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Abstract. This paper presents an improved adaptive Hinf control approach for piece-
wise linear systems (PLS) via piecewise Lyapunov function instead of common Lyapunov
function. At first, by designing the projection-type piecewise adaptive law, the problem
of the adaptive control of PLS can be reduced to the Hinf control problem of augmented
piecewise systems. Then, we construct the piecewise linear control law for augmented
systems in such a way that the piecewise quadratic Lyapunov function can be employed
to guarantee the stability and Hinf performance. Most importantly, the reciprocal projec-
tion lemma is employed to formulate the synthesis condition as linear matrix inequities,
which enables that the proposed PQLF approach is numerically solvable. The results are
illustrated by application to control the air-breathing hypersonic vehicle, which demon-
strates the efficacy and advantage of the proposed approach.
Keywords: Piecewise linear systems, Adaptive Hinf control, Linear matrix inequalities,
Hypersonic vehicle

1. Introduction. Piecewise linear systems (PLS) are hybrid systems [1, 2, 3, 4] with
state space-partition-based switching, which often arise in practice when piecewise-linear
components are encountered. These components include dead-zone, saturation, relays
and hysteresis; hence many practical engineering systems can be described as PLS such
as flight control systems, robotic manipulators control systems and power electronics
systems. In addition, PLS can approximate nonlinear dynamical systems [5] to any degree
of accuracy [6], hence providing a powerful means of analysis and synthesis for nonlinear
control systems. Therefore, the investigation of control design problem of PLS is very
significant for both of engineering and theory aspects.

Numerous great works have been achieved on synthesis problem of uncertain PLS with
model uncertainties and disturbances [7-14] due to the requirement from practical engi-
neering application. The feedback control synthesis problem of uncertain PLS was firstly
considered in [7], the piecewise affine control law was designed by choosing a piecewise
quadratic Lyapunov function (PQLF) to guarantee the robust stability and Hinf perfor-
mance. Song et al. [8] investigated the robust H∞ control problem for PLS with linear
fractional uncertainties and disturbances using PQLF approach, and the LMI-based re-
sults were provided using the cone complementarity linearization (CCL) method. Fur-
thermore, Zhang and Tang [9, 10] extended the PQLF synthesis framework to the output
feedback Hinf control problem of PLS, and the mixed algorithm was presented to solve
the controller and piecewise quadratic Lyapunov function. More recently, Samadi and
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Rodrigues [11, 12] considered the control design of a certain kind of uncertain PLS de-
scribed by piecewise-linear differential inclusions, and a dual parameter set convex relation
approach was presented to formulate the PQLF synthesis conditions as LMIs.

However, to our best knowledge, no synthesis issue has been considered for PLS with
polyhedral parametric uncertainties and disturbances except [13, 14]. On the other hand,
both [13, 14] employ the common quadratic Lyapunov function (CQLF) approach to avoid
the difficulty for formulating the synthesis condition as LMIs in the PQLF framework,
which brings more conservatism.

Motivated by the above observations, we revisit the synthesis problem of PLS with poly-
hedral parametric uncertainties and disturbances. By designing a piecewise projection-
style adaptive law, the problem of the adaptive control of PLS can be reduced to the Hinf
control problem of augmented piecewise systems. Then, we construct the piecewise affine
control law for augmented piecewise systems in such a way that the piecewise quadratic
Lyapunov function can be employed to establish the stability and Hinf performance. Par-
ticularly, the reciprocal projection lemma is employed to formulate the synthesis condition
as linear matrix inequities, which enables the proposed PQLF approach is numerically
solvable.

The rest of the paper is organized as follows. The system model is described and the
control design problems are formulated in Section 2. In Section 3, we present a piecewise
projection-style adaptive law design method to convert the problem to the control problem
of augmented piecewise systems. Furthermore, in Section 4 the control design method has
been provided for augmented piecewise systems to realize H∞ performance. The results
are illustrated by application to control the air-breathing hypersonic vehicle in Section 5
and conclusions are drawn in Section 6.

