International Journal of Innovative
Computing, Information and Control ICIC International ©)2017 ISSN 1349-4198
Volume 13, Number 2, April 2017 pp. 695-701

SEMI-SUPERVISED WORD SENSE DISAMBIGUATION
USING VON NEUMANN KERNEL

WENSHENG ZHU

Modern Education Technology Center
Gannan Normal University
Economic & Technological Development Zone, Ganzhou 341000, P. R. China
cjtgnnu@163.com

Received September 2016; revised January 2017

ABSTRACT. Kernel methods such as support vector machine (SVM) and kernel principal
component analysis (KPCA) have been successfully applied to word sense disambiguation
(WSD), which aims at identifying which sense of a word is used in a sentence, when the
word has multiple meanings. This paper proposes using the von Neumann kernel for
semi-supervised WSD. Specifically, the semantic similarities between terms are first de-
termined with both labeled and unlabeled training data by means of a diffusion process on
a graph defined by lexicon and co-occurrence information, and the von Neumann kernel
is then constructed based on the learned semantic similarity. Finally, the SVM classifier
trains a model for each class during the training phase and this model is then applied to
all test examples in the test phase. The main property of this method is that it takes ad-
vantage of the von Neumann kernel to reveal the semantic similarities between terms in
an unsupervised manner, which provides a kernel framework for semi-supervised learning.
The proposed approach is demonstrated with several SENSEVAL benchmark examples.
Keywords: Semi-supervised learning, Word sense disambiguation, Von Neumann ker-
nel, Support vector machine

1. Introduction. In computational linguistics, word sense disambiguation is an open
problem of natural language processing and ontology. WSD is defined as the task of
automatically assigning the most appropriate meaning to a polysemous word in a given
context [1]. The solution to this problem impacts other computer-related writing, such as
discourse, improving relevance of search engines, anaphora resolution, coherence, and in-
ference. During the past decade, many supervised machine learning algorithms have been
used for the task of automatic WSD, among which, kernel methods [2], such as SVM,
regularized least-squares classification (RLSC) and kernel principal component analysis
(KPCA), have demonstrated excellent performance in terms of accuracy and robustness
[3-13]. From the point of view of modularization, kernel methods consist of two main
components, namely the kernel and actual learning algorithm. The kernel can be consid-
ered as an interface between the input data and the learning algorithm, and is the only
task-specific component of kernel methods. In the domain of WSD, the widely used kernel
is the “Bag of Words” (BOW) kernel [13], which is based on the BOW representation of
the context in which an ambiguous word occurs. In this representation, each word or
term constitutes a dimension in a vector space, independent of other terms in the same
context. Despite its ease of use, this kernel suffers from well-known limitations, mostly
due to its inability to exploit semantic similarity between terms: contexts sharing terms
that are different but semantically related will be considered as unrelated. To address
this problem, a number of attempts have been made to incorporate semantic knowledge
into the BOW kernel, resulting in the so-called semantic kernels [13]. For example, the
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semantic kernels that use the external semantic knowledge provided by word thesauri or
ontology were proposed to improve the kernel-based WSD system [6]. In the absence of
external semantic knowledge, latent semantic indexing (LSI) technology was applied to
capturing the semantic relations between terms [8].

Recently, Wang et al. [10,11] proposed applying the semantic diffusion kernel [14] to
improving the WSD system. Semantic diffusion kernel can be obtained through a matrix
exponentiation transformation on the given kernel matrix, and virtually exploits higher
order co-occurrences to infer semantic similarity between terms. Geometrically, this kernel
models semantic similarities by means of a diffusion process on a graph defined by lexicon
and co-occurrence information. The diffusion is an unsupervised process, which naturally
provides a kernel framework for semi-supervised learning. A significant challenge in WSD
is to reduce the need for labeled training data while maintaining an acceptable perfor-
mance. To address this challenge, we present a semi-supervised technique for WSD based
on the von Neumann kernel. The main property of this technique is that the semantic
similarities between terms are first determined by the diffusion process using both labeled
and unlabeled training data, and the von Neumann kernel is then constructed based on
the learned semantic similarity. Experiments on several SENSEVAL benchmark data sets
demonstrate the proposed approach is sound and effective.

