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Abstract. This paper considered state tracking problem of a class of nonlinear systems
with actuator failures and unmodeled dynamics. Based on neural network and Nussbaum
function, an adaptive neural network-based fault tolerant control scheme is proposed to
ensure the tracking performance to satisfy a given prescribed performance. The problem
of unmodeled dynamics is handled by introducing a dynamic signal. Using the properties
of Nussbaum function, the problem of the unknown system direction is solved. Theoretical
analysis shows that the closed-loop system is semi-globally uniformly bounded. Simulation
results illustrate the effectiveness of the scheme.
Keywords: Tolerant control, Unmodeled fault, Performance function, Adaptive control

1. Introduction. In modern control systems, with the increasing complexity of the sys-
tems, the components are vulnerable to faults, and because of the frequent operation of
the actuator, it is more fault-prone than others. In order to eliminate the faults, ensure
the normal operation of the system, fault tolerant control (FTC) has become an important
field of control research and obtained many achievements.

In [1], by designing observers, the active fault-tolerant control problem was addressed.
In [2], an actuator fault model that integrated varying bias and gained faults is proposed,
and sliding mode observers (SMOs) are designed for fault detection and isolation. In [3],
for a class of strict-feedback non-linear systems, the corrective control law is reconstructed
by generated fault information to compensate the fault effects. In [4], a novel discrete-
time estimator is proposed for a discrete-time dynamic system with actuator and sensor
faults.

At present, the faults considered in papers are gain faults or bias faults, and there are
only a few results on unmodeled faults. However, in many cases the faults cannot be
expressed in the affine form, but in the form of unmodeled. Based on this, the results of
unmodeled fault tolerant control have important theoretical significance and application
value.

In engineering system, there exist unmodeled dynamics which can make system os-
cillating and divergent. In [5], an adaptive control scheme is proposed for a class of
pure-feedback nonlinear systems with unmodeled dynamics and unknown gain signs. In
[6], K-filters were introduced when the states of system were not measured. In [7], by
combining fuzzy systems with K-filters, an adaptive output feedback dynamic surface con-
trol was investigated. The prescribed performance control demands the convergence rate
no less than a prescribed value, and both the steady state and the transient performance
were discussed. In [10], the robust adaptive control for strict feedback nonlinear system
with prescribed performance was proposed.
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In this paper, based on prescribed performance function and radial basis function (RBF)
neural networks, the adaptive FTC scheme is investigated for a class of uncertain nonlinear
system with unmodeled dynamics and unmodeled actuator fault. Compared with existing
literature, the FTC scheme not only considers the more common unmodeled faults in
practical applications, but also guarantees the prescribed transient and steady state error
within the proper bound.

2. Problem Statement and Preliminaries. Consider a class of nonlinear systems in
the following form: 

ż = q(z, x)

ẋi = xi+1, i = 1, 2, . . . , n− 1

ẋn = f0(x) + F (x, u) + ∆(x, z, t)

y = x1

(1)

where x = [x1, x2, . . . , xn]T ∈ Rn are the states, u ∈ R and y ∈ R are the system input
and output, the nonlinear function f0(x) is unknown and smooth, the nonlinear function
F (x, u) is the unmodeled actuator fault, and ∆(x, z, t) is the unmodeled dynamics.

Define the tracking error e(t) as follows:

e =
[
e, ė, . . . , e(n−1)

]T
=

[
x1 − yd, x2 − ẏd, . . . , xn − y

(n−1)
d

]T

(2)

The control objective is to design adaptive tolerant controller for system (1) such that
e(t) satisfies the prescribed transient and steady state performances, and all the signals
in the closed-loop system are bounded.

In this paper, by introducing RBF neural networks to approximate the unknown contin-
uous function h(ξ) = W ∗Tψ(ξ)+ω(ξ), where ξ ∈ Ωξ is the input, ω(ξ) is the approximation

error, ψ(ξ) = (ψ1(ξ), . . . , ψl(ξ))
T ∈ Rl is a known smooth vector function and l > 1 rep-

resents the neural networks node number. The basis function ψj(ξ) is chosen as following

form ψj(ξ) = exp
(
−∥ξ − µj∥2 /

ϕ2
j

)
, j = 1, 2, . . . , l, where µj and ϕj denote, respectively,

the center of the receptive field and the width of the Gaussian function. The ideal weight

W ∗ = (w1, . . . , wl)
T is defined as follows: W ∗ = arg min

Ŵ∈Rl

[
sup
ξ∈Ωξ

∣∣h(ξ) − Ŵ Tψ(ξ)
∣∣].

To design controller, some necessary assumptions are introduced as follows.

