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ABSTRACT. In this paper, a model for uncertain networked control systems with distur-
bances and short random delays is studied, and a state feedback controller is investigated.
First, a model for uncertain networked control systems with disturbances is proposed.
The uncertainty of transmission delay is translated into the uncertainty of coefficient
matriz in this system, and the uncertainty parameter is described by a Poisson distribu-
tion function. Then, by using the Lyapunov stability theory and linear matriz inequality,
the stability of this system with disturbances is proved. A numerical example with two
initial conditions case is given where the optimal solution in different states by LMI tool-
box of Matlab is solved. Simulation results show the rationality and applicability of the
proposed method.

Keywords: Uncertain networked control systems, State feedback controller, Linear ma-
trix inequality, Poisson distribution

1. Introduction. As is well known, networked control system (NCS) is a feedback con-
trol system which is a closed loop composition of communication networks. NCS is a
control system which uses a network as a communication medium to connect the plant
and the controller [1,2]. The systems are sensing and exchanging control information by
sharing wired or wireless network communications. So the NCSs have more advantages as
less connections, low cost, great flexibility compared with traditional direct point-to-point
control systems [3-5]. Therefore, the NCSs are widely used in automobile manufacturing,
robot, vehicles control systems, etc. With the development of networking communication
technologies, NCSs are becoming more and more popular. In the past few years, more
and more researchers have paid attention to the study of stability analysis, state feedback
controller analysis and filter design of NCSs [6,7].

The most significant negative factors that affect NCSs performance are transmission
delays, quantisation and data packet dropouts [8-10]. Most of the analysis about dis-
tributed control systems assumed that the probability of transmission delays is known,
but as we all know, the transmission delays are random and different to certainty [11-13].
On the other hand, because of the changing uncertain coefficient matrix, it is usually
impossible to study NCS thoroughly. Therefore, the study about transmission delays of
uncertain networked control systems (UNCSs) has received considerable attention over
the past years [14-16]. Wang et al. [17] addressed the issue of providing guaranteed
transient performance and robustness for a class of adaptive architectures of UNCSs. By
using the Lyapunov stability theory, the uncertainty parameter model of networked con-
trol systems with long time delays is analyzed, and the robust control law is proposed by
Liu et al. [18]. An approach to design predictive control for UNCSs’ robust distributed
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model with time delays was addressed by Zhang et al. [19]. A guaranteed cost control
problem of UNCSs with random networked delay and packet dropouts was presented by
Du et al. [20]. Xie et al. [21] considered a fault-tolerant controller for UNCSs with packet
dropouts and actuator fault and adopted a more practical and general model of actuator
gain faults. By using the Lyapunov-Razumikhin method, Huang and Nguang [22] studied
the robust stabilization and disturbance attenuation for a class of UNCSs with random
communication network-induced delays. The output feedback guaranteed cost control
problem of UNCSs with random packet dropouts and transmission delay was investigated
by Qiu et al. [23].

Poisson distribution is a discrete probability distribution widely used in statistics and
probability theory. It is suited to describe the number of random events in the unit time
[24,25]. So, the uncertainty parameter is described by a Poisson distribution function
in this paper. The transmission delay’s uncertainty is translated into the uncertainty of
system’s coefficient matrix, in the time varying model of the UNCSs. After that, by using
the Lyapunov stability theory and linear matrix inequality, the stabilization problem of
UNCSs is solved.

In this paper, motivated by the above-mentioned works on predictive control and guar-
anteed cost control of UNCS, we are mainly concerned with the problem of asymptotically
stability and state feedback controller for a class of discrete-time UNCS. It involves trans-
mission delays and external disturbances at the same time. Inspired by the performance
of Poisson distribution, we investigate the uncertain coefficient matrix of UNCS through
the discrete Poisson distribution. The analysis method presented here has the follow-
ing contributions compared with the existing ones. 1) A discrete-time UNCSs model with
transmission delays and external disturbances is proposed, what is more, the disturbances
are described as Gaussian white noise. 2) A state feedback controller is derived and the
discrete time UNCS is asymptotically stable while transmission delays have upper bound.
3) In the process of proof, a new variable e(k) is introduced, which gives us a new idea to
simplify our analysis. 4) By employing the mathematical method of discrete probability
distribution, two uncertain coefficient matrices are described by a Poisson distribution
function in the simulation.

