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ABSTRACT. In this paper, a novel output tracking approach is proposed for a class of
linear neutral systems. Dynamic equations of the error signal and the desired output
are constructed on the basis of the considered system. An augmented error system is
deduced to make use of the desired output in control design. And a delay-independent
controller is derived for the augmented error system. Control design of the original
system contains feedback of the state, integrals of the desired output and error signals in
this paper. Finally, an illustrative example is presented to show the effectiveness of the
proposed control design.
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1. Introduction. Time-delay is frequently encountered in many areas such as automatic
control systems, neural networks, and population dynamic models. It is well known that
time-delay often leads to control systems’ poor performance, and makes the operation
situation not be reflected in time. Neutral systems contain time-delay both in the state,
and in the derivatives of the state. Such systems often appear in many places such as
heat exchangers, population ecology, partial element equivalent circuit (PEEC) and dis-
tributed networks containing lossless transformation lines [1,2]. On the other hand, a lot
of ordinary delay systems can be modeled mathematically as neutral systems, e.g., lossless
transmission model, standard delay systems, and standard distributed delay systems [3].
In view of the extensive background and wide representatively, increasing attention has
been paid on neutral systems. And many results have been reported in [4,6]. Lyapunov
functional is the most common approach to analyze the stability of neutral systems [7-9].

However, research on tracking control for neutral systems has not been reported as
widely as that on stability analysis. To the best of our knowledge, only a few results on
output tracking for neutral systems have been reported in the last two decades, which
mainly focus on H,, output tracking control. It makes a certain norm of the transfer
matrix from disturbance input to controlled output less than a constant, which is usually
called output tracking performance. A reference model without disturbance input is
needed in H,, tracking control to guarantee that the output of the systems tracks the
output of the given reference model well in the H,, sense. Based on this thought, [10,11]
derive tracking control respectively for switched neutral systems and uncertain delay
system.

Instead of a reference model, this paper combines the desired output with the considered
neutral system. First, the desired output is assumed to be known, which occurs in robot
path control, motor control system and so on [12]. Then an augmented error system
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is constructed. Control design for the original neutral system contains not only state
feedback, but also integrals of the desired output, and integrators on error signals which
may help decrease static error [13].

The rest of this paper is organized as follows. Section 2 gives the problem description.
In Section 3, stability results for the augmented error system are investigated, and control
design for the neutral system is derived. In Section 4, a numerical example is given to
show the effectiveness of the results. Section 5 concludes the paper.

2. Problem Statement and Preliminaries. Consider the neutral system as follows:

(t) — Gi(t — h) = Agx(t) + Arz(t — d) + Bu(t),
y(t) =Cux(t), (t>0) (1)
z(0) = ¢(0), 0 € [—max{h,d},0],

where z(t) € R" is the state vector, y(t) € R? is the output of the system, and u(t) € R™
is the control input. ¢(#) is the compatible vector valued a continuous function represent-
ing the initial condition, G, Ay, Ay, B and C are known real matrices with appropriate
dimensions, and d > 0 (h > 0) is the time-delay in the state (the derivative of the state).

Assume that the desired output of system (1) is r(f) € RP. Then the error signal is
defined as e(t) = y(t) — r(t), that is

e(t) = Cx(t) — r(t). 2)

To establish our main results, it is necessary to present the following assumptions and
lemma.

Assumption 2.1. p(G) < 1, where p(G) denotes the spectral radius of G.

Assumption 2.2. The desired output r(t) is a piecewise-continuously differentiable func-
tion satisfying r®) (t) = 0. If it is differential up to infinite order, we can expand it into
polynomial with finite terms in error range, which is allowable in engineering.

Remark 2.1. Assumption 2.1 guarantees that the operator @(t) — Gi(t — h) is stable
independent of delay h [14,15].

Remark 2.2. For Assumption 2.2, r(t) is in low requirement; hence the method of the
paper is suitable for more extensive target signals, such as stair-step signal. The left or
the right derivatives can be taken as the derivative of r(t) on the underivable points.

