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ABSTRACT. This paper addresses the finite-time Hy, output tracking control problem
for a class of switched neutral systems. First, the finite-time stability (FTS) and the
finite-time H, problem for the augmented systems are investigated. By using the mode-
dependent average dwell time (MDADT) method, sufficient conditions for finite-time
boundedness and finite-time H ., performance of the augmented systems are derived. Sec-
ond, based on the sufficient conditions derived in finite-time H,, performance analysis,
and a state feedback controller is designed which makes the closed-loop output tracking
systems be finite-time boundedness with some H., performance level. Finally, a numer-
ical example is given to illustrate our results.

Keywords: Finite-time stability, Finite-time H., output tracking control, Switched
neutral systems, Mode-dependent average dwell time method

1. Introduction. Tracking control concerns the problem of designing of controllers that
enables the target output of a system follows a reference signal. It has been extensively
applied in aerospace control systems, robot control systems, signal processing systems
and other practical systems. Many results have been reported on this issue, see [1-3],
and the references therein. In [1], reliable robust flight tracking control problem for
aircraft system is studied. Based on the multi objective robust performance analysis, a
controller including tracking error integral action is developed to against actuator faults
and control surface impairment. Based on an optimal control approach, robust tracking
controls for uncertain linear systems are studied in [2]. The output tracking control of
switched systems with time-varying delay under asynchronous switching is investigated
in [3] and a new Lyapunov function dependent on the controllers’ switching signal is
constructed, which can effectively counteract the difficulty of controller design to achieve
tracking objective under asynchronous switching.

To the best of our knowledge, tracking control problem has received increasing attention
in the last few years. A considerable amount of results have been reported in the litera-
ture. However, most of the results in this field concern the tracking control problem over
an infinite-time interval. In this sense it appears reasonable to research the finite-time
H,, tracking control problem which concerns the stability and the H,, output tracking
performance of the system over a fixed finite-time interval.

In order to better study the finite-time H,, tracking control problem, it is necessary
to have a grasp of the overall information of finite-time stability (FTS) and finite-time
H,, control problem. FTS, which was proposed by Dorato in 1961 [4], is a practical
stability concept of considering the transient stability performance of a system. Due
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to its good robustness and anti-disturbance performance, FTS problem has attracted
widespread attention in the past several decades. Achievements emerged for different
systems endlessly in the light of the development of Lyapunov theory and linear matrix
inequalities (LMIs) theory, see [5-7] and the references therein. The H,, control problem
concerns the problem of the suppression of disturbance and uncertainties in particular
systems. Finite-time H,, control problem concerns both the FTS and the H,, control
problem defined over a finite-time interval. It is natural that great efforts have been
devoted to the study of finite-time H, control problem, see [8-10].

On the other hand, switched systems, which consist of a family of subsystems and a
switching signal governing the switching among them, have been extensively studied in the
past several years, see [11-15]. Neutral systems are a special class of time-delay systems
appearing in many dynamic systems, which depends on both the delays of state and the
state derivative. Some practical processes can be modelled as neutral systems, such as
distributed networks, heat exchanges, and steam processes. Switched neutral systems have
attracted special attention during the past decade. Some useful results have been reported
in the literature (see, e.g., [8,16] and the references therein), primarily on the investigation
of stability. Dwell time (DT) method is a powerful tool in system analysis and control
synthesis of switched systems (see [17,18]), which, then, is extended to a more flexibility
and availability method, average dwell time (ADT) method (see [19,20]). Recently, the
so-called mode-dependent average dwell time switching (MDADT) is proposed in [21]. An
important feature of a switching signal with MDADT property is that each mode has its
own average dwell time. Meanwhile, compared with the computation of minimal ADT,
MDADT gives rise to more flexible and less conservative results. During the past several
years, some results on stability and stabilization have been reported for switched systems
with MDADT switching, see [22,23].

Based on the above discussion, finite-time H,., output tracking control for switched
neutral systems is worth discussing. Sufficient conditions established by the MDADT
method that guarantee the stability and the H,, output tracking performance for the
switched neutral systems over a fixed finite-time interval have not been reported in lit-
erature yet. This motivates the main purpose of our research. In this paper, sufficient
conditions for finite-time boundedness and finite-time H,, performance of the switched
neutral systems are derived by using the MDADT method. A state feedback controller
which makes the closed-loop output tracking systems be finite-time boundedness with
some H,, performance level is designed.

