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Abstract. This paper addresses the problem of stability analysis for a class of genetic
regulatory networks (GRNs) with Markovian jumping parameters and time-varying de-
lays. By constructing a novel Lyapunov-Krasovskii functional (LKF) and using an appro-
priate enlargement scheme, new stability criteria are proposed in terms of linear matrix
inequalities, which can guarantee the mean square stability of Markovian jumping GRNs.
The novelty of this paper is that the less conservative stability criteria are obtained by
utilizing Wirtinger-type integral inequality to estimate the weak infinitesimal operator of
LKF. Furthermore, two illustrative examples are given to show the effectiveness of the
theoretical results and the significant improvement on the existing results.
Keywords: Genetic regulatory networks (GRNs), Markovian jumping parameters (MJ-
Ps), Stability, Linear matrix inequality (LMI), Time-varying delays

1. Introduction. In the past decade, the research of genetic regulatory networks (GRNs)
has been attracting considerable attention due to important growth in a wide range of
applications including genetic engineering and biological background areas, see, e.g., [1,
2, 3, 4, 5, 6, 7]. In nature, a GRN is a dynamic system to describe interactions among
genes (mRNA) and its products (proteins). Generally speaking, mathematical models of
GRNs have been broadly classified into two types: discrete-time models and continuous-
time models. A continuous-time one can be described by a set of differential equations,
in which the derivatives of the unknown functions can be introduced to characterize the
continuous change of mRNA and protein concentrations [8, 9, 10, 11]. Consequently,
the differential equation models have been used to understand the complex properties of
GRNs.

As is well known, the existence of time delays often leads to unsatisfactory performances
or even system instability [12, 13, 14, 15, 16, 17, 18]. In practical applications, time delays,
caused by the finite translation speed in modeling gene regulation process, are primary
factors impacting the dynamic behavior of whole gene network [19, 20, 21]. Also, the
mathematical modeling of GRNs considering without delays may lead to wrong predictions
of the concentrations of mRNAs and proteins. In recent years, a series of literature
addressed the analysis and synthesized problems of delayed GRNs, which are referred to
stability analysis and stabilization [22, 23], H∞ filter design [24, 25, 26], state estimation
[13, 20, 27] and so on.

809



810 J. CUI, T. LIU AND Y. WANG

In addition, the intrinsic noises and exogenous disturbances are always inevitable in
most of practical gene regulation process. Note that the inherent noises may be generated
randomly by individual molecules as well as the exogenous disturbances could affect gene
systems under the assumption of the Brownian motion [8, 24, 27, 29]. As a result, it
is the best viewed to modeling gene systems with a stochastic process. Note that the
stability analysis plays an important role in designing or controlling delayed GRNs with
Markovian jumping parameters (MJPs), which has encouraged the research in this field.
To date, a number of effective techniques have been employed in literature to obtain less
conservative stability criteria, such as free-weighting matrices techniques [8, 28], convex
combination method [29], and delay (or delay-range) partition approaches [30, 31, 32].
More recently, it is worth mentioning that Wirtinger-type integral inequality is adopted
in stability analysis of delayed GRNs to estimate accurately the derivative of LKF, which
is helpful to obtain some less conservative stability criteria [10, 15, 21, 25].

In this paper, we investigate the stability problem for a class of stochastic GRNs with
time-varying delays as well as seek further improvement covering the existing works. The
main contributions of this study consist of the following aspects: (i) By choosing an appro-
priate LKF, new delay-dependent mean-square asymptotic stability criteria are given; (ii)
Within this framework, the Wirtinger-type integral inequality and convex combination
technique are introduced to estimate the double-integral items in the weak infinitesimal
operator of the LKF, which are useful to establish the stability criteria; (iii) According
to numerical comparisons, it is clear to observe that the stability criteria proposed in the
paper are less conservative and more effective than the one in [29]. The rest of the paper
is organized as follows: the problem is formulated and some preliminaries are given in Sec-
tion 2; in Section 3, mean-square asymptotic stability criteria for the delayed stochastic
GRNs are established; a numerical example is provided in Section 4; finally, we conclude
this paper in Section 5.

Notation: Rn denotes the n-dimensional Euclidean space, Rm×n represents the set of all
m× n real matrices, and I stands for the identity matrix with an appropriate dimension.
Matrix P > 0 (P ≥ 0) means P is positive definite (positive semi-definite). For a matrixA,
AT denotes its transpose. ∥ · ∥ denotes the Euclidean norm of vectors or matrices, λmax(·)
and λmin(·) represent the maximum and minimum eigenvalues of a real symmetric matrix
respectively. Let col(· · · ) and diag(· · · ) be the block column matrix and diagonal matrix
formed by the elements in brackets, respectively. IN refers to the set = {1, 2, . . . , N} for
any positive integer N .