Assumption 2.1. For any x ∈ Rn, u ∈ R, the function f(x, u) is differentiable with
respect to u and there exist positive constants g0, g1 and g2 such that

g0 ≤ |g(x, uλ)| ≤ g1, |ġ(x, uλ)| ≤ g2 (3)

where g(x, uλ) =
[
∂f(x, u)

/
∂u

] ∣∣
u=uλ

and uλ ∈ [0, u].

Assumption 2.2. There exist unknown nonnegative continuous functions φ1(·) and un-
known increasing continuous functions φ2(·) such that |∆(x, z, t)| ≤ φ1(||x||) + φ2(||z||).

Assumption 2.3. The subsystem ż = q(z, x) is said to be exponentially input-state-
practically stable (exp-ISpS), if there exists a Lyapunov function V (t) such that

α1(z) ≤ V (z) ≤ α2(z),
∂V (z)

∂z
q(z, x) ≤ −cV (z) + γ(||x||) + d (4)

where α1(·), α2(·), γ(·) are functions of class k∞ and γ(·) is known, and c and d are
known positive constants.
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Assumption 2.4. The desired signal yd and its time derivatives y
(i)
d (i = 1, 2, . . . , n) are

continuously bounded.

Assumption 2.5. The RBF neural networks approximation error ω(ξ) satisfies |ω(ξ)| ≤
ω∗ with ω∗ being a positive constant.

Lemma 2.1. [8]. The function V is an exp-ISpS Lyapunov function for subsystem ż =
q(z, x), i.e., (5) and (6) hold, then for any constant c̄ ∈ (0, c), in initial instant t0 > 0,
any initial state z0 = z(t0), υ > 0 and γ̄(||x||) > γ(||x||), there exists a finite T0 =[(
V (z0)

/
υ0

)
e(c−c̄)t0

] /
(c− c̄) ≥ 0, a nonnegative function D(t0, t), define dynamic signal

υ̇ = −c̄υ + γ̄(||x||) + d, υ(t0) = υ0 for t ≥ t0 + T0, and there exist D(t0, t) = 0 such that
V (z) ≤ υ(t) +D(t0, t).

Lemma 2.2. [9]. For any real continuous function f(x, y), there exist positive smooth
scalar functions ϕ1(x) ≥ 0 and ϕ2(y) ≥ 0 such that the following inequality holds:
|f(x, y)| ≤ ϕ1(x) + ϕ2(y), where x ∈ Rm, y ∈ Rn.

Definition 2.1. A continuous function N(ς) : R → R is defined Nussbaum function such
that 1) lim

x→∞
sup 1

s

∫ s

0
N(ς)dς = +∞; 2) lim

x→−∞
inf 1

s

∫ s

0
N(ς)dς = −∞.

Lemma 2.3. [5]. Let V (·) and ς(·) be smooth functions defined on t ∈ [0, tf ) and V (t) ≥ 0,
and N(·) be a Nussbaum function, if the following inequality holds,

V (t) ≤ c0 + e−c1t

∫ t

0

g(τ)N(ς)ς̇ec1τdτ + e−c1t

∫ t

0

ς̇ec1tdτ, ∀t ∈ [0, tf ) (5)

where c1 > 0 and c0 is a suitable constant, g(·) is a time-varying parameter which takes
values in the unknown closed intervals I = [l−, l+] with 0 /∈ I, and then V (t), ς(t) and∫ t

0
g(τ)N(ς)ς̇dτ must be bounded on [0, tf ).

3. Performance Function and Error Transformation.

3.1. Performance function.

Definition 3.1. A continuous function ρ(t): R+ → R+ is defined a performance function
if ρ(t) is decreasing and lim

x→∞
ρ(t) = ρ∞ > 0.

In this paper, ρ(t) = (ρ0 − ρ∞)e−lt + ρ∞ is chosen as the prescribed performance
function, where ρ0, ρ∞ and l are appropriately defined positive constants, l determines
the convergence rate of ρ(t), ρ0 = ρ(0) denotes the bound of the overshoot, and the
parameter ρ∞ represents the maximum allowable steady tracking error.

3.2. Error transformation. Define the error transformation as follows

e(t) = ρ(t)S(ε) (6)

where ε is the transformed error, and the function S(ε) is smoothly increasing and satisfies

−δ < S(ε) < 1, e(0) > 0; −1 < S(ε) < δ, e(0) < 0 (7)

Owing to the properties of S(ε) and ρ(t), one has ε = S−1
[
e(t)

/
ρ(t)

]
. If ε(t) ∈ L∞ with

t ∈ [0,∞), then e(t) satisfies the prescribed performance, and owing to the properties of
performance function, tracking error is confined to Ωe = {e ∈ R : |e(t)| ≤ ρ∞}.
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4. Adaptive Tolerant Controller Design and Stability Analysis.

