training evolution by the combination of
MPSO and GDA.

The adjustment strategy of parameters within forecasting learning based gradient de-
scent, which renews the parameters after every investigation (x;,y!') for [ = 1: K in the
opposite direction of the quadratic gradient function is described as follows:

F (,1,0) = 5 ((®,7) )’ (12

MPSO algorithm using two layers inline-PSO process including two fitness functions
is proposed. where y; corresponds to the output values of the network in the light of
multidimensional input variables x; and network parameter vector ©. As mentioned
above, constrained optimization plan is constructed by two layers named the outer and
inner layers. Here in the outer layer, the velocity and position of particles are renewed in

the light of fitness values described by the performance metric of root mean square error
(RMSE) expressed as (13):

N 1 K
RMSE (0,7,yf) = \/ = lel (1 — v (13)

The objective is to minimize the fitness value of Equation (13), where & = {zy, 2o, ...,
i}, y¢ = {yd yd, ...,yL}. Within the inner layer based on fitness values described by
(12), the velocity and position of particles are updated to optimize.

The detailed optimization strategy of two layers inline-PSO is as follows:

1) Initialization. The population size (psize) and the termination iterative number
(Mazgen) of evolution were set respectively. Initialize particle velocity and position for
every particle randomly and set the iterative number k& = 1.

2) Compute the fitness value of each particle according to Equation (13) and denote it
by fitness; (i = 1 : psize); meanwhile search the best known position pbest? of the i-th
particle and select the best known position gbest® among all the particles in the swarm.

3) Renew particle velocity and position for each particle according to Equations (10)
and (11).

S3.1: We randomly sort the input vectors and then record the new obtained input order
described as {#}1,. Let [ = 1.

S3.2: Compute the fitness value (E (@, Zy, yld)) of every particle by means of Equation

(12) and denote it by Infitness;, ¥i = 1 : psize. Search the best known position [npbesti’-C
of the i-th particle and select the best known position Tngbest” among all of the particles.
S3.3: Renew the particles’ velocity and position by

k+1 _ k k k k k k+1 _ _k k+1
vy = Wy e ([npbestid — xid) + cory (Ingbestd — xid) s Ty = Ty Uy
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S3.4: Let [ =1+1. Ifl < K+ 1, go to S3.2; otherwise go back to Step 4.

4) Let k = k + 1. Compute the fitness value fitness; of every particle, and then search
the best known position pbezstﬁ-C of the i-th particle and select the best known position
gbest” among all of the particles. If k > Mazgen, suspend and choose gbest”; otherwise
go back to Step 3.

Additionally, the linear decreasing inertia weight w(k) = wWsart — (Wstart — Wena) * k/
Mazgen is adopted here similarly to [30,31], which demonstrates a satisfactory convergence
performance. Here wgy = 0.9 and we,g = 0.4 are set respectively.

3.3. Gradient descent algorithm following the MPSO of FRWNN. After param-
eters initialization by MPSO, all parameters need to be automatically updated in the
consequent, part of the fuzzy rules during the training process of the neural networks. In
this paper, the gradient descent algorithm (GDA) is used to train the consequent param-
eters of the networks. As a result, parameters are renewed in the opposite direction of
the gradient of quadratic objective performance function.

For forecasting, the quadratic objective performance function of FRWNN is denoted as
follows: . .

E(©,7,y) = E(K) = 5 [ (s"(k) = y(1)"] = 5¢*(k) (14)
where y?(k) and y(k) are the expected output and the actual output values of the FRWNN
at discrete time k respectively, and e(k) is the output error of FRWNN.

W = [w; t;; di; 0;;]" is the weighting vector for the consequent part of fuzzy rules, and
it was updated by taking advantage of the gradient descent algorithm as follows:

k1) = wy(8) = 7°(h) - G (15)
tij(k+1) =ti;(k) — 7' (k) - gfj((ll?) (16)
dij(k + 1) = di; (k) — n%(k) - SCZ((Z)) (17)
0,5k +1) = 0,;(k) — 7 (k) - gfj ((’Z)) (18)

where n = diag {ﬁ“’,ﬁt,ﬁd,ﬁg} stands for the learning rates matrix for the weights of
FRWNN, and diag {-} stands for diagonal matrix.
The chain rule of calculus can express the values of derivations in (15)-(18) as follows:

OE(k) _ 0E(k) 0y(k) Ov(k) _ O IR 1))
s (k) ~ dy(k)  dus(k) Dwy(k) (y(k) = y*(k)) - ¥(2) S (@) (19)

OE(k) OE(k) oy(k) O0vj(k) 0Ovi(k) 0z;(k)

Oty(k) — dy(k) ~ Ouv;(k)  0uy(k) 0z(k) Oty (k)
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4. Target Threat Assessment Using MPSO Optimized Fuzzy Recurrent Wave-
let Neural Network. Target threat assessment requires considering many different kinds
of factors (such as geography, weather, and enemy). It is also not a pure linear combina-
tion between various factors and threat degree; thus, the explicit functional relationship
between the various factors and the target threat value can hardly be created. By consid-
ering comprehensively various factors, we selected the influencing factors associated with
threat degree, which were systematically elaborated in Section 4.1.

4.1. Influencing factors of target threat assessment. Through considering synthet-
ically various factors, we selected target type, target speed, target interference capability,
target heading angle, target height and target distance as main influencing factors of
threat degree. Under G. A. Miller’s nine levels quantitative theory [32], the six input
variables applied in this innovative research work were as follows.

e Target type (K): the target type is split into three kinds consisting of reconnaissance
plane, small target (such as tactical ballistic missiles, and stealth aircraft) and large
target (such as bomber, and fighter bomber). For the sake of facilitating quantitative
study, the reconnaissance plane, small target and large target were quantified for 3, 5 and
8, respectively.

e Target speed (V): the target speed is the vector composite of approach velocity and
transverse velocity. Under different flight speeds, the same type of target has a different
threat level. Generally, a greater value of threat degree is associated with faster flight
speed.

e Target interference capability (C): target interference capability, as an important
method of electronic countermeasure, can be divided into four kinds: strong, medium,
weak and very weak. Generally, a greater value of threat degree is associated with stronger
capability of target interference capability. The strong, medium, weak and very weak are
quantified for 8, 6, 4 and 2, respectively.

e Target heading angle (f): target heading angle is the angle between the target ad-
vancing direction and the actual position of the target to the defended target. Speaking
generally, the small heading angle means big possible that the target appeared; a greater
value of threat degree is associated with smaller heading angle of target.

e Target height (H): in the case of the target away from our side, the flight altitude
of the target is not obvious to our threat. However, it will be a great threat degree to us
when the target crops up and hits us in low altitude. The ultralow altitude, low altitude,
medium altitude and high altitude were respectively quantified for 2, 4, 6 and 8.

e Target distance (D): the closer the distance between the incoming target and the
protected target is, the greater the target threat degree is. Contrariwise, the farther the
distance between the incoming target and the protected target is, the lower the threat
degree is.

4.2. The flow chart and the training process of target threat assessment. In this
section, we discuss the detailed threat degree model for influencing factors provided by
combat situation data. We choose 60 pairs of combat situation data containing 45 pairs
data as a training set to train MPSO optimized FRWNN, and then the target threat
value of the rest of situation data is assessed by using the trained network. Based on
MPSO optimized FRWNN, the flow chart of target threat assessment algorithm is shown
in Figure 1.

The detailed training process of MPSO optimized FRWNN is as follows.

1) Data preprocessing. First, the raw data is quantified and normalized, and then the
data set was split into training data set and testing data set, respectively.
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Data Preprocessing Construction of FRWNN
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FiGURE 1. Target threat algorithm flow chart based on MPSO optimized FRWNN

2) Initialization of the MPSO optimized FRWNN. By using MPSO in Section 3.2, we
initialize the important parameters of MPSO-FRWNN such as center parameters, scaling
parameters, translation parameters, dilation parameters and weights as well as storage
factor.

3) Training MPSO-FRWNN by GDA. Train the consequent part of the proposed MPSO-
FRWNN by Equations (15)-(18) as noted previously in Section 3.3.

4) Updating the network parameters. In the light of the prediction error indicator, the
parameters and the connection weights of MPSO optimized FRWNN are renewed in order
to make the assessment value as close to the actual value as possible.

5) When the results meet the given criteria, testing set is used to test the MPSO
optimized FRWNN. Otherwise, go back to Step 3 and repeat this cycle.

5. Model Simulation. The main idea of the threat assessment is to extract target’s
combat situation metrics related to threat degree (T') and build the relationship between
threat degree and these metrics. As mentioned in Section 4, we selected six influence
factors of target threat values as input variables and the target threat values as output
variable. The performance of MPSO-FRWNN is tested by these factors. Part of the
data used to validate the proposed model is presented in Table 1, where large target,
reconnaissance plane, and small target are listed in nine pairs, respectively.