This paper is organized as follows. The discrete-time UNCS model is investigated in
Section 2. By exploring the linear matrix inequality, two theorems about state feedback
controller design are presented in Section 3. The numerical example with two different
initial conditions is discussed in Section 4. Section 5 concludes this paper.

2. The Model of Discrete-Time System. The NCSs structure is depicted as Figure
1. From Figure 1, we can see that sensor-to-controller and actuator-to-controller are
connected by network. There are induced delays in networks. In this system, the sensor
and actuator are time-triggered. In other words, sensor and actuator sample the data

Actuatoré » Plant » Sensor

Controller

FIGURE 1. The structure of NCS
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according to a sampling period. What is more, controller is event-triggered, when it
accepts the data from sensor, the controller will begin some operations at once.
The discrete time system with time delays is

2k +1) = (A + AAR)2(k) + (B + AB(R))u(k) + Cw(k) 1
y(k) = La(k) + Cro(k) (1)

where z(k) € R" is the state vector, u(k) € R™ is the control input vector, y(k) € R"
is the ideal control output vector, w(k), v(k) are the disturbance matrices, and both of
the two disturbance matrices are mutually independent. A, B, C', Cy, L are the known
appropriate dimensions matrices. AA(k), AB(k) are the time-varying unknown matrices
with appropriate dimensions, satisfying the following forms:

[ AA(k) AB(k) | =DF(k)[ Hi H; | (2)

where D, Hy, Hy are known appropriate dimensions matrices, F'(k) is an unknown matrix,
but it is Lebesque measurable and satisfies F'T (k)F (k) < I.
Design the state feedback controller as:

u(k) = Kz(k) (3)

where K is the gain matrix needed to be designed.
Combining (1) and (3) yields:

v(k+1)=(A+ AA(k)) (k) + (B+ AB(k))Kz(k) + Cw(k) (4)

Let 7(k) denote the signal transmission delays at time instant k. dj; denotes the largest
allowable delay of 7(k), dyy = max(7(k)), and then we can obtain:

0<7(k) <d(k)<dy<T

where d(k) = [r(k)]. [7(k)] denotes that it will always round down 7(k) to the nearest
whole unit. 7" is the sampling periods.
Thinking e(k) = x(k) — xz(k — d(k)), and combining with (4), obtain:

z(k+1) = (A+AA(k))z(k)+(B+AB(k))Kx(k—d(k))+(B+AB(k))Ke(k)+Cw(k) (5)
So, for all positive integers k, we have
el (k)Qe(k) < pa’ (k)Qa (k) (6)

where ) is a positive weighting matrix, and p € [0, 1).
Proof: Because 0 < 7(k) < d(k) < T, we have |z(k) — z(k — d(k))| < |z(k)|.
So, for some u € [0,1) and positive weighting matrix €2, we have:

el (k)Qe(k) < pa” (k)Qx(k)

Thus, the result is proved.
In order to analyze our model better, the following remark is needed.

A % S . A BT
Remark 2.1. B C ] simplifies the symmetric matrix B C

use x to represent a term that is induced by symmetry, in the block symmetric matrice.

. In other words, we
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3. State Feedback Controller Design. In order to analyze the UNCSs performance,
some lemmas and theorems are given in the next.