The rest of this paper is organized as follows. In Section 2, some assumptions, lemmas
and definitions are provided. In Section 3, the main results of this paper are presented as
some sufficient conditions and controllers. In Section 4, a numerical example was provided
to illustrate the effectiveness of our results. Finally, in Section 5, concluding remarks are
given.

Notations: Throughout this paper, the notations are standard. The “x” denotes the
symmetric term in a symmetric matrix, diag{...} a block-diagonal matrix and I the
identity matrix. R™ represents the n dimensional Euclidean space, R**™ the set of all
n X m real matrices. P > 0 means that P is real symmetric and positive definite, and
Amin(P) (Amax(P)) is the minimum (maximum) eigenvalue of matrix P.

2. Problem Statement and Preliminaries. Consider the following switched neutral
system

:U(t) - Da(t)i‘(t - T) = Aa(t)x(t) + Ad,a(t)x(t - d) + Ba(t)u(t) + Ea(t)w(t)a (13“)
y(t) = Cx(t) + Fuw(t) + Gu(t), (1b)
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z(to +0) = (0), 0 €[=h,0], (1c)
where z(t) € R" is the state vector, u(t) € R is the control input vector, w(t) € RP is the
exogenous disturbance vector which belongs to Ls[ty, T), y(t) € R? is the control output
vector, and p(f) € R" is the initial condition. M is the number of subsystems, o(t) : Rt —
M ={1,2,---, M} is the switching signal which is a piecewise constant and right contin-
uous function, the switching sequence denotes > = {(to, o (o)), (t1,0(t1)), -+, (tr, o (tx)),
o b (k=1,2,--+,Ny(to,T)) where N,(to,T) denotes the switching number of o(t) in
the time interval (¢y,7T"). h = max{r,d}. For any p € M, A,, Ay, B,, D,, E,, C, F and
G are constant matrices of appropriate dimensions.

Assumption 2.1. [23] For a given time T, the external disturbance w(t) satisfies

/T w? (Hw(t)dt < 62, (2)

Definition 2.1. For a switching signal o(t) and any T > 0, let N,,(0,T) be the switching
number that the pth subsystem is activated over the interval [0,T] and T,(0,T) denotes
the total running time of the pth subsystem over the interval [0, T], p € M. We say that
o(t) has a mode-dependent average dwell time T,, if there exist positive numbers Ny, (we
call No, the mode-dependent chatter bounds here) and ., such that

T,(0,T
N, ,(0,T) < Nop + M, VT > 0. (3)

Tap

As commonly used in the literature, we choose Ny, = 0 in the rest of this paper.
Definition 2.2. (Finite-time stability and finite-time boundedness). Given three positive
constants c1, co and T, a positive definite matrizx R and a switching signal o(t), the

switched neutral system (1) with u(t) = 0 and w(t) = 0 is said to be finite-time stable
with respect to (¢q,co, T, R, 0(t)), if the following inequality holds:

Sl<1£)<0 {27 (s)Rx(s), 2" (s)Ri(s)} < c1 = " ()Ra(t) < o, Vt€[0,T]. (4)

For Yw(t) satisfies Assumption 2.1, if condition (4) holds, we say the switched neutral

system (1) with u(t) = 0 is said to be finite-time bounded with respect to (ci,co, T, 07, R,
o(t)).
Definition 2.3. (Finite-time H,, performance). Given positive constants ¢, co, T, d3
and 7y, a positive definite matriz R and a switching signal o(t), the switched neutral system
(1) with u(t) = 0 is said to be finite-time bounded with Hy, disturbance attenuation level
v with respect to (cy,ca, T, 0%, v, R,0(t)), if the following inequality holds:

(1) 721<1£)<0 {27 (s)Rx(s),i" (s)Ri(s)} < c1 = " (t)Ra(t) < o, V€ [0,T],

Va(t) : /0 T (B ()t < 8. (5)