4.1. Adaptive tolerant controller design. Define the transformed error as follows:

ε̄ =
[
ε, ε̇, . . . , ε(n−1)

]T
= [ε1, ε2, . . . , εn]T . According to [11], the filtered error is defined as

s = [ΛT 1]
[
ε ε̇ · · · ε(n−1)

]T
, where ΛT = [λ1 λ2 · · · λn−1] is appropriately chosen

such that sn−1 + λn−1s
n−2 + · · · + λ1 is Hurwitz.

Differentiating, the filtered error dynamics may be written as ṡ = λ1ε̇1 +λ2ε̇2 + · · ·+ ε̇n

from (2), differentiating e1(t) with respect to time t, one has

ė1 = ρ̇(t)S(ε) + ρ(t)
∂S

∂ε
ε̇ = β1(ρ, ρ̇, ε) + Sρε̇ (8)

where Sρ = ρ(t)
(
∂S

/
∂ε

)
. From (2) and (8), one has

ė2 =
∂β1

∂ρ
ρ̇+

∂β1

∂ρ̇
ρ̈+

∂β1

∂ε
ε̇+

(
∂Sρ

∂ρ
ρ̇+

∂Sρ

∂ε
ε̇

)
ε̇+ Sρε̈ = β2 (ρ, ρ̇, ρ̈, ε, ε̇) + Sρε̈ (9)

Similarly, one has ėi = βi

(
ρ, ρ̇, . . . , ρ(i), ε, . . . , ε(i−1)

)
+Sρε

(i), i = 1, 2, . . . , n. In this paper,

for notational simplicity, let βi denote βi

(
ρ, ρ̇, . . . , ρ(i), ε, . . . , ε(i−1)

)
(i = 1, 2, . . . , n).

From above equality, one has ε̇i = (ėi − βi)
/
Sρ, i = 1, 2, . . . , n; furthermore, we have

ṡ =
n−1∑
i=1

λiε̇i + ε̇n =
n−1∑
i=1

λiei+1

/
Sρ −

n−1∑
i=1

λiβi

/
Sρ − βn

/
Sρ − y

(n)
d

/
Sρ + ẋn

/
Sρ (10)

Furthermore, one has

ṡ = β + γ [F (x, u) + ∆(x, z, t)] (11)

where β =
∑n−1

i=1 λiei+1

/
Sρ −

∑n−1
i=1 λiβi

/
Sρ − βn

/
Sρ − y

(n)
d

/
Sρ, γ = 1/Sρ > 0.

According to Assumption 2.1 and mean value theorem, there exist uλ ∈ [0, u] with
∀t > 0, such that f(x, u) = f(x, 0) +

[
∂f(x, uλ)

/
∂u

]
u.

Let g(x, uλ) = ∂f(x, uλ)
/
∂u, and then (11) can be expressed as follows:

ṡ = β + γ [f0(x) + f(x, 0) + g(x, uλ)u+ ∆(x, z, t)] (12)

Define the following Lyapunov function:

Vs =
1

2|g(x, uλ)|
s2 (13)

where from Assumption 2.1, one has g0 < |g(x, uλ)| < g1. Differentiating with Vs respect
to time t, one has

V̇s = −|g(x, uλ)|
2g(x, uλ)

ġ(x, uλ)

g2(x, uλ)
s2 +

1

|g(x, uλ)|
sṡ

≤ |ġ(x, uλ)|
2g2(x, uλ)

s2 +
1

|g(x, uλ)|
sβ +

1

|g(x, uλ)|
sγ [f0(x) + f(x, 0) + g(x, uλ)u+ ∆(x, z, t)]

(14)
According to Assumption 2.1 and Lemma 2.1, one has |∆(x, z, t)| ≤ φ1(||x||)+φ2(||z||),

||z|| ≤ α−1
1 (υ(t) +D(t0, t)). From Assumption 2.3, we obtain φ2(||z||) ≤ φ2 ◦ α−1

1 (υ(t) +
D(t0, t)), where φ2◦α−1

1 (·) = φ2

(
α−1

1 (·)
)
, because φ2◦α−1

1 (·) is increasing smooth function,
according to Lemma 2.3, one has φ2(||z||) ≤ ϕ1(υ(t)) + ϕ2(D(t0, t)).