Lemma 3.1. [26]: Let > ,, >, and >, be real matrices of appropriate dimensions,

with 3, = 31, the 3+, A(k) S+ S0 AT (k) 327 < 0 holds for all A(k) satisfying
A(k)AT (k) < I if and only if for some g > 0,

Sy ZZ te Zj S <o (7)

Lemma 3.2. [27]: (Schur-complement of matrix):

Let Z, = Z]', 0 < Zy = Z1 and Zs be real matrices of appropriate dimensions, and
7y Zr —Zy 7.
T r7—1 - - 1 3 2 43
then Zy + Z35 Zy " Z3 < 0, zfcmdonlyzf{z3 _Z2]<Oor[ 77 Z1]<0'

From [28], we can consider a system without uncertain factor firstly, then to analyze the
performances of the systems which have certain parameters, and finally we will analyze
the UNCSs performance.

Then, considering the system (1) as a system with certain factor, Equation (5) can be
rewritten as:

w(k +1) = Az(k) + BKa(k — d(k)) + BKe(k) + Cw(k) (8)

where A = A+ AA(k), B = B+ AB(k), considering there are appropriate dimensions
matrices A, B, without uncertain factors AA(k), AB(k).

Firstly, let us analyze the stability about the disturbance systems without considering
the parameter uncertainties.

Theorem 3.1. For given parameter u > 0, dy and state feedback gain K, system (1)
without considering parameter uncertainties is asymptotically stable if there exist real ma-
trices P >0, >0, R>0, M >0, Q>0 and X, Y with appropriate dimensions and
e > 0 satisfying that

- plQ_p -
+X +XT * * * * * *
+dy M)P™!
—1 T
_p-lyTp-t 0 —p7lQpP~! * * * *
<0
0 0 0 —ptop! * * *
0 0 0 0 0 * x
AP BKP™! 0 BKP™! cp~! .
—1
V?f;]ﬁ VauBK P! 0 VauBKP™' \JduCP™ 0  -R

MY M X

Proof: Construct the Lyapunov-Krasovskii function as:

V() =Vi+ V2 + Vs (9)
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where

dar (10)

Z 5(k) = x(k+ 1) — z(k)

where P, ), R are positive-definite matrices with appropriate dimensions. 6(k) denotes
the difference between two adjacent inputs. Taking the derivative of the Lyapunov func-
tion (11) along the solution of Equation (8), the increment of V (k) is given by:

AV (k) = AVi(K) + AVa(k) + AVa(k) (11)
where

AV, =2 (k+1)Px(k + 1) — 27 (k) Pz (k)
=[Axz(k) + BKz(k — d(k)) + BKe(k) + Cw(k)]" P[Az (k)
+ BKx(k — d(k)) + BKe(k) + Cw(k)] — 27 (k) Px(k)
AVy(k) =" (k)Q (k) — 2" (k — dar)Qu(k — dar)

AVs(k) = dpdT (k)RS (k) — i ST(HRS(1)
Combining e(k) = x(k) — xz(k — d(k)), €T (k)Qe(k) < px (k)Qx(k) Z;:;fd(k)é(j) =

ik (@ 1) = 2(j)) = @(k) — a(k — d(k)) and Y770, 60) = S50k g, (@Gt
1) —z(j)) = x(k) — 2(k — dyr), we can obtain that

AV (k) = AVi(k) + AVa(k) + AVs(k)
< AVi(k) + AVy(k) + AVi(k) + pa” (k)Qz(k) — €T (k)Qe(k)

+26T(k) X

o) = ok = d() — Y 5(]-)]

+ 267 (k)Y

w(k) — 2(k — dar) — Xk: ]
+da" (k) ME(R) — €7 (k) ME(k )

This structure ensures the stability of the discrete time-delay system (8), where, M > 0,
X and Y have appropriate dimensions, and

(k) =[2"(k) aT(k—d(k)) 2"(k—dy) e'(k) w'(k)]

Denote the augmented state ¢(k,[) as ¢(k, 1) = [ %((];)) ]
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Then Equation (12) can be simplified as:

Q—-—P+dyM =« * *

0 usd o ox *
AV (k) <&" (k) 0 0 0 +[X Y=X —Y Ospxon |
0 0 0 -Q
XT
T _ yvT —
- Y_Yﬁ( +[PA PBK 0 PBK PC ] P
02n><5n

[ PA PBK 0 PBK PC]+dy[RA-R RBK 0 RBK RC ]

R'[RA-R RBK 0 RBK RC] (k)
> (kD) [% fé]g(k,l)

I=k—dn

_ zk: gT(k,l)[yT é]g(k,l)_

I=k—dn (13)
13

Next, Equation (13) can be simplified as:

AV (k) < (k) {IT+ T + I'7 4+ U5 P~ Wy + dpy U5 R 03 } £(k)
k

I=k—das I=k—dns
where
Q—P+dyM =« * x %
0 ue) % * %
M= 0 0 -Q * *|, T=[X Y=X =Y Ospxon |
0 0 0 —Q =
0 0 0 0 0

Uy =[PA PBK 0 PBK PC], Uy =[RA—R RBK 0 RBK RC ]
So, if AV (k) <0, then we have

M4+ T+ T U, P Wy +dpy U R4 <0 (14)
and
M Y M X

are all satisfied.
Using Schur-complement with Equation (14), it is translated into:

\1121 —-P *
Vdy¥sy 0 —-R

H+T+I7 %
<0 (16)
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Then, define a matrix as,

p! * * * *
G 0 P ' « * *
G = P! , where G| = 0 0 P! x *
R! 0 0 0 P! *
0 0 0 0 P!
From the above matrix inequality (16), we have
[Gl 1 [H+F+FT x % 1 [Gl
P! o —P %

: : P! 1<0
[ r | v o -r] | n |

Then, it can be rewritten as

- plQ_p 3
+X +XT * * * * * *
+dy M)P™!
—1 T
—-plytp-t 0 ) * * * * <0
0 0 0 —_p-ltop-! * * *
0 0 0 0 0 * *
APt BKP™! 0 BKP™! cp~! —-p~! *
Viu (APTH e ot 0 JAuBKP~' \JdyCP~' 0 —R-
—P’l) M M M J
(17)

From all above, Equation (17) is an LMI. After finding the LMI solutions, Equation
(14) can be rewritten as AV < —¢[|£(k)||?, and & > 0 can be any small.

Finally, from the LMI of Equation (17) with P, @, R, M, ©, we can get AV <
—e||&(k)|* with & > 0. Therefore, the system (8) without considering parameter uncer-
tainties is asymptotically stable. Thus, Theorem 3.1 is proved. Theorem 3.1 provides
sufficient condition for state feedback controller design with closed loop UNCS. Then, we
will analyze the performances of UNCS (1), and the state feedback controller gains with
UNCS will be designed.

Theorem 3.2. Consider the UNCS system (1). For given parameters pu > 0 and dyy,
there exists a state-feedback controller u(k) = Kx(k), the UNCS is asymptotically stable
if there exist matrices Q@ >0, S; >0 (i =1,2), M >0,Q >0, X, Y, K with appropriate
dimenstons and a scalar € > 0 satisfying the following LMIs:

M4+T 417 % %

Zo1 -S| + eDDT *
1

= 0 Sy +edy DDT <0 (18)
=M 0 0 el
M v M X
& >0 & >0 19
YT 28, —S, | — [ X" 28, -8y | — ( )
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where i i
@ -5+ dMM * * x %
_ 0 ,ufvl * X %
= 0 0 —@ x ok
0 0 0 —-Q x
i 0 0 0 0 0]

T'=[X Y-X -Y Osxon |, E2u=[AS, BK 0 BK CS; |

E31 =V dM [ ASl — 51 B.[? 0 Bf(i 051 ] y E41 = [ H151 Hgl? 0 HQI} 0 ]

Moreover, if the above conditions are feasible, a desired controller gain matrix is given
by K = KSt.