2. Problem Statement. The PLS considered in this paper can be described as{
ẋ = Ai(θ)x + Bi(θ)u + Di(θ)ω
z = Ci(θ)x

x ∈ Ri, (1)

where ∪i∈IRi ⊆ Rn denotes the state space is divided by many closed polyhedral regions;
I denotes the index set of polyhedral regions. x ∈ Rn, u ∈ Rm, θ ∈ Rq, ω ∈ Rr and
z ∈ Rp denote the state, input, uncertain parameter, disturbance and output vector,
respectively. The symbols Ai, Bi, Ci and Di denote the system matrix, input matrix,
output matrix and disturbance matrix in the description of state-space form. Assuming
origin is one of vertexes for all polyhedral regions, so we can always find the matrix Ei for
each closed polyhedral region Ri satisfying Ri = {x|Eix ≥ 0}. Meanwhile considering the
PLS suffering from the polyhedral uncertainties, here the dependency relationship with
respect to θ = (θ1, θ2, . . . , θq) is affine, i.e.,[

Ai(θ) Bi(θ)
Ci(θ) 0

]
=

[
Ai0 Bi0

Ci0 0

]
+

q∑
j=1

θj

[
Aij Bij

Cij 0

]
. (2)

Assumption 2.1. Assume the uncertain parametric vector θ belongs to a bounded set Ωθ

satisfying

Ωθ := {θ|θj min ≤ θj ≤ θj max}
Ωθ := {θ|θj ∈ {θj min, θj max}}

, ∀j ∈ {1, . . . , q}, (3)

where Ωθ denotes the set containing 2q vertexes of Ωθ.
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Definition 2.1. Let θ̂(t) denote the estimation value of θ, the adaptive Hinf control
objective is to design piecewise control law

u(t) = ui

(
x, θ̂
)

, x ∈ Ri, (4)

and the related piecewise adaptive law for the uncertain parameter θ,
˙̂
θ = υi

(
x, θ̂
)

, x ∈ Ri, (5)

to guarantee closed-loop PLS satisfying

(i) Asymptotical stability without external disturbance, limt→∞ x(t) = 0;
(ii) Disturbance rejection, there exist γ > 0 and ϵ > 0 to realize

∥z(t)∥2 < γ∥ω(t)∥2 + ϵ. (6)

3. Piecewise Adaptive Law Design. By designing a piecewise projection-style adap-
tive law in this section, the adaptive Hinf control problem of PLS can be reduced to Hinf
control problem of augmented systems. Similar in [15], we first construct a projection-style
adaptive law structure to achieve a well controlled adaptation process as follows

˙̂
θ = Projθ̂(Λ), θ̂(0) ∈ Ωθ (7)

Projθ̂(Λ) =


0 θ̂j ≥ θj max and Λj > 0

0 θ̂j ≤ θj min and Λj < 0

Λ else

, (8)

where θ̃ denotes the estimation error θ̂−θ, and Λ is an adaptive function that needs to be
synthesized. It has been proposed in [15] that the adaptive law owns the following good
properties. For all t

(1) θ̂(t) ∈ Ωθ

(2) θ̃T
(
Projθ̂(Λ) − Λ

)
≤ 0.

(9)

By employing the above vector projection structure, we provide the piecewise projec-
tion-style adaptive law for PLS as the following theorem.

Theorem 3.1. If there exists the positive definite function V (x) and piecewise controller

u = ui

(
x, θ̂
)

, x ∈ Ri, θ̂ ∈ Ωθ (10)

u
(
0, θ̂
)

= 0

and for any θ̂, θ ∈ Ωθ,

dV

dx

[
Ai

(
θ̂
)

x + Bi

(
θ̂
)

ui

(
x, θ̂
)]

+ xTCi(θ)
TCi(θ)x

+
γ−2

4

dV

dx
Di(θ)Di(θ)

T dV

dx

T

< 0, x ∈ Ri. (11)

Then the AHC problem can be solved with the following piecewise adaptive law

˙̂
θ = Projθ̂(Λi(x, u)), θ̂(0) ∈ Ωθ, x ∈ Ri, (12)

where

Λi(x, u) =
1

2η


dV
dx

[Ai1x + Bi1u]
dV
dx

[Ai2x + Bi2u]
...

dV
dx

[Aiqx + Biqu]

 , η > 0. (13)
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(1) Proof of asymptotical stability
Given positive definite V (x), define

ϑ
(
x, θ̂
)

= V (x) + η
(
θ̂ − θ

)T (
θ̂ − θ

)
, η > 0. (14)

where η > 0 can be designed by the following principle

max
(θ̂,θ)∈Ωθ×Ωθ

η
(
θ̂ − θ

)T (
θ̂ − θ

)
≤ ϵ, ϵ > 0. (15)

