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Abstract. In existing deadlock detection and resolution algorithms, only a few of them

can handle deadlocks in generalized request models. Most of these algorithms diffuse

probes and collect dependency information in the replies. In this paper, we propose

an efficient algorithm to detect and resolve generalized deadlocks. In this algorithm,

replies are sent after a process has received all the messages from its predecessors. This

mechanism reduces both the quantity and total size of the messages. The message number

of our proposed algorithm is O(e+n). And the experiment shows that our algorithm has

better performance in concurrent executions.
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1. Introduction. In distributed systems, a process may request resources from other
processes. Deadlock is defined as a state in which two or more processes wait for the
other to finish. Processes involved in a deadlock wait for requested resources to be granted
infinitely. Thus, deadlock prevents processes from releasing resources and obstructs the
progress of program. Therefore, deadlocks should be resolved promptly in distributed
systems.

Deadlock can be modeled by a directed graph called wait-for graph (WFG) [11]. Each
process in a distributed system is defined as a vertex in the WFG. And dependences
are defined as directed edges in the corresponding WFG. According to the relationship
between edges, WFG can be classified into many request models, such as AND model

[12], and OR model [17]. In this paper, we focus on a more generalized model called P

out-of Q model [3]. P out of Q model also can be called generalized model [15]. In this
model, a process which makes requests for Q resources remains blocked until it receives
any P out of Q resources.

In this paper, we introduce a new centralized algorithm to detect and resolve deadlocks
in distributed systems. Our algorithm diffuses probe messages and collects request condi-
tions in the WFG. We count probe messages which come from the predecessors. However,
our algorithm is different from other algorithms in the following aspects.

1) The proposed algorithm only needs e + n messages in a single execution, while others
need e + 2n, 2e, 4e, etc.

2) Our algorithm reduces the number of request conditions that are sent repeatedly in
concurrent executions.

3) Our algorithm can adapt to more complicated network environment where messages
may not be received as the order of sending them.
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Many deadlock detection algorithms have been proposed to solve AND and OR models
[1, 6, 13, 14]. However, only a few algorithms can detect generalized distributed deadlocks
[10, 15, 16]. Most of the mentioned algorithms collect request conditions to build a
WFG through propagating messages, then evaluate and reduce the request conditions to
determine whether the system has a deadlock. In [8], Kshemkalyani and Singhal propose
a one-phase algorithm which takes 2d + 2 time units and needs 2e messages. In Chen et
al.’s algorithm [5], the initiator collects request conditions from the other processes and
expands the WFG when receiving a message until the WFG becomes steady. The initiator
is the process that initiates the detection algorithm when potential deadlock exists. Their
algorithm needs only 2n messages, and the delay is 2d time units. In Lee’s algorithm [9],
the request conditions are dispatched separately to the successors and sent to the initiator
at leaf nodes in the induced spanning tree, whereas in [8] they are sent to the predecessors.
Lee et al. decrease the message size and delay to O(d) and d + 2 respectively. And it
only needs less than 2e messages in a single execution. These algorithms send request
conditions or the identifier set of dependent processes multiple times except Chen et al.’s
algorithm in [5]. In [15], Srinivasan and Rajaram propose a new algorithm which sends
request condition only one time, although the message size is O(n). What is more, it
reduces the message number to e + 2n.

The rest of our paper is arranged as follows. We describe the underlying system models
and give the definition of deadlocks in Section 2.1. Then, we explain the procedure of
the proposed algorithm for both a single execution and concurrent executions in Section
2. After that, we compare the performance between existing algorithms and ours experi-
mentally and theoretically in Section 3. Section 4 concludes this paper and proposes some
future works.

2. The Proposed Algorithm. In this section, we give a description of the proposed
deadlock detection algorithm. Firstly, we describe a single algorithm instance following
with the formal description of it. Then we discuss concurrent executions of our proposed
algorithm.