(it) Under the zero-initial condition, the controlled output y(t) satisfies

/T yT (t)y(t)dt < ~* /T w” (t)w(t)dt. (6)
0 0
Suppose the reference output signal is r(t), and then the tracking error is
e(t) =y(t) — (). (7)
Letting z(t) = f(f e(s)ds, and choosing the controllers like the following
u(t) = Kyo(t) + Lo 2(1), (8)
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we have the closed-loop output tracking control systems as follows

0(t) = (Aery + Boy Kowy) n(t) + Aqoyn(t — d) + Doyn(t — 7) + E;yw(t),  (9a)

_ _ E,pn 0 _
Dg(t):|: 0 0:|7 Ea(t):|: F() —]:|’ C:[O I]

The reference signal r(t) plays a role of “exogenous disturbance” in the closed-loop
output tracking control system, and then we made the following assumption.

Assumption 2.2. For a given time, constant T, the reference output r(t) satisfies

/T rT(t)r(t)dt < 62 (10)

Definition 2.4. (Finite-time Hy, output tracking control). Given positive constants ¢y, co,
T, d?* and v, a positive definite matriz R and a switching signal o(t), the switched neutral
system (1) is said to be finite-time stabilizable with Hs, output tracking performance
with respect to (c1,co, T, 62,7, R, 0(t)), if there exists a controller u(t) in the form of (9),
such that the closed-loop system (10) satisfy:

(i) sup {n"(s)Rn(s),n" (s)Ri(s)} < c1v = 0" (HRn(t) < o, V€0, T),

va(t) - /0 T ymndt < 6 (1)

(i1) Under the zero-initial condition, the integral term of the tracking error z(t)
T T
satisﬁes/ () z(t)dt < 72/ W (t)w(t)dt. (12)
0 0

Lemma 2.1. [24] For any symmetric and positive definite constant matriz Q € R and
scalar function 0 < r(t) < r, if there exists a vector function: v : [0,r] — R such that

integrals for(t) vT (5)Qu(s)ds and for(t) vT (s)ds are well defined, then the following inequality

holds
a0 (0 g "(®
T/o v"(5)Qa(s)dé > (/0 v(s)ds) Q (/0 v(s)ds) : (13)

3. Main Results. In this section, the finite-time H,, output tracking control problem for
a class of switched neutral systems is studied, and it is necessary to study the finite-time
stability and finite-time H,, performance first.

Theorem 3.1. Given positive constants c1, co, T and d2, if there exist symmetric positive
definite matrices P,, Q,, Y,, S, and W, positive constants c,, A\ip, A2p, A3p, Aap and
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As, Vp € M, such that:
[ 2 BAy,+dltewhs, P,D, P,E, AI:,FYP + hAgSp T
x —e~wdQ, —d~lemhS, 0 0  ALYp+hAy,Sp
* * —e~®7Y, 0  DIYp+hD]Sp | <0, (14)
* * * -W, EI,TYp+hEpTSp
| x * * * —Y, — hS, i
R < P, < M\ pR, (15)
0<@p < ApR, (16)
0 <Y, <A3pR, (17)
0< S, <AgpR, (18)
0 < W, <Xsl, (19)
e~ M (Npe1 + Asd7) < o, (20)

then under a switching signal o(t) satisfying following MDADT
. MT In p,,
Tap 2 Tap = MT AN
In coe»MT —In (Aper + A507)
the system (1) is finite-time bounded with respect to (c1,co, T, R, 6%,0(t)), where \, =
Aip + Apphe " 4 X3 phe " + Ny h2e 2 2= AT P, + P,A, + Q, — d 'e™"S, + o, P,
Ly > 1 satisfying:

(21)

Py < ppPyy Qp < 1pQqs Yp < 11pYq, Sp < f1pSg, Vp,q € M. (22)

Proof: See Al in the Appendixes.

