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ABSTRACT. This paper investigates the design of a variable phase digital filter with a
minimaz criterion. The problem becomes a non-convexr optimization problem with respect
to the filter coefficients. An iterative optimization procedure is developed for solving the
optimization problem. Design examples show that the proposed methods can obtain the
optimal solution with a small number of iterations. In addition, the proposed methods
can obtain a significant improvement in the mazimum frequency response error and the
mazimum phase error deviation over other existing methods.
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1. Introduction. Digital phase-compensation filters have been used in digital signal
processing and digital communication systems as a means of compensating the phase
characteristics of the original non-linear phase system [1-19]. Here, we are interested in
designing tunable phase-compensation filters as the phase characteristics may frequently
be changed from time to time.

In [4-7], digital filters with tunable phase delay or group delay, referred to as variable
fractional delay filters are investigated. A range of applications have been considered,
including timing offset recovery in digital receivers, comb filter design, sampling rate con-
version, speech coding, time delay estimation, one-dimensional digital signal interpolation
and image interpolation. For finite impulse response (FIR) based variable fractional delay
filters, an appropriate optimization problem can be formulated. It is relatively easy to
solve the problem in such a way that the desired characteristics are achieved [4-11].

The design of allpass variable fractional delay filters is more difficult and has been
investigated in [12-14]. In [15], the design of allpass filters with equiripple group delay
errors has been investigated. The key advantage of the allpass filters is that they can
achieve higher design accuracy than FIR filters, yielding smaller frequency response errors
for applications that require unity gain. The design of minimax allpass variable fractional
delay filters is discussed in [16,17]. In [18], the design of an allpass variable fractional
delay filter with minimum integral squared error is developed.

In [19], the design of variable phase allpass filter with minimax criterion is investigated.
The optimization problem is transformed into a linear optimization problem by ignoring
the denominator for the allpass frequency response. As such, the method may not result in
a global solution as the denominator is not unity for all the frequencies. In this paper, we
propose an iterative optimization procedure for solving the optimization problem directly
without using approximation to improve the performance of the variable phase allpass
filter over the method obtained in [19]. Design examples show that the proposed iterative
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method can obtain the optimal solution with low number of iterations. In addition,
the proposed method can obtain a significant improvement in the maximum frequency
response error and the maximum phase error deviation when compared with the existing
methods.

The paper is organized as follows. The problem formulation is discussed in Section 2.
The optimization procedure is developed in Section 3. Design examples are discussed in
Section 4 and concluding remarks are in Section 5.

2. Problem Formulation. Consider the design of an allpass variable phase filter with
coefficients a,(p), 1 < n < N, depending on a tuning parameter p. Each coefficient a,(p)
is expressed as a polynomial of p,

an(p) = Z hn,mpm (1)

where hy, ,,, are real coefficients and M is the order of the polynomial, A > 0. Here, the
parameter p is varied in the range P = [p;, p; + 1], where p; denotes the lower bound.
Denote by h the vector of all the allpass filter coefficients,

h — [hl,Oa ey hN,M] .
The frequency response of the allpass filter for w € Q = [0, w,] where w), is a constant and
p € P is given by

_an(p) + -+ ai(p)e TN 4 gmiNe

H (h, e p) = _nwA (e p)

. . = — -7 2
L+ai(p)e d +---+an(p)e IV ‘ A(h, e, p) 2

where the denominator A (h,e 7%, p) is given as

N N M
A (h, @jw,p) =1+ Zan(p)e—jnw =14+ Z Z hmmpme—jnw (3)
n=1

n=1 m=0

Denote by 0(h,w, p) the phase of the allpass variable phase filter. The filter frequency
response (2) can be expressed as

H (h, ej“’,p) — oJ0(hw,p)

where f(h,w,p) = —Nw — 2¢(h,w,p) and ¢(h,w,p) is the phase of the denominator
A(h, e’ p). The goal for the design of an allpass variable phase filter is to approximate
0(h,w,p) by a given variable phase specification 6,(w, p) for all w € Q and p € P. The
minimax design of the allpass variable phase filter can be formulated as

min y

hyy (4)
|9(h7wap) - gd(wap” < Y, Vw € Qa pE P

For a small value of ~, the constraints in (4) are equivalent to

‘ 9(h7 W,p) - ed(wap)

<

B |2

5 , Vwe Q, peP.