2. Problem Statement and Preliminaries. In this paper, we consider the following
differential GRNs model composed of n mRNAs and n proteins with time-varying delays:

ṁi(t) = −aimi(t) +
N∑

j=1

bijfj(pj(t− h(t))) + Ji, (1a)

ṗi(t) = −cipi(t) + dimi(t− τ(t)), i = 1, 2, . . . , n, (1b)

where mi(t) and pi(t) are the concentrations of mRNA and protein of the ith gene at the
time t, respectively. ai > 0 and ci > 0 denote the degradation rates of the mRNA and
the protein, respectively. Let di > 0 denote the translation rate of the ith gene. The
time-varying delays h(t) and τ(t) are assumed to satisfy the following conditions

0 < τ1 ≤ τ(t) ≤ τ2, µ11 ≤ τ̇(t) ≤ µ1, 0 < h1 ≤ h(t) ≤ h2, µ22 ≤ ḣ(t) ≤ µ2, (2)
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bij is defined as follows

bij =

 0, if there is no connection between j and i,
αij, if transcription factor j activates gene i,
−αij, if transcription factor j represses gene i,

(3)

where αij represents the dimensionless transcriptional rate of transcription factor j to gene
i, Ji =

∑
j=Si

αij is the basal rates, in which Si is the set of repressors of the i-th gene.

Here, fj(x) = (x/βj)
αj/(1 + (x/βj)

αj), x ∈ R, which is a nonlinear feedback regulation
function, where hj is the Hill coefficient, and βj > 0 is a constant.

Assumption 1. For j = 1, 2, . . . , n, the nonlinear function fj(ν) is continuous and
bounded, and satisfies the following inequality:

fj(0) = 0, 0 ≤ fj(ν1) − fj(ν2)

ν1 − ν2

≤ hj, ν1 ̸= ν2, (4)

where hj, j = 1, 2, . . . , n, are the known constants.
Let m(t) = col(m1(t),m2(t), . . . ,mn(t)) and p(t) = col(p1(t), p2(t), . . . , pn(t)). Then

the dynamics of GRNs (1) can be written as the following form{
ṁ(t) = −Am(t) +Bf(p(t− h(t))) + J,

ṗ(t) = −Cp(t) +Dm(t− τ(t)),
(5)

where f(p(t − h(t))) = col(f1(p1(t − h(t))), f2(p2(t − h(t))), . . . , fn(pn(t − h(t)))), A =
diag(a1, a2, . . . , an), C = diag(c1, c2, . . . , cn), D = diag(d1, d2, . . . , dn), B = [bij], and
J = col(J1, J2, . . . , Jn).

Denote

x(t) = m(t) −m∗, y(t) = p(t) − p∗, (6)

where (m∗, p∗) represents the equilibrium point of GRN (5), i.e., (m∗, p∗) is a solution of
the following equation: { − Am∗ +Bf(p∗) + J = 0,

− Cp∗ +Dm∗ = 0.
(7)

Then, shifting the intended equilibrium point (m∗, p∗) of (5) to the origin, we obtain{
ẋ(t) = −Ax(t) +Bg(y(t− h(t))),
ẏ(t) = −Cy(t) +Dx(t− τ(t)),

(8)

where g(s) = f(s+ p∗) − f(p∗) satisfying the following conditions:

gi(0) = 0, 0 ≤ gi(x)

x
≤ hi, i = 1, 2, . . . , n, ∀0 ̸= x ∈ R.

Next, taking the Markovian jumping parameters into (8), we have{
ẋ(t) = −Aıx(t) +Bıg(y(t− h(t))),

ẏ(t) = −Cıy(t) +Dıx(t− τ(t)),
(9)

where [
Aı Bı Cı Dı

]
=
[
A(r(t)) B(r(t)) C(r(t)) D(r(t))

]
.

Here, r(t) (t ≥ 0) represents a Markov process on the complete probability space (Ω,F ,P)
which takes values in a finite state space IN with generator Γ = [γıȷ]N×N , and the mode
transition probabilities are given by

γıȷ := P{r(t+ ∆t) = ȷ|r(t) = ı} =

{
γıȷ∆t+ o(∆t), ı ̸= ȷ,

1 + γıȷ∆t+ o(∆t), ı = ȷ,
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where ∆t > 0 satisfying lim∆t→0
o(∆t)
∆t

= 0, γıȷ ≥ 0 (ȷ ̸= ı) is the transition rate from mode

ı to mode ȷ, and γıı = −
∑N

ȷ=1,ȷ ̸=ı γıȷ.

Remark 2.1. According to [8, 24, 27], the system matrices of (8) may change randomly
by Markov process, due to the inherent noises of individual molecules as well as the ex-
ogenous disturbances could affect gene system under the assumption of Brownian motion.
Therefore, it is necessary to consider MJPs in a real GRN model.