Lemma 2.1. (Schur complement [16]) Given the constant symmetric matrices 0y, o,
Q3, where Q1 = QT and Qy = QF >0, then O + QTQ, 105 < 0, if and only if

QO QF —Qy Q3
{93 —QQ]<O’ or[Qg Q, < 0.

3. Main Results. In this section, we will present our main results on control design for
system (1).

3.1. Construction of an augmented error system. In order to make use of the
desired output r(¢), the dynamic equation of the tracking error e(¢) is necessary. From
(2), we get

é(t) —aé(t —h) = Ci(t) — aCi(t —h) —7(t) + ar(t — h), (3)

where « is a real constant and satisfies 0 < a < 1. By Remark 2.1, the operator é(t) —
aé(t — h) is stable. Equation (3) is the error system of (1).
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Now, r(t) is contained in Equation (3). It is better to combine Equation (3) with system
(1) for utilization of r(¢). So a new vector X (t) = [ 7(t) 2T (t) e*(t) ]T is defined.
From (1) and (3), we deduce that

X(t)=GX(t—h) = AgX () + A X (t—h)+ A X (t—d)+ Bu(t) + G, (7 (t) —ar(t—h)), (4)

where
G 0 0 A 0 0] [0 00
G=|x G 0 |,4=|L, 00|,4=| -G 00/,
x * al, cC 00 _—aCOO
A 00 B [0
AH=]10 00|,B=|01|,G=1| 0
0 00 0 T

Notice 0 < a < 1, so X (t) — GX (¢t — h) is stable by Assumption 2.1 and Remark 2.1.

Formula (4) is an augmented error system. It is obvious that if @(#) can be deduced
from system (4), the control input u(t) for system (1) can be derived correspondingly. It
is our goal that the known desired output r(¢) can be utilized. So next we combine r(¢)
with the state vector X (t) of system (4) through some transformation method.

It is necessary to obtain the dynamic equation of the desired output r(¢). Considering

Assumption 2.2, we define R(t) = [ rT(t) #T(t) --- rE=DT(p) ]T. Then the dynamic
equation of R(t) can be described as
R(t) — aR(t — h) = GrR(t) — aGRrR(t — h), (5)
where
0 0 - 0
00 I, - 0
Gr= |1 @ 0
00 0 - I,
0 0 O 0
X (1) : :
Note z(t) = R() | and Formulas (4) and (5) are equivalent to the following system
2(t) — GL2(t —h) = Az(t) + Apz(t — h) + Agz(t — d) + Byu(t), (6)
where
. G 0 . AO ER . Al —O[ER
GZ_|:0 OZI:|’AZ_|:0 GR:|’Ah_|:0 —OZGR ’
Ay 0 B
Ad:[ 0 0],31:[0 ],ER:[O G, -+ 0].

System (6) is the augmented error system that we need, and the operator 2(t) — G, Z(t —
h) is stable. In system (6), time-delay h appears not only in neutral term but also in the
augmented state vector z(t), which is different from the original neutral system. The
corresponding unforced system without #(t) of system (6) is denoted as

(t) — GLA(t — h) = Auz(t) + Apz(t — h) + Agz(t — d). (7)

Next, the asymptotic stability of system (7) is investigated. And a feedback controller
of (6) is derived. Thus, control design of system (1) can be derived.
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3.2. Asymptotic stability analysis of the unforced system. The stability of the
unforced system is presented in the following theorem.