These constraints can be rewritten as:

an (A < (). woen per
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As such, the optimization problem (4) is equivalent to
min y

(5)

”Y
‘tan(%)‘ <tan (%), VweQ, peP

The problem (5) is a non-linear optimization problem with respect to h and ~. In
the following, we will develop an approach for solving (5) by deriving an expression for

tan (M) in terms of the allpass variable phase filter coefficients.

3. Optimization Procedure. We now derive the expression for the tangent constraint
in Equation (5). Following from (2), we have

1+ gﬁ ay (p)e’™
eI (0(hyw,p)=04(w,p)) — —i(Nw+0a(w,p)) ?v:l
1+ r;1 a,(p)eim™
Net0q(.0) N (nw Nu+od(w,p)) (6)
3 3 a, (et
- i etyen) i\’: ) ( nw+Nu+o2d(w,p))

As the numerator of the last expression in (6) is the conjugate of the denominator, we
have the following expression for the phase error:

f(h,w,p) — Og(w, p) Neten) j (nw—Netta@.n)
5 =/<e’ 2 _|_Zlan(p)e ( ) (7)

where Z{-} denotes the phase angle (in radians) for the complex number {-}.
Following from the expression in (7), we have

I{e ]Nu+0d(wp) _'_ % an( ) .(anw+92d(w,P))}

n=1
Nw+9d(w D)
R {e J

N . w46 4 (w,p)
Z an( ) (n = 2d - )}
1Vw+6‘ Nw+04(w
- Sin (7(1 P ) + g a/n( )Sln (nw Qd( 7p)>

tan (9(h,w,p)2— 9d(w,p)> _

(8)

n=1
1

n=
N
Cos (Nw+9d ) + Z an(p) cos (nw - %M)

The optimization problem (5) can be rewritten in terms of the allpass variable phase filter
coefficients as

min y
hyy
N
,sin(W)Jr Zlan(p)SiH(nwfw (7) y ) ) 0
N < tan (2 w E P c
N < : : ,
COS(W)—F > an (p)cos(nw_W)

We have the following property.

Property 3.1. Assume that we have the following constraint on the variable phase error
deviation

0(w,p) — ba(w,p)| <7, Yw€eQ, peP (10)
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Then, the sign of the denominator in (8) is always positive. The above assumption is
generally valid for a good design as variable phase error deviation is generally small.

Proof: Following from the assumption (10), we have

‘9(w,p) — 9d(w,p)‘

5 <g, YVweQ, peP (11)

As such, cos (w) > 0. It follows from (7) that

Nw+0a(w.p)\ | © Nw+b4(w, p)
cos <# +;an(p)cos nw————"—— >0 (12)
for all w € Q2 and p € P. Thus, the property is proved. O

In the following, we will develop an iterative method for solving the problem (9).

3.1. Iterative method. For a small value of v, the assumption in Property 3.1 is valid.
As such, the denominator in (8) has a positive sign and the optimization problem (9) can
be rewritten equivalently as

f .
oy
M X Nw+0 Nw+0
SNy (sin (nw — 7‘”2‘1(“”3)) — tan (%) X COS (nw — Nwtbgw,p) d(“’p)>> P ham
m=0n=1
¢ gsin<%‘i(w’m)+tan()cos(%> YVweQ, peP (13)
M X Nw+0 Nw+0
SNy (— sin (nw — Nwtbew,p) 2¢(m,p)> — tan (%) X COS (nw — Nwtbgw,p) ;(w,p))) P ham
m=0n=1
< —sin (%‘i(w’m) + tan (%) cos (M> YVweQ, peP
\

For a fixed value of v, the problem (13) becomes finding a feasible solution h for a
semi-infinite linear optimization problem in terms of h. One possible method to obtain
a feasible solution is by using discretization and a linear programming technique. The
question becomes how to obtain a minimum value of 7, so that a feasible solution exists for
the problem (13). In the following, we propose an effective iterative procedure to obtain
the minimum value 7, so that the sequence v reduces at each iteration until no further
improvement is obtained. The advantage of the proposed procedure is that the optimal
solution from one iteration can be used as an initial solution for the next iteration.