5.1. Analysis of simulation results. In order to demonstrate the efficiency of the
MPSO-FRWNN, it was then compared with the known architectures using different mod-
els named PSO-FRWNN and FRWNN.

Three rules (Nr = 3) are employed in our three experiments, so the number of network
parameters is 93. The population size psize = 57, and the termination iterative number
Mazxgen = 50, which are constructed comparatively small to cut down the running time
and prevent over-training of the training signal which may result in reducing search scope
of testing signal. The acceleration coefficients ¢; and ¢y in MPSO and basic PSO are
all set to 2, and the linear decreasing inertia weight is utilized here. Initialize the pro-
posed FRWNN by using MPSO, PSO and a random generation of network parameters,
which corresponds to the MPSO-FRWNN, PSO-FRWNN and FRWNN models respec-
tively. The three different ANN assessment models (for FRWNN, PSO-FRWNN and
MPSO-FRWNN) are trained and tested for the above-mentioned combat situation data
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TABLE 1. Part of the data

No. K V(m/s) C () H (km) D (km) T
1 8 560 6 10 6 150 0.5828
2 8 700 6 17 8 310 0.5580
3 8 760 8 4 8 120 0.6235
4 8 430 g8 11 4 130 0.5841
o 8 740 6 6 4 110 0.6473
6 8 730 8 16 2 260 0.6574
7 8 460 6 8 4 200 0.5784
8§ 8 400 8 5 8 140 0.5056
9 8 620 8§ 13 2 320 0.6302
10 5 1250 6 13 4 190 0.8789
11 5 660 & 17 6 270 0.6424
12 5 970 8 3 6 310 0.8253
13 5 1080 8 8 6 270 0.8306
14 5 830 g8 12 8 160 0.7285
15 5 630 6 5) 8 160 0.5943
16 5 900 8§ 17 8 310 0.7052
17 5 720 8 7 4 300 0.7336
18 5 1010 8 5 8 190 0.8078
19 3 109 4 13 4 270 0.3623
20 3 100 4 13 4 220 0.3624
21 3 100 2 8 6 250 0.3462
22 3 95 4 9 4 190 0.3781
23 3 105 2 17 2 140 0.3605
24 3 90 4 17 4 180 0.3504
25 3 96 4 10 6 310 0.3427
26 3 90 4 2 8 220 0.3581
27 3 105 4 4 8 160 0.3706

by using the MATLAB. Then the researchers compared the MPSO-FRWNN algorithm
with the PSO-FRWNN and FRWNN neural network models.

All three predicted results are shown in Figure 2. Compared to other models, a higher
accuracy was provided by the prediction result based on MPSO-FRWNN. However, the
partial detail of predicted results cannot be unambiguously illustrated by Figure 2. As a
result, the other performance metrics such as error, relative error and root mean square
error (RMSE) are analyzed to further investigate the effectiveness and feasibility of de-
veloped MPSO-FRWNN.

In Figure 3, the research results of MPSO and PSO optimization mechanisms are shown
and illustrated; it revealed that the fitness value of MPSO improves more rapidly in the
early evolution. The fitness values of MPSO after 23 iterations have been better than
those of basic PSO after 32 iterations. When the fitness value does not decrease any more
with time, it implies that the proposed optimization mechanism reaches the best solution
of the problem. As shown in Figure 3, the optimization mechanisms of MPSO and PSO
reach the fitness values of 0.0120 and 0.0196 after the same iteration steps respectively,
which demonstrates that the convergence speed of the MPSO algorithm is faster than
that of PSO.

For the consequent part of MPSO-FRWNN hybrid algorithm, the RMSE diminution
curve at the time of training and testing of GDA is illustrated in Figure 4. As shown
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in Figure 4, owing to the appropriate initialization parameters for FRWNN obtained by
two-layer inline stage of MPSO, whose adjustment plan can be in harmony with gradient
descent, the RMSE values can decrease moderately with iteration at the time of training
and testing for the hybrid model, while small learning rates are employed. The dashed line
corresponding to the RMSE values obtained for testing curve reveals the reasonableness
of the hybrid algorithm.