Definition 2.1. Let (x(t, ϕ, ı0), y(t, φ, ı0)) denote the solution of (9), then the system (9)
is said to be mean-square asymptotically stable if, for each ε > 0, there exists a δ(ε) > 0
such that

E||x(t, ϕ, ı0)||22 < ε, E||y(t, φ, ı0)||22 < ε

and
lim
t→∞

E
{
||x(t, ϕ, ı0)||22

}
= 0, lim

t→∞
E
{
||y(t, φ, ı0)||22

}
= 0,

when the initial condition (ϕ, φ, ı0) satisfies

sup
−τ∗≤s≤0

||ϕ(s)||22 < δ(ε), sup
−τ∗≤s≤0

||φ(s)||22 < δ(ε),

where τ ∗ = max{τ2, h2}.
Definition 2.2. [33] Let V (xt, t, r(t) = ı) be the stochastic positive LKF. The weak infin-
itesimal operator is defined as

LV (xt, t, r(t) = ı)

= lim
∆t→0

1

∆t
[ε {V (x|t+∆t), t+ ∆t, r(t+ ∆t)|xt, r(t) = ı} − V (x(t), t, ı)] .

= Vt(xt, t, ı) + Vx(xt, t, ı)f(xt, t, ı) +
N∑

ȷ=1

γıȷV (xt, t, ȷ),

(10)

where

Vt(xt, t, ı) =
∂V (xt, t, ı)

∂t
, Vx(xt, t, ı) =

(
∂V (xt, t, ı)

∂x1

, . . . ,
∂V (xt, t, ı)

∂xn

)
.

The main purpose of this paper is to investigate stability problem for the delayed
GRN (9) with Markovian jumping parameters. In order to establish the delay-dependent
stability criteria, we introduce the following lemmas.

Lemma 2.1. [34] (Jensen’s Inequality) For given a positive definite matrix MT =
M ∈ Rn×n, a scalar τ > 0, and a vector function ω(·) : [−τ, 0] → Rn such that the
integrations concerned are well defined, then the following inequities hold:∫ 0

−τ

ωT (s)Mω(s)ds ≥ 1

τ

(∫ 0

−τ

ω(s)ds

)T

M

(∫ 0

−τ

ω(s)ds

)
,∫ 0

−τ

∫ 0

θ

ωT (s)Mω(s)dsdθ ≥ 2

τ 2

(∫ 0

−τ

∫ 0

θ

ω(s)dsdθ

)T

M

(∫ 0

−τ

∫ 0

θ

ω(s)dsdθ

)
.

Lemma 2.2. [35] (Wirtinger-Type Integral Inequality) For given a positive definite
matrix MT = M ∈ Rn×n of appropriate size, two scalars a and b with a < b, and a
derivable vector function ω(·) : [a, b] → Rn, then the following inequality holds:∫ b

a

ω̇T (s)Mω̇(s)ds ≥ 1

b− a

[
Ω0

Ω1

]T

M̃

[
Ω0

Ω1

]
, (11)

where Ω0 = ω(b) − ω(a), Ω1 = ω(b) + ω(a) − 2
b−a

∫ b

a
ω(s)ds, and M̃ = diag(M, 3M).
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Lemma 2.3. [36] (Lower Bounds Theorem) Let f1, f2, . . . , fn : Rm → R have positive
finite values in an open subset D ⊆ Rm. Then the reciprocally convex combination of fi

over D satisfies

min
{αi:αi>0,

∑
i αi=1}

∑
i

1

αi

fi(t) =
∑

i

fi(t) + max
gi,j(t)

∑
i̸=j

gi,j(t) (12)

subject to

gi,j : Rm → R, gi,j(t) = gj,i(t),

[
fi(t) gj,i(t)
gj,i(t) fi(t)

]
≥ 0. (13)

3. Main Results. In this section, we discuss the stability problem of GRN (9) by defining
a novel LKF and using the Wirtinger-type integral inequality. Before introducing the main
results, the following notations are denoted:

ei = [0n×(i−1)n I 0n×(18−i)n], i = 1, 2, . . . , 18,

ξ1(t) = col

(
x(t), x(t− τ1),

∫ t

t−τ1

x(s)ds,

∫ t−τ1

t−τ2

x(s)ds

)
,

ξ2(t) = col

(
y(t), y(t− h1),

∫ t

t−h1

y(s)ds,

∫ t−h1

t−h2

y(s)ds

)
,

L1(τ) = col (e1, e3, e13, (τ − τ1)e14 + (τ2 − τ)e15) ,

L2(h) = col (e6, e8, e16, (h− h1)e17 + (h2 − h)e18) ,

L1ı = col (−Aıe1 +Bıe13, e5, e1 − e3, e3 − e4) , ı ∈ IN ,

L2ı = col (−Cıe6 +Dıe2e10e6 − e8e8 − e9) , ı ∈ IN ,

ξ(t) = col

(
x(t), x(t− τ(t)), x(t− τ1), x(t− τ2), ẋ(t− τ1), y(t),

y(t− h(t)), y(t− h1), y(t− h2), ẏ(t− h1), f(y(t)),

f(y(t− h(t))),

∫ t

t−τ1

x(s)ds,
1

τ(t) − τ1

∫ t−τ1

t−τ(t)

x(t)ds,

1

τ2 − τ(t)