Corollary 3.1. Given positive constants ci, co, T, if there exist symmetric positive defi-
nite matrices Py, Qp, Yy, and S,, positive constants oy, A1 p, Aoy, A3p and Ay p, Vp € M,
such that:

_AC;T; DTG p A, b d e ets,  BD, ATV, +hATS,
o et dte s, 0 AT YR hALS, | g
* * —eM7Y, DgYp + hDgSp
i * * * =Y, = hS,

(23)
R < P, < AR, (24)
0<@p < AR, (25)
0 <Y, <A3,R, (26)
0 <S5, < AR, (27)
e M \e; < ¢y, (28)

then under a switching signal o(t) satisfying following MDADT
B MT In p,
"~ IncgewMT —In )¢’

the system (1) with w(t) = 0 is finite-time stable with respect to (¢y,cq, T, R,0(t)), where
Ap = Ay + Aaphe® + A3 he®h + Ny h2e® 1, > 1 satisfying (22).

Tap = Top (29)

Proof: The proof is similar to that of Theorem 3.1, so it is omitted here.



772 X. LI AND W. MAO

Theorem 3.2. Given positive constants ¢y, co, T, v and d?, if there exist symmetric
positive definite matrices P,, Q,, Y, and S,, positive constants a,, A1y, A2p, Asp and

Ap, Vp € M, such that:

[ 2 PBAy,+dte™"S, P,D, PE,+C'F AlY,+hATS, ]
x  —elQ, —d tewhS, 0 0 ALY, +hALLS,
* * —e™7Y, 0 DY, +hD!S,
* * * —v2I + FTF EpTY;, + hE;;FSp
| * * * —Y, — hS,
R < P, < \ipR,
0<@Qp <R,
0<Y, <As3,R,
0<S), < MR,

eCrMT ()\cl + 725%) < Cg,
then under a switching signal o(t) satisfying following MDADT

_ MT In p,
Tap > Tay =
P = negewMT —In (\yeq + 726%)’

<0,

(36)

the system (1) is finite-time bounded with Hy, performance v* with respect to (ci, co, T, R,
d3,o(t)), where Ay = Xy + Ao phe®” + X5 he®" + Ny h?e" = = ATP, + PyA, + Qp +

CTC —d e hS, — a,P,, u, > 1 satisfying (22).

Proof: See A2 in Appendixes.

Theorem 3.3. Given positive constants ¢y, co, T, v and d?, if there exist symmetric
positive definite matrices Py, Q,, Y,, S, and Hy, positive constants oy, Aip, Aap, Asp

and Ay, Vp € M, such that:

* —eapdap — dile*aphgp 0
Y= & * —eO‘PT?p
* * * —~2I E
| * * * —H,

Y, +hS,+ H,—2P, <0,
AR <P, <R,
0<Q,<2X\pP,— AR,
0<Y,<2X\3,P,— X\3,R",
0< S, <2\,P,— MR,
eCrMT ()\cl + 725%) < Cg,
then under a switching signal o(t) satisfying following MDADT

> o MT In p,
T, T =
P = negewMT —In (\yep + 7262)’

= AP, +d'e"S, D,P, E, PA +TB, |
0 PyA,
0 P,D,

T

p

<0,
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the system (1) is finite-time stabilizable with Hy, output tracking performance y with
respect to (cy, ¢, T, 0%, % R,0(t)), where A\, = A1 + Agphe® 4+ A3 ,he®h + Ny ,h2e",
== ﬁpZZ + A, P, +ﬁT§T + B,II, +§ +C'C - dle S, —a,P,, u, > 1 satisfying

Py < ppyPq, Q, < 15,Qy, Yy < 11,Y ¢, Sp < 11pSq, Vp,q € M, (45)

Zg(t), B Adg Dg(t), Eg(t ), and C are the same as in (9).
Furthermore the state feedback controller is:

K,=[K, L, | =T,P," (46)

Proof: From Definition 2.4, the switched neutral system (1) is finite-time stabilizable
with H,, output tracking performance v with respect to (ci, co, T, 6%, 7, R, o(t)), if there
exists a controller formed as (9) making the closed-loop output tracking control system
(10) finite-time bounded with H,, performance v with respect to (cy, ¢z, T, 8,7, R, o(t)),
the sufficient conditions are that there exist symmetric positive definite matrices P,, ),
Y, and S,, positive constants a,, A1, A2p, Asp and Ay, Vp € M, such that:

- — = =\T
= pA,+d s, PD, PpE, (G tBE) Y
+h (A, + B,K,) S,
£ —emiQ, —d-lemwhS, 0 0 Ag,Yp + 1455,
— — <0, 47
. . —eTY, 0 D,Y,+hD, 5, (47)
* * * —AI E;FYZ, + hEZSp
| % * * % -Y, — hS, i
R < P, < AR, (48)
0 <@y < AR, (49)
0<Y, <A3,R, (50)
0< S, <AgpR, (51)
e**MT (Aep +726%) < e, (52)
and then the switching signal o(t) satisfying following MDADT
MT1In p
» > ¢ 53
Top = In cpe=»MT —In (N1 + 726%) (53)
Where = = (z +B,K )T P,+P, (4, +B,K,)+Q,+C C—d ‘e S, —a,P, A,
ys Ad o) () F o(t), and C are the same as in (9).

Let P = P H =K ?p, S = P S Pp, Q = pr?p, 7,, = ?pY;,?p, by pre- and
post- multlplymg (47) by diag{P,P,P,I,(Y, — hS,) '}, we have

= AP, +dle 'S, DP, E, PA+T,B,
 —ewiQ, —d S, 0 0 P,A,,

=, ‘ e ¥, 0 Pt | <0 6o
" * £ E,

* % % * —(Y +hS)~!
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Note that (H, — P,) H,* (H, — P,) > 0, and then we have
2P, — H, < P,H,'P,.
From (38), we have
Y, +hS, < 2P, — H, < P,H,'P,. (55)
By pre- and post-multiplying the both sides of (55) by P, = ?;1, we have — (Y, + hS,) !

< —H,, which means that 3 < ¥, and inequality (37) ensures that the inequality (47)
holds.

Note that P, = P!, inequality (39) is equivalent to inequality (48).
Note that (R™* — P,) R(R™' — P,) > 0, and then we have

P,RP,>2P,— R™". (56)
Substituting (56) into (40), we have
0 <@, < XpP,RP,. (57)

By pre- and post-multiplying the both side of (57) by P, = ﬁ;l, we have (49).
Following the same proof line, we have

0<Y,<2X\,P,— \3,R ' <)\;,P,RP,, 0<5,<2)\,P,— \i,R*'<)\,P,RP,.

Inequalities (40)-(42) ensure that inequalities (49)-(51) hold.
Hence, the proof is completed. O

Remark 3.1. In the proof of Theorem 3.5, the replacement of 2P, — R to P,RP,
and the introduction of inequality (38) may bring some conservatism to the design of the
controller, but provide a simple method of solving LMIs using MATLAB.

4. Numerical Example. In this section, we present a numerical example to illustrate
the proposed method.

Consider the continuous-time switched neutral system (1) composed of two subsystems
in [8] with parameters as follows:

2 0 -2 0 3 —3 0.3 0
A1:|:3 3:|7Ad,1:|:_1 _2:|7BIZ|:0 4:|7D1:|: _02:|7

02 0 -1 0
DZ:{O —0.3]’E2:{2 0.8]’02[11]’
F=[02 01],G=[01 02],

: : | r(t) = cos 0.6t
the reference signal and exogenous disturbance: { w(t)y=[ et et

Choosing T =14,d =0.2, 7 =0.3,02 =2,y =1,¢;, = 1, ¢ = 12, R = I. Using LMI
Toolbox to solve the matrix inequalities (37)-(43), we obtain the feasible solution with
the following symmetric matrices and positive constants

0.8897 —0.0004 0.0010 -0.0002

P — —0.0004 0.8938 0.0003 —0.0026
Y71 0.0010 0.0003 0.9014 0 ’

—0.0002 —0.0026 0 0.9036
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[ 0.9116 —0.0079 —0.0096 —0.0082 ]
— | —0.0079 0.8875 —0.0028 —0.0127
—0.0096 —0.0028 0.9344  0.0037
—0.0082 —0.0127 0.0037  0.9415

4.3054 —0.2438 0.0613 —0.2980 ]
— | —0.2438 4.3538 —0.0847 —0.1994
@ = 0.0613 —0.0847 3.7276 —0.0182 |’
—0.2980 —0.1994 -0.0182 3.5812

7.6291 —0.2020 0.2661  1.3255 |
— | —0.2020 5.4841 —0.7156 —0.9772
@ =1 09661 —07156 85653 —0.8561 |
1.3255 —0.9772 —0.8561 6.7489