Theorem 3.1. System (7) is asymptotically stable if there exist P > 0, Q; > 0 (j =
1,2,3) and nonnegative scalars €; (i = 1,2,3) such that the following inequalities hold:

PAZ + A;FP—F 41 + m63]+ m61[ PAd PAh PGZ A;F
* —21 + meol 0 0 AT
* * —2I +meqd 0 AT <0
* * * —(@)3 GT
* * * * —R!
(8)
—eil 0 —I —e3l 0 —I
* —eol -1 <0, * —eq =T <0, 9)
* * -1 * * —()9
where m = max {h,d}, and R = dQ;, + hQs + Q3.
Proof: Construct a Lyapunov-Krasovskii functional for system (7) as follows
V(t) = Wi(t) + Va(t) + Va(t) + Va(),
Where Va(t ) ( )Pz(t) f ft+0 $)Q12(s)dsdh, V(t f ft+0 $)Q22(s)dsdb,
ft w2 (0)Qs2( )d9. Then, the tlme derivative of V() along the traJectory of sys-

tem (7) is glven by
V(t) = Vi(t) + Va(t) + Va(t) + Vi(t).
Differentiating V(t) along system (7) yields
Vi = 22T (t)P(t)
= 22T ()P [A2(t) + Apz(t — h) + Agz(t — d) + G,2(t — h)]
=2"(t) (PA, + AL P) 2(t) + 2" (t) (PA, + A, P) z(t — h)
+ 2" (t) (PAg+ A P) 2(t — d) + 2" (t) (PG, + G, P) (t — h).

And the derivatives of V5(t), V3(¢), and Vj(t) are respectively given by
¢
) = " 0Qu:0 - [ £ 6)Quis)ds
t—d

V},(t) = zT(t)(th)z(t) — /t_h z’T(s)Qg,é(s)ds
Vi(t) = 2T (6)Qs2(t) — 2T (t — h)Qs2(t — h).

Utilizing Newton-Leibniz formula that [/ 3(s)ds = z(t) — z(t — d) and [, #(s)ds
= z(t) — z(t — h), the following equalities are estabhshed.
T . -
wi=2[ () - ]| L] {0 -2 —d) —/ 3(s)ds| =0,
L4 L t—d |

~

Wy=2[ 2°(t) 2"(t—h) ] -1 _z(t)—z(t—h)—/t hz’(s)ds- —0.
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0

.. _ el O esl
Additionally, let m = max {h, d}. For [ . 521] > 0 and [ e el

(t) 27t —d)] h] 581] [z(f(f)d)]
[ 1w zT(t—d)][gll ! H =) ]dszo,

o x g9l z(t — d)

} > 0, we have

Ws=m] 2"

=m0 e-n][20 0] ]

- / [2T() 2Tt —d) ] [ o } [ Z(f(f)co } ds 2 0.

Then V(t) < Vi(t) + Va(t) 4 Va(t) + Va(t) + Wi 4+ Wa + W5 + Wi
Denote

n(t)=[2"(t) ZT(t—d) ZT(t—h) T(t-h)]",
&ty =[2"1) 2"(t—d) 2"(s)]", &t)=[2"(t) 2"(t—h) "(s)]".
We have
V() <nT(t) (u + YTRY) n(t) + [, &5 () Quba(t)ds + [, &F (1)0&(t)ds

PAZ + AEP + 47 + m83l + msll PAd PAh PGZ
B * =21 + meyl 0 0
where {; = * * —2I+mpIl 0 ’
* * * —()3
—el 0 —1I —e3l 0 —1I
Qy = * —eol  —1 |, Q3 = * —eql T |, T = [ Ao Ag An G ]’
* * —Ch * * —Q

R=dQ; +hQ;+Qs. When Q; + YTTRY <0, Q, < 0 and Q3 < 0, we get V(t) < 0 which
can assure the asymptotic stability of system (7). By Lemma 2.1, Q; + YTRY < 0 equals
that

PAZ +A3P+4I+m83l+m61] PAd PAh PGZ A;F
* =21 + m621 0 0 AE
* % =21 +meyd 0 AT < 0.
* * * Q3 GT
* * * * —R7!

Therefore, (8) and (9) equal V(t) < 0. Hence, system (7) is asymptotically stable. In
Theorem 3.1, stability of system (7) is relative not only to matrices A,, Ay, A4 and G,,
but also to time-delay h and d. Control design of system (6) will be obtained on the basis
of Theorem 3.1.