Utilizing ϑ
(
x, θ̂
)

as the Lyapunov candidate of adaptive Hinf control problem, so for

all x ∈ Ri, θ̂ ∈ Ωθ we have

dϑ
(
x, θ̂
)

dt
=

dV

dx
(Ai(θ)x + Bi(θ)u) + 2ηθ̃T ˙̂

θ

=
dV

dx

[(
Ai

(
θ̂
)
−Ai

(
θ̃
)

+ Ai0

)
x +

(
Bi

(
θ̂
)
− Bi

(
θ̃
)

+ Bi0

)
u
]

+ 2ηθ̃T ˙̂
θ

=
dV

dx

(
Ai

(
θ̂
)

x + Bi

(
θ̂
)

u
)
−

q∑
j=1

θ̃T
j

dV

dx
[Aijx + Biju] + 2ηθ̃T ˙̂

θ

=
dV

dx

(
Ai

(
θ̂
)

x + Bi

(
θ̂
)

u
)

+ 2ηθ̃T

 ˙̂
θ − 1

2η


dV
dx

[Ai1x + Bi1u]
dV
dx

[Ai2x + Bi2u]
...

dV
dx

[Aiqx + Biqu]




=
dV

dx

(
Ai

(
θ̂
)

x + Bi

(
θ̂
)

u
)

+ 2ηθ̃T (Projθ̂ (Λi(x, u)) − Λi(x, u)) . (16)

Exploiting the vector projection property function (9) and the condition (11), we have

dϑ
(
x, θ̂
)

dt
≤ 0, x ∈ Ri, (17)

where ‘=’ holds if and only if x = 0.
The result (17) implies that both of solution x(t) and θ̂ are bounded, further consider

the augmented system consisted of (1), (10), (12), define

△ =

(x, θ̂
)
∈ (Rn, Ωθ)

∣∣∣∣∣dϑ
(
x, θ̂
)

dt
= 0

 , (18)

noting that in (17), “=” holds if and only if x = 0, that implies

△ =
{(

0, θ̂
) ∣∣∣θ̂ ∈ Ωθ

}
. (19)

In addition, considering θ̂(0) ∈ Ωθ implies θ̂(t) ∈ Ωθ for all t ≥ 0, it can be well verified
that △ is an invariant set. By LaSalle’s Invariant theorem [16], then we can conclude

that the augmented system state
(
x(t), θ̂(t)

)
will converge to △ from any initial value(

x(0), θ̂(0)
)
∈ (Rn, Ωθ), that is

lim
t→∞

x(t) = 0, ∀
(
x(0), θ̂(0)

)
∈ (Rn, Ωθ) . (20)
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(2) Proof of disturbance rejection
For any given x(0), ω(t) and θ, let t0 = 0 and {tk}Nt

1 denotes the switch times, in other
words at each tk, the solution transfers from region Rik to Rik+1

.

Taking the integral of
dϑ(x,θ̂)

dt
from zero to infinity get that∫ ∞

0

dϑ
(
x, θ̂
)

dt
dt

=
Nt+1∑
k=1

∫ tk

tk−1

[
dV

dx
(Aik(θ)x + Bik(θ)u + Dik(θ)ω) + 2ηθ̃T ˙̂

θ

]
dt

=
Nt+1∑
k=1

∫ tk

tk−1

[
dV

dx

(
Aik

(
θ̂
)

x + Bik

(
θ̂
)

u + Dik(θ)ω
)

−
q∑

j=1

θ̃T
j

dV

dx
(Aikjx + Bikju) + 2ηθ̃T ˙̂

θ

]
dt

=
Nt+1∑
k=1

∫ tk

tk−1

[
dV

dx

(
Aik

(
θ̂
)

x + Bik

(
θ̂
)

u + Dik(θ)ω
)

+ 2ηθ̃T
(

˙̂
θ − Λik(x, u)

)]
dt

≤
Nt+1∑
k=1

∫ tk

tk−1

[
dV

dx

(
Aik

(
θ̂
)

x + Bik

(
θ̂
)

u + Dik(θ)ω
)]

dt

utilizing condition (11) to show that for all θ̂, θ ∈ Ωθ,∫ ∞

0

dϑ
(
x, θ̂
)

dt
dt

<

Nt+1∑
k=1

∫ tk

tk−1

[
−xTCik(θ)