∫ t−τ(t)

t−τ2

x(s)ds,

∫ t

t−h1

y(s)ds,
1

h(t) − h1

∫ t−h1

t−h(t)

y(s)ds,

1

h2 − h(t)

∫ t−h(t)

t−h2

y(s)ds

)
,

(14)

R = col (K3, K4) , T = col (K5, K6) ,

X̃i = diag (Xi, 3Xi) , Ũi = diag (Ui, 3Ui) , i = 1, 2, 3, 4,

K1 = col

(
e1 − e3, e1 + e3 −

2

τ1
e13

)
, K2 = col (e3 − e2, e3 + e2 − 2e14) ,

K3 = col

(
e6 − e8, e6 + e8 −

2

h1

e16

)
, K4 = col (e2 − e4, e2 + e4 − 2e15) ,

K5 = col (e8 − e7, e8 + e7 − 2e17) , K6 = col (e7 − e9, e7 + e9 − 2e18) .

Based on the previous preparation, a new stability criterion for the stochastic GRN (9)
is proposed as follows.
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Theorem 3.1. Consider GRN (9) with Assumption 1. For given scalars τ2 > τ1 > 0,
h2 > h1 > 0, µ1, µ2, µ11 and µ22 satisfying (2), the trivial solution of GRN (9) is mean-
square asymptotically stable if there exist positive-definite matrices P1ı > 0, P2ı > 0 (ı =
1, 2), Ql > 0 (l = 1, . . . , 8), S > 0, Xb > 0, Ub > 0, Gb > 0 (b = 1, . . . , 4), diagonal
matrices △ := diag(δ1, δ2, . . . , δn), and matrices M and N , of appropriate sizes, such that
the following inequalities hold for τ ∈ {τ1, τ2} and h ∈ {h1, h2}:

J1 :=

[
X̃2 M

MT X̃2

]
≥ 0, J2 :=

[
X̃4 N

NT X̃4

]
≥ 0,

Φı(τ, h) = Φ1ı(τ, h) + Φ2ı + Φ3ı + Φ4ı(τ, h) + Φ5ı −RTJ1R− T TJ2T < 0, ı ∈ IN , (15)

where

Φ1ı(τ, h) = LT
1 (τ)P1ıL1ı + LT

1ıP1ıL1(τ) + LT
2 (h)P2ıL2ı + LT

2ıP2ıL2(h)

+ LT
1 (τ)

(
2∑

ȷ=1

γıȷP1ȷ

)
L1(τ) + LT

2 (h)

(
2∑

ȷ=1

γıȷP2ȷ

)
L2(h),

Φ2ı = − 2eT
11∆Cıe6 + 2eT

11∆Dıe2 + eT
11Se11 − (1 − µ2)e

T
12Se12,

Φ3ı = eT
1Q1e1 − eT

3Q1e3 + eT
3Q2e3 − (1 − µ1)e

T
2Q2e2 + (1 − µ11)e

T
2Q3e2 − eT

4Q3e4

+ eT
6Q4e6 − eT

8Q4e8 + eT
8Q5e8 − (1 − µ2)e

T
7Q5e7 + (1 − µ22)e

T
7Q6e7 − eT

9Q6e9

+ (−Aıe1 +Wıe12)
TQ7(−Aıe1 +Wıe12) − eT

5Q7e5

+ (−Cıe6 +Dıe2)
TQ8(−Cıe6 +Dıe2) − eT

10Q8e10,

Φ4ı(τ, h) = τ 2
1 (−Aıe1 +Wıe12)

TX1 (−Aıe1 +Wıe12) −KT
1 X̃1K1 + (τ2 − τ1)

2eT
5X2e5

− 1

τ1
eT
13G1e13 + h2

1(−Cıe6 +Dıe2)
TX3(−Cıe6 +Dıe2) −KT

3 X̃3K3

+ (h2 − h1)
2eT

10X4e10 + τ1e
T
1G1e1 + (τ2 − τ1)e

T
3G2e3 + h1e

T
6G3e6

− 1

h1

eT
16G3e16 + (h2 − h1)e

T
8G4e8 − (τ − τ1)e

T
14G2e14 − (τ2 − τ)eT

15G2e15

− (h− h1)e
T
17G4e17 − (h2 − h)eT

18G4e18,

Φ5ı =
τ 4
1

2
(−Aıe1 +Wıe12)

TU1(−Aıe1 +Wıe12) − 2(τ1e1 − e13)
TU1(τ1e1 − e13)

+
(τ2 − τ1)

2

2
eT
5U2e5 − 2(e3 − e14)

TU2(e3 − e14) +
(h2 − h1)

2

2
eT
10U4e10

− 2(e2 − e15)
TU2(e2 − e15) − 2(h1e6 − e16)

TU3(h1e6 − e16)

+
h4

1

2
(−Cıe6 +Dıe2)

TU3(−Cıe6 +Dıe2)

− 2(e8 − e17)
TU4(e8 − e17) − 2(e7 − e18)

TU4(e7 − e18).