0.4215 —0.0366 —0.0007 —0.0025 ]|
- _ | —0.0366 0.3685 —0.0057 0.0016

Yy = —0.0007 —0.0057 0.3719 —0.0013 |
| —0.0025 0.0016 —0.0013 0.3513 |
[ 0.3724  —0.0072 0.0236  0.0513 |
v _ —0.0072 0.2183 —0.0294 —0.0362
271 0.0236 —0.0294 0.3361 —0.0356 |’
| 0.0513  —0.0362 —0.0356 0.2505 |
3.4211  —0.0151 —0.0640 0.3224
5 _ —0.0151 3.1849  0.0654 0.3090
L= | —0.0640 0.0654 4.7161 0.0069 |’
0.3224  0.3090  0.0069 4.5652
4.3850 0.0334 0.9357  0.4207
5. _ 0.0334 5.1524 0.1689  0.9941
27 1 09357 0.1689 3.5262 —0.2740 |
0.4207 0.9941 —0.2740 2.8576
[ 0.5063 0.0154 —0.0086 0.0042 ]|
Ho— 0.0154  0.3365  0.0004 —0.0202
7| —0.0086 0.0004 0.2838  0.0306 |’
| 0.0042  —0.0202 0.0306  0.3302 |
0.4093 —0.0111 —0.2424 —0.1778 ]
o —0.0111 0.4205  0.0045 —0.1700
271 —0.2424 0.0045 0.6551  0.1157 |~
| —0.1778 —0.1700 0.1157  0.9315 |
I — [ —0.1457 —0.0507 —0.0402 —0.0183 |
7| —0.0487  0.0009 —0.0197 —0.0151 |’
. — [ —0.1686 —0.2279 —0.0111 —0.0106 ]
271 0.0219 —0.1437 —0.0184 —0.0038 |’
K- [ —0.1640 —0.0568 —0.0446 —0.0201 ]
"7 | —0.0548 0.0010 —0.0218 —0.0166 |’
Ko — [ —0.1875 —0.2587 —0.0145 —0.0164 ]
270 0.0224 —0.1619 —0.0200 —0.0059 |’

a; = 0.01, ap = 0.014, A1 = 0.8932, A1 = 1.0552, Ay, = 3.7158,
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Ao = 3.2205, A3y = 0.3511, Agp = 0.2542, Ay = 3.3655, Ao = 3.2231.
From (45), we have u; = 1.2499, s = 1.1814, and then according (44), we have

Tl > T = M7 n — 4.7513,
% IneeMT —In (\jey + 6?)

MT In pgy

In coe®2MT — In (Age; + 67)

According to Theorem 3.3, for a switching signal o(t) satisfying MDADT 71,; = 5s,
Ts2 = 4s, the switched neutral system (1) is finite-time stabilizable with H,, output
tracking performance v with respect to (ci,c2, T, 02,7, R,0(t)). The state trajectories
of the switched neutral systems (1) with switching signal o(t) is presented in Figure 1.
The tracking performances for system (1) with the above reference signal and exogenous
disturbance are given in Figure 2. From the simulation results, we can draw that the
switched neutral systems (1) can track the reference signals with H,, output tracking
performance 7 within a finite time interval 7' = 14 by the designed controller.

* J—

Ta2 2 Tyo = 3.1684.

State trajectories of switched neutral systems

2.5 P

solution x

-0.5

0 2 4 6 8 10 12 14
time t

FIGURE 1. The state trajectories of the switched neutral systems with
switching signal o(t)

5. Conclusions. This paper addresses the finite-time H., output tracking control prob-
lem for a class of switched neutral systems. First, the finite-time stability (FTS) and
the finite-time H,, problem for the augmented systems are investigated. By using the
mode-dependent average dwell time (MDADT) method, sufficient conditions for finite-
time boundedness and finite-time H,, performance of the augmented systems are derived.
Second, based on the sufficient conditions derived in finite-time H,, performance analy-
sis, a state feedback controller is designed which makes the closed-loop output tracking
systems be finite-time boundedness with some H,, performance level.
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Appendixes.