TCik(θ)x +
dV

dx
Dik(θ)ω − γ−2

4

dV

dx
Dik(θ)Dik(θ)

T dV

dx

T]
dt

=
Nt+1∑
k=1

∫ tk

tk−1

[
− xTCik(θ)

TCik(θ)x + γ2ωT ω

−
(

1

2γ

dV

dx
Dik(θ) − γωT

)(
1

2γ

dV

dx
Dik(θ) − γωT

)T
]

≤
Nt+1∑
k=1

∫ tk

tk−1

[
−xTCik(θ)

TCik(θ)x + γ2ωT ω
]
dt

=

∫ ∞

0

[
−zT z + γ2ωT ω

]
dt

This implies

ϑ
(
x(∞), θ̂(∞)

)
− ϑ

(
x(0), θ̂(0)

)
≤
∫ ∞

0

[
−zT z + γ2ωT ω

]
dt. (21)

Further by noting the fact ϑ
(
x(∞), θ̂(∞)

)
≥ 0 conclude∫ ∞

0

zT zdt ≤ γ2

∫ ∞

0

ωT ωdt + V (x(0)) + η
(
θ̂(0) − θ

)T (
θ̂(0) − θ

)
. (22)
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Employing (15) and (35) get∫ ∞

0

zT zdt ≤ γ2

∫ ∞

0

ωT ωdt + V (x(0)) + ϵ, (23)

yielding for x(0) = 0

∥z(t)∥2 < γ∥ω(t)∥2 + ϵ. (24)

This completes the proof.

Remark 3.1. The meaning of Theorem 3.1 lies in the problem simplification, which helps
to reformulate the adaptive Hinf control problem of PLS as the pure Hinf control problem
of piecewise augmented system consisted of (1), (10), (12). In other words, the parametric
uncertainties do not need to be considered in the piecewise augmented system anymore.

4. PQLF Synthesis Framework. To enable the PQLF approach to the problem (1),
(10), (12), we introduce the next two lemmas.

Lemma 4.1. [17] (Reciprocal Projection-style Lemma) Let Φ denote any known positive
definite matrix. The next two issues are equivalent:

(1) Ψ + Ξ + ΞT < 0;
(2) Existing matrixes H satisfying[
Ψ + Φ −

(
H + HT

)
ΞT + HT

∗ −Φ

]
< 0.

(25)

Lemma 4.2. [18] For any given positive definite matrices P , the next inequality is satisfied
with

GT P−1G ≥ GT + G − P. (26)

Now, we are ready to provide the PQLF based control synthesis approach.

Theorem 4.1. For given constant γ > 0, if there exist symmetric matrices T , Ui, Wi and
general matrices Vi, Ri, where Ui, Wi have nonnegative entries, and with Pi = F T

i TFi,

the LMIs (29) are satisfied for all θ̂′, θ̂′′, θ′, θ′′ ∈ Ωθ, where Ψi

(
θ̂′, θ̂′′

)
= Ai

(
θ̂′
)

Vi +

Bi

(
θ̂′
)

Ri

(
θ̂′′
)
, then the following PQLF

V (x) = xT Pix, x ∈ Ri (27)

and piecewise linear controller

u = Ki

(
θ̂
)

x =

[
Ki0 +

q∑
j=1

θ̂j(t)Kij

]
x, x ∈ Ri (28)

is solvable with the condition (11) of Theorem 3.1, where Kij = RijV
−1
i .

Pi − ET
i WiEi > 0

−
(
Vi + V T

i

)
ΨT

i

(
θ̂′, θ̂′′

)
+ Pi V T

i γ−1PiCT
i

(
θ̂′
)

Di(θ
′)

Ψi

(
θ̂′, θ̂′′

)
+ Pi −Pi 0 0 0

Vi 0 ET
i UiEi − Pi 0 0

γ−1Ci

(
θ̂′′
)

Pi 0 0 −I 0

DT
i (θ′′) 0 0 0 −I


< 0.