2.1. System model. Figure 1 is the event trace diagram of our system model. There are
three processes. When P2 requests R1 from P1, it sends a REQUEST to P1 and P1 grants
the resource to P2. P1 sends a RELEASE after it has released R1. These REQUEST and
RELEASE messages are computational messages which are sent within normal executions.
In addition, CANCEL also is computational message. These processes request resources
from each other and become deadlocked. P3 initiates deadlock detection by sending a
PROBE to P1. P1 diffuses PROBE to its successors and responds REPORT to P3. These

Figure 1. Event trace diagram of system model
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PROBE and REPORT messages are control messages transmitted in deadlock detection.
Mostly, our system model is the same as described in [7, 15]. Each process knows which
processes it depends on. A process blocks when it sends a request, and it does not send
any computational messages until it becomes unblocked. When the system is deadlocked,
all the processes are directly deadlocked.

2.2. Algorithm description for a single execution. The proposed algorithm con-
sists of probing phase and detection and resolution phase. In the system, each process
maintains two sets, IN and OUT , and only knows its own request condition before the
execution of the proposed algorithm. When the system is supposed to have a deadlock,
one of these processes which is called initiator will start deadlock detection by propagat-
ing weighted probes to its successors. When a blocked process receives a probe for the
first time, it joins in this instance of the algorithm and initiates a local counter of the
probes which have been received, which is described in Algorithm 1. Then it transmits
the probe to its successors with new weight. If the process has already joined the instance
of the algorithm, it accumulates the weight in the probe instead of propagating it. When
the counter is equivalent to the size of the set IN , the process sends a report directly to
the initiator. The initiator accumulates the weight when it has received a message and
adds the request condition to a set RC. As shown in Algorithm 3, the probing phase is
finished when the accumulated weight is equivalent to one. To deal with phantom edges,
it is necessary to check whether the sender of REPLY is in set IN . Every phantom edge
will be sent to the initiator with the report message finally. And occurrence of phantom
edges should be set to true in each request condition.

We use weight to determine when all the messages have been received and the probing
phase is finished [7]. The initiator dispatches a weight of one to its successors evenly
through probes. The other processes not only distribute the received weight to their own
successors, but also leave a part of weight to themselves. That is the main difference
between our algorithm and the others. The remaining weight is sent to the initiator with
the request condition through a report. The initiator collects all the weights and starts
deadlock detection when they sum up to one. Algorithm 2 describes the reduction of
request conditions.

2.3. Formal algorithm description for a single execution. The following is a formal
description of the proposed algorithm which is executed at a process i.

Data structures at a process i: (It is the initial value in the parentheses.)

• OUTi: set of integer, the set of process identifiers which process i is waiting for;
• INi: set of integer, the set of process identifiers which are waiting for process i;
• Pi: set of edge(∅), the set of phantom edges;
• weighti: float(0), the weight value which is accumulated locally before report is sent

at a process i;
• rci: string, the request condition of process i;
• first recvi: boolean(true), the flag that determines whether process i has received

a probe;
• cur initi: integer(−1), the identifier of the current initiator;
• probe recvedi: integer(0), the number of probes that process i has received.

Additional data structures at initiator: (It is the initial value in the parentheses.)

• weightinit: float(0), the weight value accumulated from messages, either probes or
reports;
• RCinit: set of request conditions(∅), the request conditions collected from the

reports.
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Message formats:

• PROBE(i, w): This is a message that diffuses the weight to successors where i is
the identifier of the initiator and w the weight;
• REPORT (rc, P, w): It is used to send the weight value back to the initiator attached

with the request condition. The rc is the request condition of the current process,
the P is the set of phantom edges and the w is the accumulated weight.

Algorithm 1 Receiving a PROBE(init, w) from process s at a non-initiator process i

if first recv = true then

for j ∈ OUTi do

send PROBE(init, w/|OUTi + 1|) to j;
end for

cur initi ← init;
weighti ← 0;
probe recvedi ← 0;

end if

weighti ← weightiw/|OUTi + 1|;
probe recvedi ← probe recvedi + 1;
if s /∈ INi then

Pi = Pi

⋃
{s→ i};

end if

if probe recvedi = |INi| then

send REPORT (rci, Pi, weighti) to cur initi;
end if

Algorithm 2 Definition of deadlock detection(RC, P )

for {a→ b} ∈ P do

get rca from RC marked as rc;
modify every occurrence of b in rc to true;
replace rca in RC with rc;

end for

tmpA← ∅;
repeat

A← tmpA;
for tmprci ∈ RC do

if eval(tmprci) = true then

tmpA← tmpA
⋃
{i};