A1l: Proof of Theorem 3.1.
Choose the following piecewise Lyapunov function candidate of the form:

t
V(t) = 2 (t) Pyya(t) + / e 05T () Qo (s)ds
t—d
t
_|_/ 6_0‘0(t)(t_s)jjT(S)Yg(t)i’(S)dS (al)
t—r
0 t
N / e=0e0=5) 4T (5)S. i (s)dsdo.
—h Jt+0

Suppose o(tr) = p, this means that the pth subsystem is activated in the time interval
t € [t, tky1). Taking the time-derivative of V' (¢) along the trajectory of the pth subsystem,
we have

V(t) = 2" (t) (AL P, + P,A,) x(t) + 227 (t — d) AL Pyx(t) + 22" (t — 7) DI Pya(t)

+ 2w’ (t)E} Pya(t) — a /lt e~ =91 () Q u(s)ds + 27 (1) Qpx(t)
t—d

— e T (t — d)Qya(t — d) — o / T () Yo (s)ds + 47 ()5 1)

t—

(a2)

0 t
e it - ) —a [ [ et ()3, dsds
—h Jt+0
t

+ haT(£) S, (1) — /t T (5)S ()
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T
Ay Ay
Ag, Ag,
FYH0) T (05,40 = €70 | | (ns,) | | e,
P P
B, Ey
where £(t) = [ 27(t) 2T(t—d) T (t—7) w'(t) ].
From Lemma 2.1, we have
¢ t
—/ e 95T (5)S i (s)ds < —eaf’h/ @7 (5)S,2(s)ds
t—h t—d
t t
< —dtemorh [/ :i:T(s)ds] Sp [ :b(s)ds] (a3)
t—d t—d

= —d e ™" 2T (t) — 2" (t — d)] S, [x(t) — x(t — d)].
Then, substituting (a3) into (a2), we get

V(1) +apV (1) — w' () Wyw(t) < &7 () PpE(1),

where
= PAg,+ dile’o‘PhSp P,D, P,E, AZ AZ T
x —e~wdQ, — d7lemwhS, 0 0 AT AT
_ d.p _ ) d.p
q)P - * * _efocp'r}/;) 0 + DZ; (Y;‘i‘hsz) DZ; )
* * * W, EpT EZ’

—
—
—

ATP, + P,A, + Q, — d 'e*"S, + P,
In view of LMI (14), we get
V() + o,V (1) — w” (1) Wyw(t) < 0. (ad)
It can be obtained by (a4) that, for ¢ € [ty, txi1),
t
V(t) < em =tV (1) +/ e~ =T (§)Wyw(s)ds.

173

N,,(0,t), and suppose that o(ty_1) = ¢ € M, from (22),

Mi=

Note that £ = N,(0,t) =

Il
—

p
we can obtain

Vi(tk) < ppV (t;)-

t
V(t) < efap(tftNg(o,t))V(tNG(O’t)) _|_/ eiap(tis)wT(S)pr(S)ds

UN, (0,t)
t
< e 0V (5, 0 )+ [ e (o) W) ds
INg (0,t)
< Mpe_ap(t_t]v"(o’t))_aq (tN"(O‘t)_tN"(O’t)_l)V (ttNo(o,t)ﬂ)

IN, (0,t)
+ Mpe_o‘p(t_thf(O’”)_aq(tNa(Oxﬂ‘tNa(O*“—l)/ w” (s)Ww(s)ds

tNg (0,6)—1

t
+ / e T ($)Ww(s)ds

tNg (0,0
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< ...

M M
< H “;Jva’p(o’t) exXp {Z —ay (0, t)} V(0)

p=1
M
=1

p=1
t M
+ X5 / H MI],V"’p(s’t) exp {Z —a, T, (s, t)} w” (s)w(s)ds
0 p=1 p

M t
= exp {Z —a,T,(0,t) + N, (0, %) In ,up} (V(O) + )\5/ wT(s)w(s)d8> .
p=1 0
Then, for Vt € [0, 7],
M T
V(t) <exp {Z —a,1,(0,T) + N, ,,(0,7) lnup} (V(O) + )\5/ wT(s)w(s)ds> . (ad)
p=1 0
From Definition 2.2, we have