Proof: Firstly, we define the following LKF candidate for GRN (9):

V (ı, t, x(t), y(t)) = V1(ı, t, x(t), y(t)) +
5∑

k=2

Vk(t, x(t), y(t)), (16)

where

V1(ı, t, x(t), y(t)) = ξT
1 (t)P1ıξ1(t) + ξT

2 (t)P2ıξ2(t),
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V2(t, x(t), y(t)) = 2
n∑

j=1

δj

∫ yj(t)

0

fj(s)ds+

∫ t

t−h(t)

fT (y(s))Sf(y(s))ds,

V3(t, x(t), y(t)) =

∫ t

t−τ1

xT (s)Q1x(s)ds+

∫ t−τ1

t−τ(t)

xT (s)Q2x(s)ds

+

∫ t−τ(t)

t−τ2

xT (s)Q3x(s)ds+

∫ t

t−h1

yT (s)Q4y(s)ds

+

∫ t−h1

t−h(t)

yT (s)Q5y(s)ds+

∫ t−h(t)

t−h2

yT (s)Q6y(s)ds

+

∫ t

t−τ1

ẋT (s)Q7ẋ(s)ds+

∫ t

t−h1

ẏT (s)Q8ẏ(s)ds,

V4(t, x(t), y(t)) = τ1

∫ 0

−τ1

∫ t

t+θ

ẋT (s)X1ẋ(s)dsdθ + h1

∫ 0

−h1

∫ t

t+θ

ẏT (s)X3ẏ(s)dsdθ

+(τ2 − τ1)

∫ −τ1

−τ2

∫ t−τ1

t+θ

ẋT (s)X2ẋ(s)dsdθ

+(h2 − h1)

∫ −h1

−h2

∫ t−h1

t+θ

ẏT (s)X4ẏ(s)dsdθ

+

∫ 0

−τ1

∫ t

t+θ

xT (s)G1x(s)dsdθ +

∫ −τ1

−τ2

∫ t−τ1

t+θ

xT (s)G2x(s)dsdθ

+

∫ 0

−h1

∫ t

t+θ

yT (s)G3y(s)dsdθ +

∫ −h1

−h2

∫ t−h1

t+θ

yT (s)G4y(s)dsdθ,

V5(t, x(t), y(t)) = τ1
2

∫ 0

−τ1

∫ 0

θ

∫ t

t+λ

ẋT (s)U1ẋ(s)dsdλdθ

+

∫ −τ1

−τ2

∫ −τ1

θ

∫ t−τ1

t+λ

ẋT (s)U2ẋ(s)dsdλdθ

+h1
2

∫ 0

−h1

∫ 0

θ

∫ t

t+λ

ẏT (s)U3ẏ(s)dsdλdθ

+

∫ −h1

−h2

∫ −h1

θ

∫ t−h1

t+λ

ẏT (s)U4ẏ(s)dsdλdθ.

According to Definition 2.2, the weak infinitesimal operator L of the stochastic process
{r(t) = ı, t ≥ 0} is given by

LV (ı, t, x(t), y(t)) = LV1(ı, t, x(t), y(t)) +
5∑

k=2

LVk(t, x(t), y(t)). (17)

It is not difficult to obtain that

ξ1(t) = L1(τ(t))ξ(t), ξ2(t) = L2(h(t))ξ(t), (18)

ξ̇1(t) = L1ıξ(t), ξ̇2(t) = L2ıξ(t). (19)

In view of (10), (18), and (19), we obtain

LV1(ı, t, x(t), y(t)) = ξT (t)Φ1ı(τ(t), h(t))ξ(t). (20)
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From (2), we have

LV2(t, x(t), y(t)) ≤ 2fT (y(t))∆ẏ(t) + fT (y(t))Sf(y(t))

− (1 − µ2)f
T (t− h(t))Sf(t− h(t)).