2. An Overview of Von Neumann Kernel. In machine learning-based WSD systems,
the features extracted from the contexts are usually in the BOW representation which
reduces a text to a histogram of word frequencies [10,11]. Let ¢y, denote the word to be
disambiguated and © = (¢_,,...,t 1,%1,...,ts) be the context of t,, where t ,, ... ,t 1
are the words in the order they appear preceding ¢y, and correspondingly ¢i,...,t; are
the words that follow ¢ in the text. We define a context span parameter 7 to control the
length of the context. For a fixed 7, we take always the largest context so that r < 7
and s < 7. Note that if there exist 7 words preceding and following the word to be
disambiguated, respectively, then r = s = 7, otherwise r < 7 or s < 7. Consider that we
are also given a vocabulary V consisting of n words, which can be extracted from all the
contexts in the training corpus. The BOW model (also called vector space model, VSM)
of the context x is given by

¢:x— p(x) = (tf(ty, ), ..., tf(tn, )" €R" (1)

where tf(t;,x), 1 <i < n, is the frequency of the occurrence of the word ¢; in the context
x. If we consider the feature space defined by the VSM, the BOW kernel is given by the
inner product between feature vectors:

k(xi, ;) =< ¢(a:), () >= D tf(t, @)t (t, ;) (2)

tev

BOW model is probably one of the simplest constructions used in text processing.
In this model, the feature vectors are typically sparse with a small number of non-zero
entries for those words occurring in the contexts. Two contexts that use semantically
related but distinct words will therefore show no similarity. Ideally, semantically similar
contexts should be mapped to nearby positions in the feature space. In order to address
this problem, a transformation of the feature vector of the type ¢(z) = S¢(x) is required,
where S is a semantic matrix indexed by pairs of words with the entries [S]; ; = [S];;, 1 <
1,J < n, indicating the strength of their semantic similarity. Using this transformation,
the semantic kernels take the form of

k(@i @) = o) ¢(x;) = d(x:) ST S(x;) (3)
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The semantic kernels correspond to representing a context as a less sparse vector S¢(x),
which has non-zero entries for all terms that are semantically similar to those presented
in the context x.

In practice, the problem of how to infer semantic similarities between terms from a
corpus remains an open issue. Kandola et al. [14] proposed a semantic kernel named von
Neumann kernel given by

K()\) = Ko(I—\Ko)™' (4)
where Kj is the kernel matrix of the BOW kernel, and ) € [0, ||Ko||™!) is a decay factor.
Let D be the feature example (term-by-document) matrix in the BOW representation,
and then Ky = DTD. Let G = DD?, and it is easy to prove that K()\) corresponds to a
semantic matrix (I — AG)~"/2 [14], i.e.,

~ 1/2
S=(I-\G) 2= <Z)\de) = (IT+AG+A2G2 4+ MG +--) (5)
d=0
where I denotes the identity matrix. In fact, noting that S is a symmetric positive semi-
definite matrix since G is symmetric [15], we have

K()\) = DTSTSD = DTS?D = DT(I — A\G)~'D

=) MD'G'D = K, (Z M{ﬁ) = Ko(T— \Ky)? ©)
d=0 d=0

It is obvious that when A = 0, the von Neumann kernel is reduced to the standard BOW
kernel. In other words, the BOW kernel is just a special case of the von Neumann kernel.

3. Semi-Supervised WSD Procedure Using Von Neumann Kernel. In the ge-
ometrical viewpoint, von Neumann kernel models semantic similarities by means of a
diffusion process on a graph defined by lexicon and co-occurrence information [10,11,14].
Specifically, such a graph has nodes indexed by all the terms in the corpus, and the edges
are given by the co-occurrence between terms in documents of the corpus. A diffusion pro-
cess on the graph can capture higher order co-occurrences between indirectly connected
terms. Conceptually, if term ¢; co-occurs with term ¢, in some documents, we say ¢; and
to share a first-order correlation between them. If £; co-occurs with ¢5 in some documents,
and t5 with 73 in some others, then #; and 3 are said to share a second-order correlation
through ¢5. Higher orders of correlation can be similarly defined. Noting that [Gd]m.
is the number of dth-order co-occurrence paths between terms ¢; and ¢; in the graph',
and the semantic matrix S combines all the order co-occurrence paths with polynomially
decaying weights, we can easily find that the semantic similarity between two terms is
measured by the number of the co-occurrence paths between them, and the semantic
matrix S essentially exploits the higher order correlation between terms. Intuition shows
that the higher the co-occurrence order is, the less similar the semantics becomes. The
parameter \ is used to control the decaying speed for increasing orders. To summarize,
von Neumann kernel takes all possible paths connecting two nodes into account, and
propagates the similarity between two remote terms (or documents) in an elegant way.
As mentioned before, the elements of the semantic matrix S give the strength of the se-
mantic similarity between terms. Von Neumann kernel essentially exploits the higher
order correlations to refine the similarity measure by performing a diffusion process
on a graph defined by lexicon and co-occurrence information. It is obvious that the