RC ← RC − {tmprci};
end if

end for

until A = tmpA
if RC = ∅ then

declare no deadlock;
else

declare deadlock;
resolution(A, RC);

end if
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Algorithm 3 Receiving a REPORT (rc, P, w) at the initiator process i

weightinit ← weightinit + w;
RCinit ← RCinit

⋃
rc

Pi ← Pi

⋃
P

if weightinit=1 then

execute deadlock detection(RCinit, Pi);
end if

2.4. Algorithm description for concurrent executions. Since multiple processes
may get blocked at the same time, several instances of the deadlock detection algorithm
may be invoked, that is, a process may join in two or more instances. Thus, many
duplicated massages will be sent in probing phase and unnecessary victims may be selected
in the resolution procedure. Many strategies have been proposed to deal with these issues.
We choose the priority based method to solve this problem because it is easy to implement
and has better performance. Each initiator has a priority which is diffused within PROBE
messages. We follow the definition of priority in [9]. A priority is a tuple marked as (t, s).
t is a time stamp when the blocked request is made and s is the sequence number of the
initiation for that request. For p1 = (t1, s1) and p2 = (t2, s2), p1 is higher than p2 if t1 < t2
or t1 = t2 and s1 < s2. Each process sets its priority as soon as receiving its first message.
Processes only transmit messages with higher priority than their own. When a process
receives a message with higher priority, it resets its own priority and joins this execution
of the algorithm.

3. Performance Comparison. In this section, we will compare the complexity of the
proposed algorithm in three aspects: message number, message size and execution delay.
We consider the worst case for a single execution as previous papers do. Also we do not
consider some abnormal scenarios, such as phantom edges, in the analysis. Then, we will
show the experimental results of our algorithm at the end of this section.

We follow the assumptions which are commonly used in the existing researches.

1) It takes one time unit for each message to transmit between any two processes.
2) When a process receives a message, it can complete local computation instantly.

The following is some notations used for analyzing the performance of the algorithm:

1) e: the number of edges in the WFG;
2) n: the number of processes in the WFG;
3) d: the diameter of the spanning tree built by the propagation of messages.

The message number is defined as the number of messages that are sent during a single
execution of the algorithm. The message size is measured as the number of identifiers
in a message. The delay is the time interval between the initiation and the end of the
detection and resolution phase.

There are two types of messages, PROBE and REPORT, transmitted while the algo-
rithm is executing. When the algorithm is finished, only the first probe is dispatched.
Thus, the total number of PROBE messages is equal to e. From Algorithm 1, each process
sends only one REPORT to the initiator. Thus, the total number of REPORT messages
is equal to n− 1. Therefore, the message number of the proposed algorithm is e + n− 1.

As is shown in Algorithm 1, each process sends only one PROBE message to the
initiator. That is, the request conditions are transmitted only one time. As a process
may depend on the other n−1 processes, a request condition has n−1 process identifiers
in the worst case. Therefore, the message size of the proposed algorithm is O(n).
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The delay of the algorithm depends on the time that the propagation of the PROBE
messages costs. Let dmax 6 d be the maximum distance from the initiator in the induced
spanning tree. Then, it takes dmax + 1 time units for the PROBE to transit from the
initiator to that furthermost process, marked as pd max. Since there is no path longer than
that from the initiator to pd max, when pd max receives this PROBE, it does not need to
wait for other PROBE messages from its predecessors. That is it cannot send a REPORT
immediately. Therefore, the execution of the proposed algorithm terminates in d+2 time
units without interrupted.

Table 1 shows a summary of the performance of existing algorithms and our proposed
algorithm. Our algorithm only needs e + n messages to detect a deadlock in a single
execution which is better than most of the others. In [5], their algorithm needs 2n messages
but its delay is approximate to twice of ours. Message size means the number of process
identifiers in a message. Although some algorithms only need constant message size, they
need more delay and messages. In [8, 9], request conditions are sent along the path of
propagating probes. The message carries n−1 request conditions in the worst case where
each process has only one successor. However, in our proposed algorithm every message
carries constant request condition.