(21)

Substituting (9) into (21) yields

LV2(t, x(t), y(t)) ≤ ξT (t)Φ2ıξ(t). (22)

Similarly, it follows that

LV3(t, x(t), y(t))

≤ xT (t)Q1x(t) − xT (t− τ1)Q1x(t− τ1) + xT (t− τ1)Q2x(t− τ1)

− (1 − µ1)x
T (t− τ(t))Q2x(t− τ(t)) + (1 − µ11)x

T (t− τ(t))Q3x(t− τ(t))

− xT (t− τ2)Q3x(t− τ2) + yT (t)Q4y(t) − yT (t− h1)Q4y(t− h1)

+ yT (t− h1)Q5y(t− h1) − (1 − µ2)y
T (t− h(t))Q5y(t− h(t))

+ (1 − µ22)y
T (t− h(t))Q6y(t− h(t)) + ẋT (t)Q7ẋ(t) − yT (t− h2)Q6y(t− h2)

− ẋT (t− τ1)Q7ẋ(t− τ1) + ẏT (t)Q8ẏ(t) − ẏT (t− h1)Q8ẏ(t− h1)

≤ ξT (t)Φ3ıξ(t)

(23)

and

LV4(ı, t, x(t), y(t))

≤ τ 2
1 ẋ

T (t)X1ẋ(t) − τ1

∫ t

t−τ1

ẋT (s)X1ẋ(s)ds+ (τ2 − τ1)
2ẋT (t− τ1)X2ẋ(t− τ1)

− (τ2 − τ1)

∫ t−τ1

t−τ2

ẋT (s)X2ẋ(s)ds+ h2
1ẏ

T (t)X3ẏ(t) − h1

∫ t

t−h1

ẏT (s)X3ẏ(s)ds

+ (h2 − h1)
2ẏT (t− h1)X4ẏ(t− h1) − (h2 − h1)

∫ t−h1

t−h2

ẏT (s)X4ẏ(s)ds

+ τ1x
T (t)G1x(t) −

∫ t

t−τ1

xT (s)G1x(s)ds+ (τ2 − τ1)x
T (t− τ1)G2x(t− τ1)

−
∫ t−τ1

t−τ2

xT (s)G2x(s)ds+ h1y
T (t)G3y(t) −

∫ t

t−h1

yT (s)G3y(s)ds

−
∫ t−h1

t−h2

yT (s)G4y(s)ds+ (h2 − h1)y
T (t− h1)G4y(t− h1).

(24)

By using Lemma 2.1, we have∫ t

t−τ1

xT (s)G1x(s)ds ≥
1

τ1
ξT (t)eT

13G1e13ξ(t), (25a)

∫ t

t−h1

yT (s)G3y(s)ds ≥
1

h1

ξT (t)eT
16G3e16ξ(t), (25b)

∫ t−τ1

t−τ(t)

xT (s)G2x(s)ds ≥
1

τ(t) − τ1
ξT (t)eT

14G2e14ξ(t), (26a)

∫ t−τ(t)

t−τ2

xT (s)G2x(s)ds ≥
1

τ2 − τ(t)
ξT (t)eT

15G2e15ξ(t), (26b)
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∫ t−h1

t−h(t)

yT (s)G4y(s)ds ≥
1

h(t) − h1

ξT (t)eT
17G4e17ξ(t), (27a)

∫ t−h(t)

t−h2

yT (s)G4y(s)ds ≥
1

h2 − h(t)
ξT (t)eT

18G4e18ξ(t). (27b)

Also, based on Lemma 2.2, we obtain

−τ1
∫ t

t−τ1

ẋT (s)X1ẋ(s)ds ≤ −ξT (t)KT
1 X̃1K1ξ(t), (28a)

−h1

∫ t

t−h1

ẏT (s)X3ẏ(s)ds ≤ −ξT (t)KT
3 X̃3K3ξ(t), (28b)

− (τ2 − τ1)

∫ t−τ1

t−τ2

ẋT (s)X2ẋ(s)ds

≤ − τ2 − τ1
τ(t) − τ1

ξT (t)KT
2 X̃2K2ξ(t) −

τ2 − τ1
τ2 − τ(t)

ξT (t)KT
4 X̃2K4ξ(t)

(29a)

− (h2 − h1)

∫ t−h1

t−h2

ẏT (s)X4ẏ(s)ds

≤ − h2 − h1

h(t) − h1

ξT (t)KT
5 X̃4K5ξ(t) −

h2 − h1

h2 − h(t)
ξT (t)KT

6 X̃4K6ξ(t).

(29b)

Then, according to (25)-(29), and (9), we can rewrite (24) as

LV4(t, x(t), y(t)) ≤ ξT (t)

(
Φ4ı(τ(t), h(t)) −

τ2 − τ1
τ(t) − τ1

KT
2 X̃2K2 −

τ2 − τ1
τ2 − τ(t)

KT
4 X̃2K4

− h2 − h1

h(t) − h1

KT
5 X̃4K5 −

h2 − h1

h2 − h(t)
KT

6 X̃4K6

)
ξ(t).