3.3. Control design for the augmented error system and original neutral sys-
tem. Theorem 3.1 provides a sufficient condition for stability of system (7), where there
is no input. In this section, we first suppose a feedback controller for system (6). Ac-
cording to Theorem 3.1, we obtain the feedback gain matrix as described in the following
theorem.
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Theorem 3.2. There exists a state-feedback controller u(t) = Kz(t) for system (6), if
there are matrices W >0, Q; > 0 (j =1,2,3), Y and nonnegative scalarse; (i =1,2,3,4)
satisfying inequalities (9) and the following inequality.

IT Ay Ay G, WAT+YTB!

x =21 + meol 0 0 AT

* * —2I +meqd 0 AT <0, (10)
* * * -3 GT

* * * * —R!

where [1 = A,W + B\Y + WAT + YTBT + 41 + mesI + me, 1.
Moreover, if (9) and (10) are feasible, the gain matriz is given by K =YWL,

Proof: Take 4(t) = Kz(t) into system (6). The closed-loop system of (6) is
2(t) — GL2(t — h) = (A, + B1K)z(t) + Apz(t — h) + Agz(t — d).
Substituting A, with A, + B K in (8) obtains

PA, + TTP + 41 + mesl + me, [ PA, PA, PG, IT
* —2I + meyl 0 0 AT
* % =2l +meyd 0 AL | <0,
* * * —Qs GT
* * * * —R7!

(11)

where I' = A, + B K.

Perform a congruence transformation to (11) by diag {P~1,I,1,1,I} and define P~ =
W,Y = KW. Thus, (10) is gained and it is obvious that K = YW L.

For z(t) = [ #"(t) 2"(t) e'(t) R'(t) ]T, let K = [k ks ks k4], and we get
that

W(t) = k1@(t) + ko (t) + kse(t) + kaR(1).

According to the initial condition of system (1), it is not difficult to deduce from the
above equality that the control design of system (1) is

u(t) = kix(t) + ko /tx(t)ds + kg /t e(t)ds + ky /tR(t)ds — k19(0).

It is realized that control u(t) contains not only the state feedback, but also the integrals
of state, error signal and the desired output.

4. Numerical Example. In this section, we present a numerical example to illustrate
the effectiveness of the proposed method. This example comes from a modified NDDE
model which is motivated by a small PEEC in [2], where delays in the state and the
derivate of the state are equal. Consider system (1) with

—04 0.2 -1 05 ~15 —0.5
G“[ 0.01 -—01]’ AO“{ -2 06 }’ Al“{ —0.5 -—&9]’

B:{_0'5},C=[1.2 1.25]a¢(t)=[_t/10],a:0.8. )

1.2 sin(t)
The desired output is chosen as a stair-step function, which is often used and belongs
to typical signals in control engineer.

0, t <10
r(t) =< (t—10)/20, t € [10,30]
1, t > 30
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We compare the output response on the condition that whether delay in the derivate of
the state equals that in the state. We respectively choose h = 0.1, d = 0.02 and h = 0.02,
d = 0.1, the corresponding output responses are shown in Figures 1 and 2 by Theorem
3.2. Then the delays are assumed to be h =d =0.1, h =d = 0.02.

Comparing with the above figures, we find that when delay in the derivate of state is
smaller, the output can change in advance of the desired output, and its curve is smooth.

5. Conclusions. By use of the desired output and the error signal, output tracking
control for a class of linear neutral systems is studied in this paper. Control design is
presented based on the augmented error system. A Lyapunov-Krasovskii functional and
some integral identities are used to analyze the stability of the augmented error unforced
system. Controllers in this paper can make use of the desired output, for integrals of the
error signal and the desired output are both contained in control design. A numerical
example has been given to demonstrate the validity of results in this paper.

Utilization of the desired output makes the tracking better and decreases the static
error. It is particular that the parameter matrices and time-delays in this paper are
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constants. There exist many neutral systems where the parameters and delays are not
constant. So tracking control of the neutral systems with uncertainty or time-varying
delays will be studied. And we also need to investigate of how to promote the method of
this paper to ordinary delay systems.
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