Initially, we start with a large value of vy so that the problem (13) has a feasible solution
and set k£ = 0. For an iteration k£ with a fixed v, £ > 0, we introduce a new parameter
n > 0 and solve the following optimization problem:

( max 7

h,n
M N

SNy (sin (nw — 7Nw+92‘i(w’p)) tan (72’“) X COS (nw — 7N‘”+92‘i(w’p)>) P + 1

4 gsin(wﬂl())—l—tan( )COS(W),VMEQ,pEP

Z Z (— sin ( 7N“+92d(w’p)) tan (72’“) X COS (nw — 7N‘”+92‘i(w’p)>> P + 1

m=0n=1

< —sin (7]\[‘”0;(“’1))) + tan (77’“) cos (7N“’+02d(w’p)> ,YweQ, peP

\

(14)
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Denote by (h®, ™) the optimal solution for (14) with n*) > 0. Following from (9), the
update v, for the (k + 1)™ iteration can be obtained based on h(*) as

Yer1 = 2arctan(p) (15)
where

M N
—sin (%«i(w)) + 3 mehg?nsm (nw_ %‘M)

m=0n=1

[ = max o
w’
Pl cos (W) + Zo lemhgf,)n cos (nw _ W)
m=0n=

We have the following property.

Property 3.2. The sequence of {vi} reduces from one iteration to the next with ~, >
Ve+15 k 2 0.

Proof: For the kth iteration, the problem (13) has a feasible solution with 7;. Thus,
the problem (14) has a feasible solution with 74 and n = 0. Also, the optimal solution for
(14) satisfies n° > 0. As the constraints in (14) are satisfied, we have

S < tan (%) (16)

Or Yet1 < Vi- O]

Remark 3.1. As can be seen from Property 3.2, {v} is a reducing sequence. Since the
sequence s bounded, v, > 0, Vk, the limit of the sequence exists and it is the same as the
mainimum for the sequence,

lm v, = Yopt (17)
k—o00

3.2. Sufficient stability constraints. We now investigate the sufficient stability con-
dition for the allpass variable phase filter H (h, e’“, p). The sufficient stability constraints
for the allpass filters [20] are given as

R{A(h,e,p)} >0, wel0,n] (18)

These constraints can be formulated as linear constraints with respect to the allpass filter
coefficients h and can be added into the optimization problem (14) if the optimal allpass
filters are unstable. Here, we consider the allpass variable phase filters specifications as
given in [19]. If the constraints in (4) are satisfied, then we have

h N
(b, p)] = | PP 2N
2 2
0 N
< W —l—%, YVweQ, peP

We now consider two design examples as given in [19].

Example 3.1. We consider

04(w,p) = —Nw + pw? /7 (20)
where w, = am, « = 0.9 and py = —1/2. As such
2 2,2 2
pw v atm v oot oy om
h < ||+ =< — =t =< = ) —1/2,1/2].
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As such, cos(¢p(h,w,p)) > 0 for allw € [0,0.97], p € [—1/2,1/2] and the condition (18) is
satisfied for all w € [0,0.97] and p € [—1/2,1/2]. As such, if the allpass filters are found
to be unstable, we only need to enforce the constraints (18) for w € [0.97, 7|.

Example 3.2. We consider the design in which the desired phase changes linearly with
respect to the tuning parameter p,

Oa(w,p) = —Nw + pw (21)
with w, = ar, a« = 0.9, and p, = —1/2. Similar to the previous example, we have
9(h,w0,p)| < pwl + 5 < T4+ 2 < 5, Vw € (0,007, pe [-1/2,1/2],

Thus, if the allpass filters are found to be unstable, we only need to enforce the constraints
(18) for w € [0.97, 7.

The algorithm for finding the minimax solution can be summarized as:
Procedure 3.1:

e Step 1: Initialize a small tolerance . For the design examples, ¢ is chosen as e = 107%.

e Step 2: Initialize 7, so that the problem (13) has a feasible solution or the problem
(14) has an optimal solution with n° > 0. If n° < 0 then increase vy, := 27, and
return to the beginning of Step 2. Otherwise, set £ = 0 and go to Step 3.

e Step 3: Solve the problem (14) for (h*), n®)) with ~;. Update v44 as in (15). Check
the pole positions of the allpass filters to ensure stability. If the filters are unstable,
then add the stability constraint into the design problem [16] and go back to the
beginning of Step 3. Otherwise, check for the convergence of the procedure. If

Vi1 — | <€ (22)

then stop the procedure and go to Step 4. Otherwise, set k& := k + 1 and return to
the beginning of Step 3.

e Step 4: The optimal solution to the problem is y,p1 = Y4+1 With the variable allpass
filter coefficient h().