(30)
By using Lemma 2.3, we have,

LV4(t, x(t), y(t)) ≤ ξT (t)
[
Φ4ı(τ(t), h(t)) −RTJ1R− T TJ2T

]
ξ(t). (31)

Next, based on the second inequality of Lemma 2.1, it is known that

LV5(t, x(t), y(t)) ≤ ξT (t)Φ5ıξ(t). (32)

Thus, combining (20), (22), (23), (31), (32) with (17), we have

LV (ı, t, x(t), y(t)) ≤ ξT (t)Φ(τ(t), h(t))ξ(t) < 0. (33)

Taking the mathematical expectation on both sides of (33), it implies

E {LV (ı, t, x(t), y(t))} ≤ E
{
ξT (t)Φ(τ(t), h(t))ξ(t)

}
. (34)

Since Φ(τ(t), h(t)) depends affinely on τ and h, we obtain from (15) that Φ(τ(t), h(t)) < 0,
∀τ ∈ [τ1, τ2], h ∈ [h1, h2]. So,

E {LV (ı, t, x(t), y(t))} ≤ −ϖ
(
E
{
||x(t, ϕ, ı0)||22 + ||y(t, φ, ı0)||22

})
< 0, (35)

where ϖ = minτ∈[τ1,τ2],h∈[h1,h2] λmin(−Φ(τ, h)), which means

E {LV (ı, t, x(t), y(t))}≤−ϖE||x(t, ϕ, ı0)||22, E {LV (ı, t, x(t), y(t))}≤−ϖE||y(t, φ, ı0)||22.
(36)
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Then, integrate both sides of (36) from 0 to

E{V (ı, t, x(t), y(t)) − V (ı(0), 0, x(0), y(0))} ≤ −ϖ
∫ t

0

E||x(s, ϕ, ı0)||22ds,

E{V (ı, t, x(t), y(t)) − V (ı(0), 0, x(0), y(0))} ≤ −ϖ
∫ t

0

E||y(s, φ, ı0)||22ds.
(37)

According to the LKF (16), one can know that

EV (ı, t, x(t), y(t)) > 0.

Then, we have ∫ t

0

E||x(s, ϕ, ı0)||22ds < ϖ−1V (ı(0), 0, x(0), y(0)),∫ t

0

E||y(s, φ, ı0)||22ds < ϖ−1V (ı(0), 0, x(0), y(0)).

(38)

Letting z(t) =
[
xT (t) yT (t)

]
, it follows from (38) that the solution z(t) of system (9) is

uniformly bounded, which implies z(t) is uniformly continuous. Applying the Barbalat’s
Lemma to (38) yields

lim
t→∞

E||x(t, ϕ, ı0)||22 = 0, lim
t→∞

E||y(t, φ, ı0)||22 = 0.

On the other hand, it is not difficult to obtain that

E{V (ı, t, x(t), y(t))} < E{V (ı, 0, x(0), y(0))}. (39)

Note that

E{V (ı(0), 0, x(0), y(0))} =V1(ı, 0, x(0), y(0)) +
5∑

k=2

Vk(0, x(0), y(0))

≤λ11||ϕ(s)||22 + λ22||φ(s)||22,
(40)

E {V (ı, t, x(t), y(t))} ≥ λmin(P1ı)E
{
||x(t, ϕ, ı0)||22

}
≥ λmin(P1,2)E

{
||x(t, ϕ, ı0)||22

}
,

E {V (ı, t, x(t), y(t))} ≥ λmin(P1,2)E
{
||y(t, φ, ı0)||22

}
,

(41)

where λmin(P1,2) is the minimum eigenvalue of diag(P1ı, P2ı), and

λ11 = τ2[λmax(P1ı) + λmax(Q1) + λmax(Q2) + λmax(Q3) + λmax(Q7) + λmax(X1)

+ λmax(X2) + λmax(G1) + λmax(G2) + λmax(U1) + λmax(U2)],

λ22 = h2[λmax(P2ı) + λmax(Q4) + λmax(Q5) + λmax(Q6) + λmax(Q8) + λmax(X3)

+ λmax(X4) + λmax(G3) + λmax(G4) + λmax(U3) + λmax(U4)].

(42)

Therefore, from (39)-(41), we have

E||x(t, ϕ, ı0)||22 ≤
λ11||ϕ(t)||22 + λ22||φ(t)||22

λmin(P1,2)
,

E||y(t, φ, ı0)||22 ≤
λ11||ϕ(t)||22 + λ22||φ(t)||22

λmin(P1,2)
.

(43)

Furthermore, for any ε > 0, choose

δ(ε) = min

{
ελmin(P1,2)

2λ11

,
ελmin(P1,2)

2λ22

}
.