Table 1. Single execution performance comparison for existing algorithms

Algorithms Message number Delay Message size Resolution Type
Bracha [2] 4e 4d O(1) none distributed
Wang [18] 6e 3d + 1 O(1) none distributed

Kshemkalyani [7] 4e− 2n + 2l 2d O(1) e messages distributed
Chen [5] 2n 2d O(n) 3n messages centralized

Brzezinski [4] n2/2 4n O(n) none distributed
Kshemkalyani [8] 2e 2d + 2 O(e) none distributed

Lee [9] < 2e d + 2 O(d) 1 message centralized
Srinivasan [15] e + 2n d + 2 O(n) 1 message centralized

Proposed e + n− 1 d + 2 O(n) 1 message centralized
e is the number of edges in the WFG, d is the diameter of the spanning tree, n is the number of
processes, and l is the number of leaf nodes in the tree.

In this section, we analyze the performance of some algorithms in concurrent execu-
tions with experiment. We compare the performance of our proposed algorithm with
Kshemkalyani’s [7, 8], Lee’s [9], and Srinivasan’s [15] in terms of the number of messages
sent in a single execution and the total message size. In this paper we only consider the
size of request condition in each message, because it changes while detecting different
deadlocks, and it can reflect the total message size more typically.

In the simulation, the programs are written in JAVA. As the request phase before a
deadlock happens does not inflect the performance of the deadlock detection algorithm,
we input a WFG to the programs at the beginning of the simulation instead of simulating
the procedure of deadlock happening. This strategy makes the simulation more efficient.
The WFG is auto generated randomly. And each algorithm detects deadlocks in the
same WFG. We provide two types of WFGs with different number of request conditions
in the simulation. Each process in WFG of type A has n − 1 successors, which is the
most complicated WFG. In type B, each process only depends on n/2 processes. While
the program is running, we record the messages sent by the deadlock detection algorithm.
After they are finished, we run another program to analyze the messages. All the instances
of the algorithm are run for 100 times in deferent WFG. And we take the mean value as
the final result.
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Figure 2. Number of messages for WFG type A (left) and type B (right)

Figure 3. Total message size for WFG type A (left) and type B (right)

Figure 2 shows that our algorithm sends less messages than the other four algorithms
which conforms with the theoretical result in Table 1. Although in Table 1 the message
size in Kshemkalyani’s algorithm [8] is larger than that of Srinivasan’s algorithm [15],
the experiment shows that Kshemkalyani’s algorithm is better than Srinivasan’s in terms
of total message size in concurrent executions. Because in [15] request condition is sent
as soon as the process receives a probe message, but in [8] it is sent when the process
receives all the expected replies. Thus, the sending procedure in [8] can be put off by
a higher instance while in [15] request condition is sent in different instances. And our
proposed algorithm adopts similar mechanism to prevent the sending of request condition
repeatedly. Figure 3 denotes that our algorithm sends smaller messages.

4. Conclusions. In this paper, we propose a new deadlock detection algorithm for gen-
eralized deadlocks. Our algorithm consists of two phases. In the first phase, each process
diffuses probe messages to its successors recursively. Also they send request conditions to
the initiator when they have received all the probe messages from their predecessors. The
second phase begins when the weight accumulated at the initiator becomes one. In the
second phase, the initiator performs the detection algorithm on the collected request con-
ditions. After that, if a deadlock is found, the initiator executes the resolution algorithm
to resolve the deadlock. We describe our proposed algorithm in Section 2 formally. Our
algorithm has a time complexity of d + 2 in the worst case where d is the diameter of the
spanning tree. The message number is e + n where e is the number of edges and n is the
number of processes in the WFG. And the message size is n. The experiment shows that
our algorithm has a better performance in terms of message number and total massage
size in concurrent executions than the existing algorithms.



710 W. LU, C. YU, W. XING, X. CHE AND Y. YANG

Although our proposed algorithm needs less messages among the probe-based algo-
rithms in a single execution, it sends repeating messages in concurrent executions. In the
future, we can focus on reducing the number of messages in concurrent executions.
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