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ABSTRACT. This paper addresses the problem of fault estimation (FE) and fault-tolerant
control (FTC) for a class of fuzzy systems with unmeasurable premise variables, random
time delays, actuator faults and external disturbances, simultaneously. Firstly, by using
improved delay partitioning approach, a robust adaptive FE observer under H., con-
straint is constructed. Then, based on the online estimation information, a novel fuzzy
dynamic output feedback controller with unmeasurable premise variables is designed to
compensate for the impact of actuator faults by using uncertain system approach, while
guaranteeing that the closed-loop system is stable with the prescribed H, performance.
Compared with the existing results, the proposed design scheme is with less conservative
and a wilder application range. Finally, the simulation results show the effectiveness of
the proposed approach.

Keywords: Fault estimation, Fault-tolerant control, Random time delays, Asymptoti-
cally stable, Unmeasurable premise variables, Linear matrix inequalities (LMIs)

1. Introduction. It is well known that most physical systems and processes are nonlin-
ear, and the Takagi-Sugeno (T-S) fuzzy models have been extensively used to describe
nonlinear systems over the past decade [1]. Because it provides a general framework to
represent a nonlinear plant by using a set of local linear models which are smoothly con-
nected through nonlinear fuzzy membership functions, many issues related to the stability
analysis and controller design of T-S fuzzy systems have been reported in [2, 3, 4, 5] and
references therein.

Recently, due to an increasing demand for higher performances, as well as for higher
safety and reliability, fault estimation (FE) and fault-tolerant control (FTC) have been
an active field of research over the past decades. Under the T-S fuzzy system framework,
lots of research into FE and FTC have been carried out and various methods have been
proposed. Since measuring all of the internal states of physical systems may be difficult
and costly, and only their outputs are available for control purpose, output feedback
fuzzy controllers are preferred. In output feedback control design scheme, static output
feedback [6, 7], dynamic output feedback [8, 9, 10, 11, 12] and observer-based feedback
control [13, 14, 15, 16, 17, 18] have been employed in much literature. However, in many
controller design methods reported in the existing literature, it is always assumed that
the premise variables of fuzzy rules are measurable [19, 20, 21, 22, 23, 24], allowing to
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select the premise variables the same as those of T-S fuzzy observer and controller gains
independently. However, due to the fact that the premise variables generally depend on
the unmeasurable state variables and the separation principle does not hold in this case,
such approaches are not valid and the T-S output feedback design is much more complex.
In order to have a real output feedback design, one must consider the case that the premise
variables of the fuzzy observer or controller depend on the estimated state variables by the
fuzzy observer. More recently, the control design schemes for the unmeasurable premise
variables case have been addressed in some papers [25, 26, 27, 28, 29]. Especially, in
[25], the problem of fault-tolerant tracking control was studied for the vehicle dynamics
represented by an uncertain T-S model with unmeasurable premise variables. A robust
unknown input observer for the joint state and fault estimation in discrete-time T-S
fuzzy systems with unmeasurable premise variables is presented in [28]. Using descriptor
approach, [29] discusses the fault-tolerant trajectory tracking control for T-S fuzzy systems
with unmeasurable premise variables, and a fuzzy observer is designed to estimate the
system states and the sensor faults. To the best of our knowledge, the design of dynamic
output feedback fault-tolerant controller with unmeasurable premise variables has not
been fully investigated. Thus, it is necessary to deal with the FE and FTC for T-S
fuzzy system with unmeasurable premise variables, which are very common in practical
engineering.

On the other hand, it is generally known that time delay is often one of the main sources
of poor performance or oscillations for systems. As a result, there are some recent results
of FTC for fuzzy system with time delays, see, for example [20, 21, 22, 23, 24, 30]. More
recently, in [21], a fuzzy descriptor learning observer is constructed to achieve simultaneous
reconstruction of system states and actuator faults for T-S fuzzy descriptor systems with
time delays. Based on the (k—1)th fault estimation information, a k-step fault estimation
observer is proposed to estimate the actuator fault of time delay T-S fuzzy systems in [22].
In [23], the adaptive fault estimation problem is studied for a class of T-S fuzzy stochastic
Markovian jumping systems with time delays and nonlinear parameters. Based on a
multiple Lyapunov function and the slack variables, in [30], the fault tolerant saturated
control problem for discrete-time T-S fuzzy systems with delay is studied.

Although the influence of delay has been taken into account in the controller design
process, it should be pointed out that time delay in a real system often exists in a stochastic
way [31], and its probabilistic characteristic can be calculated by statistical methods, so
the random delay on T-S fuzzy systems cannot be ignored. Moreover, the type of time
delay considered in all the aforementioned works is constant 7(¢t) = 7 or 0 < 7(t) < 7,
and the lower bound of delay is restricted to 0, which is not more general. The interval
time-varying delay, 0 < 73 < 7(t) < 73, has been identified from many practical systems,
especially the networked control systems. Based on the above discussion, solving the
problem of FE and FTC for fuzzy systems with unmeasurable premise variables, actuator
faults, random interval time-varying delays and external disturbances simultaneously is a
meaningful research and motivates our study.