To better compare and investigate the relation between the real threat value and the
evaluation value of all three kinds of assessment models, the error curve and relative error
curve are shown in Figures 5 and 6. In terms of overall trend of error curve, the prediction
error of MPSO-FRWNN shows the smallest fluctuation around zero, which indicates that
a small matching error between the real threat value and the evaluation value is obtained.
Comparing the overall change trend, relative error curve from the hybrid algorithm is
closer to zero than that of others, demonstrating the low error of the proposed scheme
further in Figure 6. Generally, the error and relative error of the proposed MPSO-FRWNN
achieve minimum errors compared to the PSO-FRWNN and FRWNN models.

The performance of the MPSO-FRWNN is elaborately investigated to identify the
model’s threat assessment capabilities by considering the same criterion. The RMSE
values of the proposed FRWNN based target threat assessment system for training and
testing data are compared and illustrated in Table 2, which describes the simulation
results of other two models as well. As shown in Table 2, the RMSE values of train-
ing and testing of MPSO-FRWNN (0.004150, 0.006901) are all lower than PSO-FRWNN
(0.009279, 0.012086) and FRWNN (0.018198, 0.020292). So it can be seen that the pro-
posed MPSO-FRWNN model shows better performance than the other models for target
threat assessment when the three rule numbers are employed.
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TABLE 2. Comparison of all three simulation results for threat assessment

Model RMSE of training RMSE of testing 1 Network
number  parameters
FRWNN 0.018198 0.020292 3 93
PSO-FRWNN 0.009279 0.012086 3 93
MPSO-FRWNN 0.004150 0.006901 3 93

The analyzed results manifest that the error, relative error and RMSE of the MPSO-
FRWNN are all superior to the PSO-FRWNN and the FRWNN assessment models. A
better prediction result is gained compared to other models, and the defect of PSO falling
into local optimal solution is overcome; meanwhile, the training rate of MPSO-FRWNN
network makes better cooperation with GDA on the basis of the optimal solution offered
by the MPSO. As a result, studies demonstrate promising results and show that the
obtained error analysis successfully confirms the validity of our proposed strategy, which
provides a novel model for the threat assessment.

6. Conclusions. In the light of the increasing sundry challenges such as high fluctuations
of battlefield environment, the uncertainty and sudden changes of the target situation as
well as the requirements for quickly processing information in modern war, in some ways
FRWNN can solve the target threat assessment by synthetical consideration of various
factors which influence the target threat degree [22]. However, there are two main con-
cerns for the FRWNN and PSO-FRWNN assessment models when we use GDA to train
two kinds of models. Firstly, the convergence rate of GDA depends on the initial values
of unknown parameters for FRWNN. Secondly, non-stable training process may occur
caused by the large learning rate due to an unsatisfactory optimization solution for PSO-
FRWNN. The two concerns can be resolved by MPSO-FRWNN assessment model which
combines MPSO with GDA. To situate a more reasonable region in the search space,
MPSO with two-layer inline-PSO can hunt for the optimal solution by updating parame-
ters after each measurement and that contains all vectors, which is in correspondence to
the adjustment plan of the consequent part gradient descent algorithm and can result in
a faster convergence speed. GDA can be taken advantage for coordinating the optimal
solution, which can accelerate the convergence performance of the training process.

Ultimately, MPSO-FRWNN can deal with the uncertainty and sudden changes of the
target situation by both the concepts of fuzzy logic and the flexible consequent part while
the local details of non stationary and high dimension of external input variables can
be decomposed in the light of the translation and dilation parameters of the proposed
consequent part. The assessment modeling was used to learn the non-linear relationship
between influencing factors and target threat value. The characteristics of the proposed
MPSO-FRWNN demonstrated its promising characteristics like dynamic approximation
capability, excellent convergence performance and strong online adapting capacity as well
as its good coordination ability with GDA are also highlighted. By the comparative
analysis of evaluation model, it can be observed that the proposed method has more
competitive evaluation ability and can quickly and accurately evaluate the target threat
as well as provides support for the tactical decision and task allocation.

The use of type-2 fuzzy systems can be further considered as the antecedent part of the
MPSO-FRWNN to deal with the uncertainties and to handle uncertain information in our
future work by observing type-2 fuzzy wavelet neural network [33,34]. To further overcome
the disadvantage of the GDA, the initialization of FRWNN by evolutionary population-
based algorithms such as genetic algorithm could be considered and compared. Moreover,
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the future work will further consider the changes in the learning algorithm including both
initialization and new updating rules.
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