Using Young’s inequality, we have φ1(||x||) ≤ φ2
1(||x||)+1/4, ϕ1(υ(t)) ≤ ϕ2

1(υ(t))+1/4,
ϕ2(D(t0, t)) ≤ ϕ2

2(D(t0, t)) + 1/4. In addition, because D(t0, t) and ϕ2(·) are nonnegative
smooth functions, let ϕ2(D(t0, t)) ≤ p∗ with p∗ > 0.
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According to the above three inequalities and Assumption 2.1, one has

V̇s ≤
g2

2g2(x, uλ)
s2 +

sβ

|g(x, uλ)|
+

sγ

|g(x, uλ)|
g(x, uλ)u+

sγ

|g(x, uλ)|
[f0(x) + f(x, 0)]

+
1

|g(x, uλ)|
|sγ| [φ2

1(||x||) + ϕ2
1(υ(t))] +

1

g0

|s|γ
(
p∗2 +

3

4

) (15)

By introducing inequality |x| − x tanh
(

x
δ

)
≤ 0.2785δ, ∀x ∈ R, δ > 0, one has

|sγ|φ2
1(||x||) ≤ sγφ2

1(||x||) tanh
(
sγφ2

1(||x||)
/
δ1

)
+ 0.2785δ1

|sγ|ϕ2
1(υ(t)) ≤ sγϕ2

1(υ(t)) tanh
(
sγϕ2

1(υ(t))
/
δ2

)
+ 0.2785δ2

where δ1 > 0, δ2 > 0, and let

h(ξ) =
g2

2γg2(x, uλ)
s+

β

γ|g(x, uλ)|
+

1

|g(x, uλ)|

[
f0(x) + f(x, 0)

+φ2
1(||x||) tanh

(
sγφ2

1(||x||)
/
δ1

)
+ ϕ2

1(υ(t)) tanh
(
sγϕ2

1(υ(t))
/
δ2

) ] (16)

where ξ = [xT , β, s, υ]T . Furthermore, (15) can be expressed as follows:

V̇s ≤ sγh(ξ) + sγ
g(x, uλ)

|g(x, uλ)|
u+

1

g0

|s|γp∗ +
1

g0

|s|γ
(
p∗2 +

3

4

)
+ 0.2785(δ1 + δ2) (17)

According to neural networks and Assumption 2.5, one has

V̇s ≤ sγW ∗Tψ(ξ) + sγ
g(x, uλ)

|g(x, uλ)|
u+ |s|γω∗ +

1

g0

|s|γ
(
p∗2 +

3

4

)
+ 0.2785(δ1 + δ2) (18)

Let b∗ = max {ω∗, (p∗2 + 3/4)/g0}, and (18) can be expressed as

V̇s ≤ sγW ∗Tψ(ξ) + sγ
g(x, uλ)

|g(x, uλ)|
u+ b∗|s|γ + 0.2785(δ1 + δ2) (19)

The control and adaptive laws are designed as follows:

u = N(ς)
[
(k/2γ)s+ Ŵ Tψ(ξ) + sgn(s)b̂

]
(20)

ς̇ = ks2 + sγŴ Tψ(ξ) + |s|γb̂ (21)

˙̂
W = η0sγψ(ξ) + η1Ŵ (22)

˙̂
b = σ0|s|γ + σ1b̂ (23)

where k > 0, η0 > 0, η1 > 0, σ0 > 0, σ1 > 0 are design parameters, Ŵ is the estimation

value of W at time t, b̂ is the estimation value of b at time t, and W̃ = W ∗−Ŵ , b̃ = b∗− b̂.

4.2. Stability analysis.

Theorem 4.1. Consider the system (1) with unmodeled dynamics and actuator unmodeled
fault, the control law (20) and adaptive laws (22) and (23) are employed, if Assumptions
2.1-2.5 hold, from error transformation (6), then all signals in the closed-loop system
remain semi-globally uniformly ultimately bounded, and the tracking error is confined to
a predefined residual set.
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Proof: Select the following Lyapunov function

V = Vs +
1

2η0

W̃ T W̃ +
1

2σ0

b̃2 (24)

Differentiating with V respect to time t, from (17) one has

V̇ ≤ sγW ∗Tψ(ξ) + sγ
g(x, uλ)

|g(x, uλ)|
u+ b∗|s|γ − 1

η0

W̃ T ˙̂
W − 1

σ0

b̃
˙̂
b+ 0.2785(δ1 + δ2) (25)

Substituting control law and adaptive laws into (25), we obtain

V̇ ≤ s− ks2

2
+

g(x, uλ)

|g(x, uλ)|
N(ς)ς̇ + ς̇ − η1

η0

W̃ T Ŵ − σ1

σ0

b̃b̂+ 0.2785(δ1 + δ2) (26)