Proof: Replace matrices A, B with A + AA, B + AB in Equation (16). Because
[ AA(k) AB(k) | = DF(k)| Hi H, ], wehave AA = DF(k)H; and AB = DF(k)H>,
and then Equation (16) can be rewritten as:

T Q-P+X .
XT 4 dy M % % % % T
vyt —x7T uQ % % % * %
-y 0 -Q x * %
0 0 0 —-Q * * * <0
0 0 0 0 0 * *
PA+PDFRH | p DPFLEg mr 0 p DP;?S mx  PC P
+RD\{7d(_Ak4)(I§jl _R) +1¥/1;@§1§ng) 0 +1}/1§((1§ng) VduRC 0 -R |
(20)
Equation (20) can be rewritten as:
[ QP+ X+ X" 4+dyM * * * * * % |
yr—x7T €2 * * * * *
Y7 0 —Q * * * *
0 0 0 —Q * * *
0 0 0 0 0 * *
PA PBK 0 PBK PC —P %
i Vdy(RA - R) VdyRBK 0 +dyRBK +dyRC 0 -R |
I 0 * * * x ok k|
0 0 * * x % %
0 0 0 * %k ok
+ 0 0 0 0 * x % | <0
0 0 0 0 0 x =*
PDF(k)H, PDF(k)HyK 0 PDF(k)HyK 0 0 =*
i VdyRDF(kYH, +/dyRDF(k)H,K 0 +/dyRDF(k)H,K 0 0 0 |
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Then, it can be simplified as:

MI+T+T7T  « * 0 * %
W, -P x|+ T, 0 % | <0 (21)
Vs, 0 —R V9, 00
where
0 s *
I = 0 0 —Q * =], I'=s[X Y=X =Y Osuxon |
0 0 0 —-Q =
0 0 0 0 0
v, = [ PA PBK 0 PBK PC ] ,
U, = [RA—R RBK 0 RBK RC],
\If"21 = [ PDF(k)H, PDF(k)H,K 0 PDF(k)HyK 0 ]
\I!’gl = [ RDF(k)H, RDF(k)H,K 0 RDF(k)HyK 0 ]
M+T+TT % [ O5nxn 1
Let 21 = \1’121 —-P * , 22 = PD , 23 = [Hl HQK 0
[ V¥, 0 —R J [ VdyRD J

HyK  0p,43,). Equation (21) can be further rewritten as:
Y1+ S F (k)2 + 2T FT(R)XT <0 (22)

Combining it with Lemma 3.1, we have ¢ > 0 with

Y+ S +eXI; <0 (23)
P~' o« * * *
Jiox * 0 P71 x * *
Let J=1| 0 P! x |, where.J, = 0 0 P! *
0 0 R 0 0 0 P! x

0 0 0 0 P!
Then, pre- and post-multiplying Equation (23) with J, we can obtain that JY;J +
eJY YT T+ eJ¥TS5] < 0, and because J = JT, Equation (23) can be further rewritten
as:

IS T 4 e85 (I8) T +e(J%3)TT%3 < 0

Combining it with Lemma 3.2, we have:

IS 48y (J8,)T (JE5)T
[ 75, T <0 (24)
and
LM (PTYPTHT ] LM (PTIXPTY) ]
{ piyp-t  p-ipp-i |20 | prixpot o poippl [ 200 ()



760 X. LV, J. FEI AND Z. FENG

According to the above analysis, one can conclude that:

[ PHQ-P
+X +xT * * * * * * *
+dp M)P!
—1 T
7]}11)(;71 [LP_IQP_I * * * * * *
—plyTp! 0 —-plop! * * * * *
0 0 0 —plop-! * * * * <0
0 0 0 0 0 * * *
Ap~! BKP~! 0 BKP~! cp~! _P_IT * *
+eDD
Vdy (APT! -1 -1 1 -R!
dy BKP 0 VduBKP \dy CP 0
—p71) M M M +edy DDT T
H, P! HyKP~! 0 HyKp~! 0 0 0 —el |