(29)
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Proof: Employ V (x) = xT Pix as system Lyapunov candidate. First, it can be implied
that V (x) is positive definite from the first inequality of (29) by S-procedure. That
means our rest objective is to prove V (x) and piecewise controller (28) will satisfy (11)

of Theorem 3.1, that is, for all θ̂, θ ∈ Ωθ,

dV

dx

[
Ai

(
θ̂
)

x + Bi

(
θ̂
)

ui

(
x, θ̂
)]

+ xTCi(θ)
TCi(θ)x +

γ−2

4

dV

dx
Di(θ)Di(θ)

T dV

dx

T

< 0. (30)

Substituting V (x) by xT Pix, the condition (30) can be rewritten by S-procedure, that is

for all θ̂, θ ∈ Ωθ(
Ai

(
θ̂
)

+ Bi

(
θ̂
)

Ki

(
θ̂
))T

Pi + Pi

(
Ai

(
θ̂
)

+ Bi

(
θ̂
)

Ki

(
θ̂
))

+ CT
i

(
θ̂
)
Ci

(
θ̂
)

+ γ−2PiDi(θ)DT
i (θ)Pi + ET

i UiEi < 0, x ∈ Ri. (31)

Note that all the θ̂, θ ∈ Ωθ can be expressed by the convex hull of the parametric values
in vertexes, the required condition (31) is equivalent to the following condition(

2q∑
λ=1

αλAi (θλ) +

[
2q∑

λ=1

αλBi (θλ)

][
2q∑

λ=1

αλKi

(
θ̂
)])T

Pi

+ Pi

(
2q∑

λ=1

αλAi (θλ) +

[
2q∑

λ=1

αλBi (θλ)

][
2q∑

λ=1

αλKi (θλ)

])

+

[
2q∑

λ=1

αλCi(θλ)

]T [ 2q∑
λ=1

αλCi(θλ)

]

+ γ−2Pi

[
2q∑

λ=1

βλDi(θλ)

][
2q∑

λ=1

βλDi(θλ)

]T

Pi + ET
i UiEi < 0, x ∈ Ri, (32)

where {θλ}2q

λ=1 ∈ Ωθ denotes the vertexes of Ωθ, {αλ, βλ}2q

λ=1 denotes the convex hull

coefficients, which satisfies 0 ≤ αλ ≤ 1,
∑2q

λ=1 αλ = 1 and 0 ≤ βλ ≤ 1,
∑2q

λ=1 βλ = 1. Note
that 0 ≤ αλ, βλ ≤ 1, thus a sufficient condition for inequality (32) to hold is(

Ai

(
θ̂′
)

+ Bi

(
θ̂′
)

Ki

(
θ̂′′
))T

Pi + Pi

(
Ai

(
θ̂′
)

+ Bi

(
θ̂′
)

Ki

(
θ̂′′
))

+ CT
i

(
θ̂′
)
Ci

(
θ̂′′
)

+ γ−2PiDi (θ
′)DT

i (θ′′) Pi + ET
i UiEi < 0, (33)

for all θ̂′, θ̂′′, θ′, θ′′ ∈ Ωθ.

Let Qi = P−1
i , Acl

i = Ai

(
θ̂′
)

+ Bi

(
θ̂′
)

Ki

(
θ̂′′
)

Si = CT
i

(
θ̂′
)

Ci

(
θ̂′′
)

+ γ−2PiDi (θ
′)

DT
i (θ′′)Pi + ET

i UiEi, and then the sufficient condition (33) can be rewritten as

Qi

(
Acl

i

)T
+
(
Acl

i

)
Qi + QiSiQi < 0. (34)

The use of Lemma 4.1 with Ψi = QiSiQi and Ξi = Qi

(
Acl

i

)T
yields,[

QiSiQi + Φi −
(
Hi + HT

i

)
Acl

i Qi + HT
i

∗ −Φi

]
< 0. (35)

Making congruence transformation

[
Vi 0
∗ Pi

]
with Vi = H−1

i , the inequality (35) be-

comes [
V T

i

(
P−1

i SiP
−1
i + Φi

)
Vi −

(
Vi + V T

i

)
V T

i Acl
i + Pi

∗ −PiΦiPi

]
< 0. (36)
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By applying Schur complement argument [19] on V T
i

(
P−1

i SiP
−1
i + Φi

)
Vi, we know that

the proposed sufficient condition is well equivalent to the next inequality− (Vi + V T
i

)
V T

i Acl
i + Pi V T

i

∗ −PiΦiPi 0
∗ ∗ −(P−1

i SiP
−1
i + Φi)