V(t) <exp {iw: —a, T,(0,T) + 5,(0,T)

p=1

lnup} (v e [ utsis) . o

Let P = R\V2PRY2 Q = RV2QR'2, Y = RV2YR Y2 and S = R"Y2SR /2,

and we have

Tap

#7(0) Py(y2(0) < Amas (Potoy ) 27 (0) Ra(0), (a7)
77 (0)Qu(0) < Amax (Qotwy) 27 (0) R (0), (a8)
£ (0)Y0)2(0) < A (Vo)) 27 (0) Re(0), (a9)
27 (0)S(0)2(0) < Amax (SU(U)) T (0)Rz(0), (a10)

T (OR2(1) <Az (Pt ) 7 (8) Pogr(8). (a11)

From (a7)-(al0), we have

0
V(0) = IT(O)P(,(O):E(O) +/ efa”(o)sxT(s)Qg(o)x(s)ds

d
0 0 [0
_|_/ e_aa(O)si-T(s)Yg(O)i:(S)dS—|—/ /e_aa(O)Sj;T(s)SU(O)i‘(S)deQ
—h J0

< Amas (Prto)) 27 () R2(0) + A (@o(o) ) de =" sup_a" () Ra(s)

—d<s<0
(al2)

Amax g(o))h —ar@h 4 )\max(f/o(o))he,%(o)h n Amax(‘?a’(o))thfaa_(O)h‘

_ )\max (I:)o—(o))
Let A o p ) Amin(]Da-(O) min( a(0)

Amin (PO'(O)
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From (a6), (all) and (al2), we have

M

T,0, T A
7 (t)Rx(t) < exp {Z —a, T,(0,T) + % In Mp} Aoy + — 2852
p=1 ap

(al3)

*
p:l ap

M
T,00,T A
< exp {Z —a,T,(0,T) + 5LO.T) In up} Aoy + —F— 42

From (15)-(19), we have
A < Aig(0) + Aojooyhe O + X3 0yhe O £ Xy gy hPe MO < ),
)‘—5~ < s (al4)
Amin (PU(O))
Then, substituting (21), (al4) into (al3), and according to (20), we have
2T (t)Ra(t) < ¢y
This completes the proof. 0]

A2: Proof of Theorem 3.2.
Choosing the same Lyapunov-Krasovskii functional as in the proof of Theorem 3.1,
after some mathematical manipulation, for ¢ € [ty, tx11), o(tx) = p, we can get

V(t) — o, V(1) + 4" (0)y(t) — Yw (w(t) < () T,E(1), (al5)
where
= PAi,+ d_le_o‘phSp P,D, P,E,+ CTF

v * —eanQp — d_le_o‘phSp 0 0
p =
* * _6041,7'}/; 0
. « x =2+ F'F
A, A7
T AT
d,p d,p
s e OO N v
p p
E, E,

E=A P+ P4+ Q,+ C"C —d e ™"S, — a,P,,
Et)y=1[a2"(t) 2"t —d) d"(t-7) w'(t)].
In view of LMI (30), we get
V(t) — o,V (t) + y" (Oy(t) — y*w' (Hw(t) < 0. (al6)

Letting v2w? (s)w(s) —yT (s)y(s) = ['(s), following the proof line of (a5), for V¢ € [0, T7,
we have
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Note that T'(s) < v?w”(s)w(s),

M M
V()< []up=" exp {Z a, T, (0, t)} V(0)
p=1

p=1

+72/0 i (50 exp{zap } T(s)w(s)ds.

Following the same proof line of Theorem 3.1, from (30)-(36) and (al8), we can conclude
that

(al8)

2T (t)Ra(t) < co.
Then from Definition 2.2, the switched neutral system (1) is finite-time bounded with
respect to (ci, co, T, R, d%,0(t)).
Under zero initial condition, we have V' (0) = 0; thus

/ Hup”p (5 exp {Z a,T,(s, t)} [(s)ds
H Nop(0:1) exp{iapr(O,t)}/O ['(s)ds,

/0 "I(s)ds > 0.

/0 yT(Oy(t)dt < 72 / W ().

By Definition 2.2, we know that system (1) is finite-time bounded with H, performance
~2. The proof is completed. O

which implies that

It is equivalent to