In the following, we will investigate the effectiveness of Procedure 3.1 in different cases.
4. Design Examples. We consider two examples given in [19] for comparison purpose.
The proposed method, however, is general and applicable for any design specification.

Example 4.1. Consider the design of a variable phase allpass filter as in [19] with the
designed phase response 04(w,p) as in (20). The optimization problem (13) is solved using
discretization with L = 201 points for w and K = 21 points for p. Design examples are
run using an Intel Core 17-4790 CPU with 3.60GHz.

Table 1 shows the number of iterations, the mazimum frequency response error

€ fmax = Hul)apx |H(w7p) - Hd(wap)| [dB]7 (23)

the mazrimum phase error

€Pmax = H:)E;X |9(W,p) - gd(wap” (24)

TABLE 1. Comparison for the first case with 04(w,p) = —Nw + pw?/7

Number of
Methods iterations Error e max [dB] | Error epmax | Max pole mag.
Iterative method 8 —-39.36 dB 0.0108 0.891
Method [19] — —35.87dB 0.0161 0.885
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Phase error

%107

10(w,p)-0 ,(w.p)l/m

FIGURE 1. Phase error with 04(w,p) = —Nw + pw?/7

and the mazimum pole magnitude for the iterative method and the method obtained using
[19]. For the iterative method, Procedure 3.1 converges with ¢ = 10~* and 5 = 0.1.

It can be seen from the table that mazximum frequency response error for the proposed
method is 3.49dB better than the method obtained in [19]. In addition, the mazimum
phase error for the optimal solution using the iterative method is 0.0108, which is lower
than 0.0161 obtained as in [19] as the method in [19] ignores the denominator in (13) and
as such the solution obtained might not be the global solution. For this case, the allpass
filters obtained in all the iterations are stable, as such the stability constraints are not
required to be included. Furthermore, the table shows the maximum pole magnitudes for
the optimal allpass filters, which are all smaller than one. As such, all the variable phase
allpass filters are stable with poles inside the unit circle.

Figure 1 plots the phase error (8(w,p) — 04(w,p)|)/m for w € Q@ and p € P as in [19].

The maximum phase error for the solution obtained is smaller than the method obtained
in [19].

Example 4.2. We now consider another example with the desired phase given as in
(21) with v = 0.1 and € = 10~*. Table 2 shows the number of iterations, the mazimum
frequency response error, the mazximum phase error and also the maximum pole magnitude

TABLE 2. Comparison for the second case with 6;(w,p) = —Nw + pw
Number of
Methods iterations Error e max [dB] | Error epmax | Max pole mag.
Iterative 10 —33.35dB 0.0215 0.9341
Method [19] — —26.01dB 0.0500 0.9434
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for the two methods. Similar to Example 4.1, the mazimum frequency response for the
proposed method is 7.34 dB better than the error obtained using the method in [19]. In
addition the maximum phase error for the iterative method is 0.0215, which is significantly
smaller than 0.050 obtained using the method in [19]. Figure 2 shows the phase error for
the optimal allpass filters. The maximum phase error is significantly lower than the errors
obtained in [19]. Similar to the previous example, all the poles for all the iterations are
inside the unit circle. As such it is not necessary to include the extra sufficient stability
constraints.

Figure 3 shows the convergence plot for the iterative method for the two examples with
the initial v = 0.1. The iterative method converges fast for both cases, which requires only
a few iterations for convergence. Note that the algorithm converges much faster if the
accuracy € is chosen less than 1074,

5. Conclusions. This paper investigates the design of a variable phase allpass filter with
a minimax criterion. The problem results in a non-linear optimization problem with re-
spect to the allpass filter coefficients. An iterative optimization approach is developed for
solving the problem. Design examples show that the iterative method requires only a few
iterations for convergence. In addition, the iterative method can obtain a significant im-
provement in the maximum frequency response error and maximum phase error deviation
when compared with an existing method.
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