!The identity matrix I (i.e., G%) can be regarded as the indication of the zero-order correlation between
terms, meaning only the similarity between a term and itself equals 1 and 0 for other cases.
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diffusion is an unsupervised process, which naturally provides a kernel framework for
semi-supervised learning. In semi-supervised learning we are given a labeled data set
L= {(wla yl)a (3327 y2)7 ) (wla yl)}a yi € {17 2; RS C}J (NS {17 27 ) l} and an unlabelled
data set U = {@;11, T112,. .., Ty ). We here propose a 4-step kernel method framework
for semi-supervised WSD.

Step 1: Preprocessing input documents. This step converts the input documents
into formatted information. The details of this step will be described in the evaluation
section. After this procedure, we are given the formatted L and U.

Step 2: Learning semantic matrix. This step determines the semantic similarities
between terms with both L and U by means of a diffusion process.

Step 3: Constructing von Neumann kernel. This step constructs the von Neu-
mann kernel based on the learned semantic matrix using (3).

Step 4: Using common kernel algorithms, such as SVM and RLSC.

The main property of the proposed method is that the semantic similarities between
terms are first determined by the diffusion process using both labeled and unlabeled
training data (Step 2), and the von Neumann kernel is then constructed based on the
learned semantic similarity (Step 3). For Step 4, although there are many kernel-based
learning algorithms for selection, we here choose SVM as the learning machine since the
last decade has witnessed an explosion of the use of SVM for WSD, both in the lexical
sample and all-words exercises. In view of that WSD is a multiclass classification problem
and SVM was originally proposed for solving binary classification problems, we need to
extend binary SVM to multiclass SVM.

There are several approaches available to extend binary SVM to multiclass SVM [16,17].
These approaches roughly fall into two categories. The first denoted as all-in-one or
single machine is to directly consider all data in one optimization formulation. The
second involves considering a decomposition of a multiclass problem into several binary
subproblems and then combining their solutions. There are two widely used strategies
to decompose a multiclass problem: one-versus-rest (1-v-r) and one-versus-one (1-v-1).
Given a problem with m classes, the 1-v-r strategy constructs m binary SVMs, in which
each of them is trained to separate one class from the other classes, while the 1-v-1 strategy
constructs m(m—1)/2 binary SVMs, in which each of them is trained to separate one class
from another class. When a test sample is provided, it is applied to all the binary SVMs
and their outputs are combined based on some voting techniques, such as “MaxWins”
voting scheme which counts how often each class is output by the binary SVMs and the
test sample is then assigned to the most voted class. Although both approaches present
usually no significant difference in classification accuracy when the parameters of SVM
are properly tuned, the decomposition one is often recommended for practical use because
of lower computational overhead and conceptual simplicity.

4. Experimental Setup. This experiment evaluates the performance of the proposed
method with several SENSEVAL? benchmark examples. SENSEVAL is the international
organization devoted to the evaluation of WSD systems. We select the data sets for
four words, namely interest, line, hard and serve, which have been used in numerous
comparative studies of WSD. Table 1 provides the statistics of these data sets. It presents,
for each data set, the number of instances, the number of senses, the minimum and
maximum sense tag frequencies and percentages. It is easy to find that for all the data
sets, the distribution of senses is severely skewed. For example, for the hard data set,
the distribution of senses is skewed with almost 80% of the instances used in the most
popular sense.

2http://www.senseval.org/
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TABLE 1. Statistics of four selected data sets

dataset | #instances | #senses #min #max

interest 2368 6 11 (0.46%) | 1252 (52.87%)
line 4147 6 349 (8.42%) | 2218 (53.48%)
hard 4333 3 376 (8.68%) | 3455 (79.74%)
serve 4378 4 439 (10.03%) | 1814 (41.43%)

For each data set considered in Table 1, we partition it into three groups: 30% and
20% of the data set are used for training and prediction, respectively. The training set
and test set are taken as the labeled data L, and the rest (50% of the data set) is taken
as the unlabeled data U (we assume that the labels of the data are unknown). Stratified
sampling is used to preserve the ratio of different classes in these three groups. For the
training data, we first remove the words that are in a list of stop words (for example: “is”,
“are”, “a” and “the”). Words that contain no alphabetic characters, such as punctuation
symbols and numbers, are also discarded. We then extract the surrounding words, which
can be in the current sentence or immediately adjacent sentences, within the +5-word
window (i.e., 7 = s = 7 = 5) context of an ambiguous word. The extracted words are
finally converted to their lemma forms in lower case. Each lemma is considered as one
feature and its value is set to be the “term frequency”. For the test set and unlabeled
data, the similar preprocessing is carried out but the features are the same as those
extracted from the training set (we directly eliminate those lemmas found in the test set
or unlabeled data but not in the training set).