−1

 < 0. (37)

Exploring Lemma 4.2 with Φi = P−1
i get(

P−1
i SiP

−1
i + Φi

)−1
= Pi(Si + Pi)

−1Pi ≥ Pi − Si. (38)

This inequality illustrates that the following condition can imply the inequality (37),− (Vi + V T
i

)
V T

i Acl
i + Pi V T

i

∗ −Pi 0
∗ ∗ Υi

 < 0, (39)

where

Υi = Si − Pi = CT
i

(
θ̂′
)
Ci

(
θ̂′′
)

+ γ−2PiDi(θ
′)DT

i (θ′′)Pi + ET
i UiEi − Pi. (40)

The dual of (39) (replacing Acl
i by (Acl

i )T ) is− (Vi + V T
i

)
V T

i

(
Acl

i

)T
+ Pi V T

i

∗ −Pi 0
∗ ∗ Ωi

 < 0, (41)

where

Ωi = D (θ′)DT (θ′′) + γ−2PiCT
i

(
θ̂′
)
Ci

(
θ̂′′
)

Pi + ET
i UiEi − Pi. (42)

Substituting Acl
i = Aiα +BKi, Ri = KiVi into (41), then twice Schur complement argu-

ments on the term D(θ′)DT (θ′′) + γ−2PiCT
i

(
θ̂′
)

Ci

(
θ̂′′
)

Pi shows that the condition (29)

implies the inequality (11). In other words, the condition (11) of Theorem 3.1 is satisfied
by piecewise quadratic Lyapunov function (27) and piecewise controller (28).

Remark 4.1. Incorporating Theorem 3.1 and Theorem 4.1 together, the adaptive Hinf
synthesis framework is presented, the piecewise affine controllers and related adaptive laws
can be synthesized by solving LMIs (29).

Remark 4.2. From synthesis condition (33) we can find that, if employing common
quadratic Lyapunov fucntion (CQLF) approach and neglecting S-procedure, this synthesis
condition can be easily formulated as LMIs by multiplying the inversion of the Lyapunov
matrix and applying Schur complement argument. If employing PQLF approach to achieve
the less conservatism, the proposed easy approach cannot work, which brings some diffi-
culties when formulating the synthesis condition as LMIs, which is actually the main
contribution of Theorem 4.1.

5. Air-Breathing Hypersonic Vehicle Control. Air-breathing hypersonic vehicles
may eventually allow dramatic reductions in flight times for both commercial and mili-
tary applications. Direct access to Earth orbit without the use of separate boosting stages
may also become possible as scramjet powered aircraft enter service. Although numerous
challenges remain, past successes with X-43 and X51 renewed research activities through-
out the aerospace community suggest that this technology may be on its way to assuming
a role in the next generation of aviation. The design of guidance and control systems for
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air-breathing hypersonic vehicles requires the control engineer to deal with strong cou-
plings between propulsive and aerodynamic effects while also addressing the significant
flexibility associated with the slender geometries required for these aircraft.

Consider the dynamic model of the air-breathing hypersonic vehicles [20] described in
the following.

ḣ = V sin(θ)

V̇ =
T cos(α) − D − mg sin(θ)

m

α̇ =
−T sin(α) − L + mg cos(θ)

mV
+ ωz

ω̇z =
Mz

J
+ ωd

where h, V , α and ωz denote the altitude, velocity, attack angle and pitch angular rate,
respectively. δ is the elevator angular deflection, and ωd is the external disturbance.