(26)
_ Defining some new variables Sy = P~', S, = R™', Q = P7'QP~', R = P7'RP™,
O=P QP! M=J,MJ, = ATJ, K=KP' X=PlXPlYy=pPlypl
Equation (26) can be simplified as:

Q-5
+X + X7 * * * * * * *
+dMM
yT _xT ,uﬁ * * * * * *
-vT 0 —Q * * * * *
0 0 0 —Q * * x *
0 0 0 0 0 * * * <0
ASy BK 0 BK CSy +;§11)T * %
@1?51 VdyBK 0 \/dyBK \/dyCS 0 e djg pr
| HS HyK 0 H)K 0 0 0 —el |
(27)
Then, Equation (27) can be rewritten as:
I + r + 7 * * *
521 —Sl + €DDT * *
— T <0
=31 0 —SQ + SdMDD *
541 0 0 —el
where
Q—S1+dyM x * * %
0 /LQ * * %
1= 0 0 —-Q = |,
0 0 0 —Q
0 0 0 0 O

I'=[X Y-X -Y Ospson ], Zu=[AS, BK 0 BK OS],

E3IZVdM[AS1_Sl BK 0 BK C’Sl], E41:[H151 HQK 0 HQK 0]

From Equation (25), one can conclude that the order principal minor determinant of

M Y and M X is greater than zero
YT Slel XT SIRSI & .
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Because (Sy — S1)R(Sy — S1) = Sz — 251 + S1RS; > 0, we have

M Y M X
- >0 ~ >0
|:YT 251—52]_ ’ |:XT 2SI_SQ:|_
In conclusion, we can obtain that:
M+T+1I7 * * * ~ ~
Eo1 —S) +eDD” * * M Y
- >
=31 0 —Sy + 6dMDDT <0, Yy’ 25, — Sy | — 0
=4 0 0 —el
M X : : . :
S > 0 are all satisfied. Here, Equation (27) is an LMI, and it can ensure
X' 25 -5,

our closed loop system (1) is asymptotically stable. For given constants yo > 0 and dpy,
the state feedback controller u(k) = Kx(k) with control law K = KS; " is designed after
finding the LMI solutions. Therefore, the proof of Theorem 3.2 is completed.

4. Numerical Example.

4.1. Example 1. A numerical example with two initial conditions which can justify the
effectiveness of the presented method is given in this section. Considering a generalized
discrete UNCS with transmission delays:

0.8 0.2 04 ~1.0 05 0
z(k+1) = 0 06 08 | +AA|z(k)+ (|| 20 =10 0 | +AB ]| uk)
0 0 04 ~1.0 01 0.1

0.002 0.01 0
+ 0 0.01 0.001 | w(k)
0.01 0.02 0.02

20 1.0 0 0.002 0.01 0
y(k)=1 0 1.1 01 [z(k)+| 0 001 0.001 | v(k)
0.1 02 0.2 0.0 0.02 0.02

Choose as p = 0.4, dy = 3, the disturbance matrices w(k), v(k) are described as
Gaussian white noise. Because AA = DF(k)H,, AB = DF(k)H,, we choose:

01 0.1 0 0.8 1.1 0.6 1.0 0.1 0.5
D=|0 01 01|, H=]010101|, H=|0103 0
0 0 0.1 0 0 0.1 0.2 0.3 0.2

and F(k) is a discrete probability distribution function obeying Poisson distribution,
F(k) = ’]\ﬁ—’fe*)‘ where A = 0.9. F'(k) denotes the number of random events in the unit time
(space) at time instant k.

Then, by using the LMI toolbox to solve the LMI Equation (19) and Equation (27) in

Theorem 3.2, the corresponding feedback gain K is obtained

[ —0.009 —0.0133 —0.0271]
K =1 00432 0.0568 0.2177 (28)
[—0.1508 —0.2270 —0.3798J

The simulation time is chosen as k € [0,100], and we can choose two different initial
conditions X (0) to describe the proposed method.