After the proper preprocessing, we use the LIBLINEAR package [18] to train and test
the SVM model. We consider two types of kernels, i.e., BOW kernel and von Neumann
kernel for comparison. These kernels are embedded in the SVM classifier individually.
The parameters of the SVM are optimized by five-fold cross-validation on the training
set. For the BOW kernel, there is only one parameter C' that needs to be optimized.
We perform grid-search in one dimension (i.e., a line-search) to choose this parameter
from the set {272,2° ... 21}, For the von Neumann kernel, there are two parameters

C and A that need to be optimized. We perform grid-search over two dimensions, i.e.,
C={22%22...,20 and N = {271,272, ... 2710}

5. Results and Discussion. Since all the considered data sets are characterized by the
skewed class distribution, we use Fj-measure to measure the classification performance.
The average classification results with standard deviations in terms of the micro- and
macro-F; over 10 trials are summarized in Tables 2 and 3, respectively. The bold font
indicates the best performance. From these tables, we find that the von Neumann kernel
produces significantly better classification performances than the BOW kernel baseline.
This implies that the semantic similarities obtained by means of a diffusion process on
a graph defined by lexicon and co-occurrence information can improve the classification

TABLE 2. Micro-averaged Fi values of different methods on four data sets

Micro-F; (%)

Data set BOW kernel | Von Neumann kernel | Proposed method

interest | 85.29+1.02 87.12+0.98 88.19+0.27
line 82.144+0.57 83.27+0.53 84.36+0.94
hard 82.83+0.91 83.98+0.86 85.00+0.62

serve 85.36+1.28 86.10+1.24 87.46+0.33
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TABLE 3. Macro-averaged F) values of different methods on four data sets

Macro-F; (%)

Data set BOW kernel | Von Neumann kernel | Proposed method

interest | 63.23+1.08 70.5840.62 73.36+0.31
line 74.1240.73 75.46+1.23 77.42+0.92
hard 32.16+1.52 33.51+0.76 34.93+0.27
serve 54.07+0.89 55.96+0.48 58.31+0.64

performance. More importantly, for all data sets we see that the proposed approach
achieves significant performance improvement over the von Neumann kernel. Take the
interest data set for example: the proposed approach achieves the micro- and macro-F;
values of 88.19% and 73.76% whereas the von Neumann kernel achieves those of 87.12%
and 70.58%, respectively. In other words, the proposed approach achieves the micro- and
macro-F; values with relative improvements of 1.23% ((88.19-87.12)/87.12) and 4.50%
((73.76-70.58)/70.58) over the von Neumann kernel, respectively. It should be noted that
the performance differences are statistically significant (p > 0.05) in light of the pairs
t-tests on all four data sets. Since whether or not the unlabeled data U is taken into
consideration is the only difference between the proposed approach and the von Neumann
kernel, these results imply that the unlabeled data has a conspicuous impact on the kernel
construction for WSD and demonstrate the effectiveness of the proposed approach with
application to WSD.

Finally, it is also worth noting that, due to the severely skewed class distribution of
the data sets, for all methods the micro-averaged Fi values are consistently higher than
the macro-averaged Fj values. Conceptually, the micro-averaged Fi will not be affected
by the small classes since it gives an equal weight to all instances. On the contrary, the
macro-averaged F} is an average over all the classes so the small classes will drastically
affect the value.

6. Conclusions. We have presented a novel von Neumann kernel based semi-supervised
WSD approach which incorporates the unlabeled data into the diffusion process of min-
ing higher order correlations between terms. The main feature of this approach is that it
takes advantage of the von Neumann kernel to reveal the semantic similarities between
terms in an unsupervised manner, which provides a kernel framework for semi-supervised
learning. Experimental evaluation shows the superior effectiveness of the proposed ap-
proach compared with other baseline models. Since in WSD one of the significant issues
is the insufficient usage of abundant useful but unlabeled data, our approach provides
an alternative to reduce the need for labeled training data while maintaining an accept-
able performance. Future work will focus on the theoretical verification of the superior
performance of the proposed approach, as well as making comparisons with other newly
proposed methods for automatic WSD.
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