L = CL(α, δ)S
1

2
ρV 2; D = CD(α, δ)S

1

2
ρV 2

Mz = zT T + (CM,αα + λtCM,δδ) Sc
1

2
ρV 2

T = Cα3

T α3 + Cα2

T α2 + Cα
T α + C0

T

and

CL(α, δ) = Cα
Lα + Cδ

Lδ + C0
L

CD(α, δ) = Cα2

D α2 + Cα
Dα + Cδ2

D δ2 + Cδ
Dδ + C0

D

CM,α = Cα2

M,αα2 + Cα
M,αα + C0

M,α, CM,δ = Ceδ

Cα3

T = β1Φ + β2, Cα2

T = β3Φ + β4

Cα
T = β5Φ + β6, C0

T = β7Φ + β8

The detail values of the aerodynamic coefficient (lift and moment coefficients) and
thrust coefficient employed in the above mathematical description can be found in [20].
Moreover, the following table illustrates all the parameter values and physical meanings,
where θ ∈ [−0.1, 0.1] denotes the unknown parameter. From Table 1, the unknown pa-
rameter θ will affect the tail rotor torque coefficient directly, which reflects the control
efficiency of the hypersonic vehicle. With the larger amplitude of θ, the parametric un-
certainty is larger, the control synthesis conservatism will be enlarged, and the control
performance will be reduced. It is worth pointing out that, all the parameter values in Ta-
ble 1 are set the same with the research work [20], specially the parameter uncertainty of
the tail rotor torque coefficient is always chosen within 10%, respecting to θ ∈ [−0.1, 0.1].

The synthesis problem is to seek the feedback control law satisfying the gain constraint
∥K∥∞ ≤ 10 that forces the hypersonic vehicle to reach the required attack angle, and
minimize the impact of disturbance ωd on the output vector α.

Given the possible initial angle α0 ∈ [−6◦, 6◦], the nonlinear function in the attitude loop
can be approximated by piecewise affine function yielding the PLS with three polytopic
regions to approximately describe the original nonlinear system, i.e., R1 = {α|α ∈ [−6◦,−2◦]} ,

R2 = {α|α ∈ [−2◦, 2◦]} ,
R3 = {α|α ∈ [2◦, 6◦]} ,
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Table 1. Simulation parameters

λt = 1 + θ Tail rotor torque coefficient effect on the control efficiency

m = 30 vehicle mass (t) effect on the variation of Velocity

S = 158 reference area (m2) effect on the lift and moment

J = 45 × 105 moment of inertia (kg·m2) effect on the variation of ωz

h0 = 25.9 altitude (km) flight envelope 20km < h < 40km

V0 = 2348 Velocity (m/s) flight envelope Mach > 5

Zt = 2.54
thrust to moment coupling

coefficient (m)
additional pitch moment from engine

Φ=1 fuel-to-air ratio effect on the engine thrust

Following Theorem 3.1 and Theorem 4.1, the piecewise control law and its related
adaptive law  u =

(
Ki0 + θ̂Ki1

)
x

˙̂
θ = Proj

(
xT Q−1

i [Ai1x + Bi1u]
) x ∈ Ri

are employed, where Ki0, Ki1 are solved by computing the LMIs proposed in Theorem 4.1.
Assuming the true value of parameter is θ = 0.1 and the dynamic system is suffered

from the external disturbances described by

w(t) = −0.1 sin(4πt). (43)

Using designed piecewise control law and adaptive law, we carry out the simulation
experiments with initial value x(0) = (−6◦, 0)T and x(0) = (6◦, 0)T , respectively. It
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Figure 1. Case 1
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Figure 2. Case 2

Table 2. Comparison results

PQLF approach CQLF approach [13] CQLF approach [14]

Hinf Performance 0.2730 0.6106 0.6956

can be observed in Figures 1 and 2 that, the system solution of closed-loop PLS is stable,
which converges to origin as disturbance converges to zero, in other words the disturbance
is attenuated. Moreover, for the tracking of attack angle, the overshoot can be controlled
under 6% and the ascent time can be reduced within 0.4s, which illustrates the control
performance of the proposed synthesis approach for the air-breathing hypersonic vehicles.

In addition, the control synthesis using the CQLF based adaptive Hinf control ap-
proach [13, 14] has been done for the same PLS. As illustrated in Table 2, the closed
loop systems synthesized by the proposed PQLF approach has the minus Hinf norm value
0.2730, and both of the Hinf norm values obtained using [13, 14] are larger than the Hinf
norm value using the PQLF approach proposed in this paper, which states the designed
controller using PQLF approach can minimize the impact of disturbance ωd on the output
vector α better, this obviously illustrates the advantage of the proposed approach.

6. Conclusions. In this paper, an improved adaptive Hinf synthesis framework is pre-
sented for piecewise-affine systems, the common quadratic Lyapunov function based syn-
thesis approach is extended to piecewise quadratic Lyapunov function by using reciprocal
projection lemma to achieve less conservatism. The synthesis conditions are formulated as
LMIs and hence can be solved efficiently, and simulation results well illustrate the efficacy
and advantage of the improved adaptive Hinf synthesis approach.
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