Then E||x(t, ϕ, ı0)||22 < ε and E||y(t, φ, ı0)||22 < ε when sup−τ∗≤s≤0 ||ϕ(s)||22 < δ(ε) and
sup−τ∗≤s≤0 ||φ(s)||22 < δ(ε). Based on Definition 2.1, the Markovian jumping GRN (9) is
mean-square asymptotically stable. The proof is completed. �
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Remark 3.1. Note that the methodology of this work is different from the ones in [29,
30, 31, 32]. By constructing a novel LKF and utilizing Wirtinger-type integral inequality
technique, a new stability criterion is proposed to ensure the mean square stability of the
stochastic Markovian jumping GRNs with time-varying delays.

Next, when µ11 = µ22 = 0, the following corollary is obtained easily from Theorem 3.1.

Corollary 3.1. Consider GRN (9) with Assumption 1. For given scalars τ2 > τ1 > 0,
h2 > h1 > 0, µ1 and µ2 satisfying (2) with µ11 = µ22 = 0, the trivial solution of GRN (9) is
mean-square asymptotically stable if there exist positive-definite matrices P1ı > 0, P2ı > 0
(ı = 1, 2), Ql > 0 (l = 1, 2, 4, 5, 7, 8), S > 0, Xb > 0, Ub > 0, Gb > 0 (b = 1, . . . , 4),
diagonal matrices △ := diag(δ1, δ2, . . . , δn), and matrices M and N of appropriate sizes,
such that the following inequalities hold with τ ∈ {τ1, τ2} and h ∈ {h1, h2}:

J1 ≥ 0, J2 ≥ 0, Φ1ı(τ, h) + Φ2ı + Φ̃3ı + Φ4ı(τ, h) + Φ5ı −RTJ1R− T TJ2T < 0, ı ∈ IN ,

where

Φ̃3ı = eT
1Q1e1 − eT

3Q1e3 + eT
3Q2e3 − (1 − µ1)e

T
2Q2e2 + eT

6Q4e6 − eT
8Q4e8 + eT

8Q5e8

− (1 − µ2)e
T
7Q5e7 + (−Aıe1 +Wıe12)

TQ7(−Aıe1 +Wıe12) − eT
5Q7e5

+ (−Cıe6 +Dıe2)
TQ8(−Cıe6 +Dıe2) − eT

10Q8e10.

Remark 3.2. In contrast to [29, Theorem 3.1], Corollary 3.1 is a less conservative sta-
bility criterion for stochastic GRNs, which will be illustrated by one example in the next
section.

4. A Numerical Example. In this section, an example is provided to demonstrate the
effectiveness of the proposed results in this paper.

Example 4.1. Consider the GRN model described by (9) with the following parameters:

A1 =

[
3 0
0 3

]
, B1 =

[
1 −2

0.8 0

]
, C1 =

[
2 0
0 2

]
, D1 =

[
1 0
0 1

]
,

A2 =

[
3 0
0 3

]
, B2 =

[
−1 0
1 2

]
, C2 =

[
2 0
0 2

]
, D2 =

[
−1 0
0 1

]
.

It is assumed that f(x) = x2/(1 + x2), and then, K =

[
0.65 0
0 0.65

]
. Also, the transition

probabilities are selected as Γ =

[
−0.4 0.4
0.6 −0.6

]
.

When τ1 = 0.2, µ1 = 1, h1 = 0.1, µ2 = 0.1, and h2 = 0.3. Firstly, by using the
YALMIP toolbox of MATLAB to solve LMI (15), the maximal allowable upper bounds τ2
can be obtained by Corollary 3.1 and [29, Theorem 3.1], which are shown in Table 1. It
can be seen from Table 1 that Corollary 3.1 is the less conservative than [29, Theorem 3.1].
Also, when the initial conditions are chosen as ϕ0 ≡ [0.62 0.52]T , ψ0 ≡ [0.81 0.43]T ,
the simulation results of the trajectories are given in Figure 1. In addition, when τ1 = 0.2,
µ1 = 1, µ11 = µ22 = 0.01, h1 = 0.1, µ2 = 0.1, and h2 = 0.3, we can obtain the maximal
allowable upper bound as τ2 = 3.29 by Theorem 3.1.

Remark 4.1. It follows from Example 4.1 that, the less-conservative calculation results
compared with [29, Theorem 3.1] can be obtained by solving the LMIs in Corollary 3.1.
Thus, our results are obviously applicable.
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Table 1. Maximal allowable values of τ2 for Example 4.1

Methods max τ2
[29, Theorem 3.1] 0.46

Corollary 3.1 3.03
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Figure 1. Trajectories of mRNA and protein concentrations for Example 4.1

5. Conclusion. In this study, we have investigated the stability problem for the Mar-
kovian jumping GRNs with time-varying delays. A novel delay-dependent LKF has been
introduced to establish stability analysis, and Wirtinger-type integral inequality and con-
vex technique have been employed to estimate the weak infinitesimal operator of LKF;
then, a less-conservative stability criterion has been derived. Finally, the numerical ex-
amples have been provided to illustrate the advantage of the proposed method.
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