According to W̃ = W ∗ − Ŵ , b̃ = b∗ − b̂ and Young’s inequality, we have

−η1

η0

W̃ T Ŵ ≤ − η1

2η0

||W̃ ||2 +
η1

2η0

||W ∗||2, −σ1

σ0

b̃b̂ ≤ − σ1

2σ0

||b̃||2 +
σ1

2σ0

||b∗||2 (27)

Applying (27) to (26), one has

V̇ ≤ −ks
2

2
+

g(x, uλ)

|g(x, uλ)|
N(ς)ς̇ + ς̇ − η1

2η0

||W̃ ||2 − σ1

2σ0

||b̃||2 +
η1

2η0

||W ∗||2

+
σ1

2σ0

||b∗||2 + 0.2785(δ1 + δ2)

(28)

Furthermore
V̇ ≤ −c1V + [g(x, uλ)/|g(x, uλ)|]N(ς)ς̇ + ς̇ + c2 (29)

where c1 = min{kg0, η1, σ1}, c2 = η1/2η0||W ∗||2 + σ1/2σ0||b∗||2 + 0.2785(δ1 + δ2).
Furthermore, one has

V (t) ≤ c2
c1

+

[
V (0) − c2

c1

]
e−c1t + e−c1t

∫ t

0

g(x, uλ)

|g(x, uλ)|
N(ς)ς̇ec1tdτ + e−c1t

∫ t

0

ς̇ec1tdτ

≤ c2
c1

+ V (0) + e−c1t

∫ t

0

[
g(x, uλ)

|g(x, uλ)|
N(ς) + 1

]
ς̇ec1tdτ

(30)

According to Lemma 2.3, obviously, V (t), ς, Ŵ and b̂ are bounded in [0, tf ). From [5], the
conclusion is also right as tf = +∞, on the other hand s2/2g1 ≤ Vs(t) ≤ V (t), and then we
have s ∈ L∞. From (29) we obtain ε(t) is bounded; furthermore we have e(t) is bounded.
Thus, it can be shown that all the signals are bounded. Furthermore, according to the
properties of S(ε) and ρ(t), we have tracking error satisfies the prescribed performance.

5. Simulation Results. In this section, consider the dynamics of autonomous under-
water vehicle (AUV), from the simulations to demonstrate the theoretical results. In this
paper, we consider the FTC of steering control subsystem. As [12], the steering subsystem
can be represented as {

ψ̇ = r
ṙ = f(r) + gδr + h(t)

(31)

where ψ is the steering angle, r is the yaw velocity, g is a design parameter, δr is the
rudder deflection, and h(t) is a bounded signal, which denotes the modeling error or
external disturbance. In order to investigate the problem of actuator unmodeled fault,
the fault system may be written as{

ψ̇ = r
ṙ = 2r|r| + 0.5r + (1 − 0.5 sin(r))δr + rz

(32)
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where f(r) = 2r|r| + 0.5r, the unmodeled fault is f(r, δr) = (1 − 0.5 sin(r))δr, system
unmodeled dynamic is rz, and δr is the system input. The reference signal yd(t) is chosen
as yd(t) = 0.5 sin(2t), performance function ρ(t) is chosen as ρ(t) = (1−10−1)e(−3t)+10−1,
and the Nussbaum function is chosen as N(ς) = ς2 cos(ς). The initial conditions: ψ(0) =
0.1, r(0) = 0.5. The design parameters are taken as σ0 = 0.5, σ1 = 0.01, η0 = 0.5,
η1 = 0.01, λ = 0.25, k = 10. Simulation results are shown in Figures 1-4. We can
observe that tracking errors eventually converge to a prescribed range as shown in Figure
2. Meanwhile, Figure 3 illustrates the boundedness of the control signal. Simulation
results demonstrate the feasibility of the proposed method.

Figure 1. Output and de-
sired trajectory

Figure 2. Tracking error

Figure 3. Control signal Figure 4. Nussbaum parameter

6. Conclusions. In this paper, for a class of nonlinear systems with actuator failures
and unmodeled dynamics, considering the unmodeled fault, by applying prescribed perfor-
mance function, sliding mode control, radial basis function neural networks and Nussbaum-
type gain technique, an adaptive fault tolerant control scheme is designed. Theoretical
analysis shows that the closed-loop system is semi-globally uniformly bounded, and the
tracking error is confined to a predefined residual set. However, in this paper, the system
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structure we consider is a lower triangular form. When the system structure is more com-
plex, the design of fault tolerant controller is more challenging and the problem deserves
further research.
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