The initial condition is assumed to be X(0) = [ —0.9 1.9 1.5 ]7, and the variations
of state responses z(k) and control input u(k) are shown as Figure 2 and Figure 3.
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State responses x(k) of system with disturbances

x1
I ——--x2
| x3 |

state x(k)

Ao o
0.5
_1 I 1 1 1 Il Il Il I Il
0 10 20 30 40 50 60 70 8 90 100
Time (k)

FIGURE 2. The different situations of state x(k) with X (0) = [-0.9 1.9 1.5]7

Control input u(k) of system with disturbances
06 T : T T T T T

ul

—-—-u2
04t 3l

02 B

02t i

Control input u(k)

04} 4

_08 1 1 L 1 1 1 L 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (k)

FIGURE 3. The different situations of control input u(k) with X (0) = [-0.9 1.9 1.5]7

The state responses of the UNCS with disturbances are shown in Figure 2. The control
input responses are described in Figure 3 with the state feedback gain as in (28). It can

be concluded that the system responses are expected with the initial condition X (0) =
[-09 19 1.5]%.

4.2. Example 2. In this part, we put a contrast example which has the same condition
with Example 1. We described the NCS with a certain model.
Consider a generalized discrete time-delay system with certain coefficient.

08 0.2 0.4 ~10 05 0
w(k+1) = 0 06 08 | |ak)+|] -20 -1.0 0 u(k)
0 0 04 ~1.0 0.1 0.1

0.002 0.01 0
+| 0 001 0.001 |w(k)
0.0l 0.02 0.02



y(k) =

Then, by using the LMI toolbox to solve the LMI Equation (15) and Equation (17) in
Theorem 3.1, and the initial condition X (0) =[ —0.9 1.9 1.5 |7, the variation of state

STATE FEEDBACK CONTROL

20 1.0 0 0.002 0.01 0
11 01 [z(k)+| 0 001 0.001
0.1 0.2 0.2 0.01 0.02 0.02

z(k) and control input u(k) can be obtained as Figure 4 and Figure 5.

The state responses and control input response of the NCSs with disturbances are
plotted in Figure 4 and Figure 5, respectively. From the simulation results, it can be
concluded that the system becomes stable slowly and has more turbulence in the control

input response than the turbulence produced in our method.

25

state x(k)

FIGURE

0.8

Control input uik)

02t

State responses x(k) of system with disturbances

x1
—-—- X2
%3

1
20 30 40 50 60 70 80 90
Time (k)

Control input u(k) of system with disturbances

100

4. The NCS of state z(k) with X(0) =[-0.9 1.9 1.5]7

06

04}

0.2H

0.4

ul
—-—--u2
u3

FIGURE 5. The NCS of control input u(k) with X(0) =[-0.9 1.9 1.5]7

1
20 30 40 50 60 70 80 90
Time (k)
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Therefore, this study discusses the different states with k& € [0,100]. On the whole, the
system with the proposed method is asymptotically stable. From the contrast example,
our new method can make the system become stable quickly and ensure the control input
response steadier. So the results presented in our paper provided evidence for our new
ways.

5. Conclusion. The model of UNCSs with short random delays and disturbances is
investigated in this paper. First, a model for uncertain networked control systems with
disturbances is introduced. The transmission delay’s uncertainty is translated into the
uncertainty in the UNCSs model. By using the Lyapunov stability theory, the stability of
the model without uncertain factors is verified, and then the stability of the model with
uncertain factors is testified further. Next, by using the LMI method, the state feedback
controller is designed. It should be pointed out that the unknown matrix is described
as the Poisson distribution function in the numerical simulation. Finally, the numerical
example verified that this system is asymptotically stable, demonstrating the validity and
availability of the presented method.
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