The aim of this paper is to develop an FTC design scheme for a class of T-S fuzzy
systems with unmeasurable premise variables subject to random time delays and exter-
nal disturbances. The problem is a complicated one as it requires using the estimated
premise variables in the structure of the observer and controller to have a practical de-
sign. The main contribution of this paper lies in the following aspects. (1) By using the
improved delay partitioning approach, a robust adaptive fuzzy fault estimation observer
under the unmeasurable premise variables and H,, performance constraint is constructed
to achieve the estimation of actuator faults, and the less conservative sufficient conditions
for the existence of observer are explicitly provided. (2) A fuzzy dynamic output feedback
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fault-tolerant controller with unmeasurable premise variables and random time delay is
designed by using uncertain system approach, which guarantee the closed-loop system is
asymptotically stable with the prescribed H,, performance. Finally, simulation examples
demonstrate the effectiveness of the proposed approaches.

The rest of this paper is organized as follows. The system description and problem
formulations are presented in Section 2. Sections 3 and 4 present the main results on
robust fault estimation observer and fault-tolerant controller design scheme. In Section
5, simulation results of numerical example are presented to demonstrate the effectiveness
and merits of the proposed methods. Finally, Section 6 concludes the paper.

Notations: Throughout the paper, R* denotes the n-dimensional real Euclidean space; I
denotes the identity matrix; the superscripts “T” and “—1” stand for the matrix transpose
and inverse, respectively; notation X > 0 (X > 0) means that matrix X is real symmetric
positive definite (positive semi-definite); || -|| is the spectral norm. If not explicitly stated,
all matrices are assumed to have compatible dimensions for algebraic operations. The

symbol “x” stands for matrix block induced by symmetry. For any square matrix M,
Sym(M) is defined by Sym(M) = M + M7T.

2. Problem Statement and Preliminaries. In this paper, we consider a nonlinear
system which can be represented by the following extended T-S fuzzy time-delay model
with exogenous disturbance and actuator faults simultaneously. The ith rule of the T-S
fuzzy model on a compact region D is given below:

IF & (t) is M;; and ... and &,(¢) is M;,, THEN

yi(t) = Ciz(t) + Crix(t — 7(1)) + Daid(t) (1)
zi(t) = ¢i(t), YVt € [-75,0], i=1,2,...,r

where z;(t) € R”, z(t) € R" are the states of the local model and nonlinear model,
respectively. u(t) € R? denotes the input vector, and y(¢) € R’ stands for output vector.
d(t) € R™ is the exogenous disturbance input that belongs to Ly[0,00), and f(t) € RY
represents the possible actuator fault. M;; (i = 1,2,...,r, j = 1,2,...,p) are fuzzy
sets, and £(t) = [&1(t), ..., & (t)]" is the premise variable vector that does not depend on
the input variables u(t). A;, A, Bai, C;, Cri, Dg; and B are constant real matrices of
appropriate dimensions. It is assumed that the pairs (A4;, B) are controllable, and the
pairs (A;, C;) are observable, where i = 1,2,...,r. The time delay 7(¢) is assumed to be
a random one and satisfies

0<m <7(t) <7 (2)

where 71 and 7, are lower and upper bounds of state delay 7(t), respectively. ¢;(¢) is a
vector-valued initial continuous function defined on the interval [—7, 0].

It is noted that, in practice, some values of the delay are very large but the probabilities
of the delays taking such large values are very small. Taking this point into consideration,
in order to describe the probability distribution of the random time delays, we define the
following two mapping functions:

T(t), tEDl T(t), tEDQ
mi(t _{7_'1, t € Dy n(t _{ﬁ,, teD, (3)

where Dy = {t|7(t) € [r1,7,]}, D2 = {t|7(t) € [1,, 2]}, 71 = [11,7,] and T, = [7,, 72]. The
scalar 7, satisfies 7 < 7, < 1, where 7, =71 +p6, 0 < p < 1,0 = 72— 71. And a Bernoulli
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distributed stochastic variable is defined as

S 1, teD )
(t)_{o, t € D, (

with Prob{o(t) = 1} = Prob{r(t) € [n,7,]} = E[6(t)] = 0o and Prob{d(t) = 0}
Prob{r(t) € [r,, 2]} = E[0(t)] =1 — 0. Here, it is also assumed that delays 7(¢) an
To(t) satisfy the condition

n<nt) <71, 7)) <d, T, <7(t)<n, 0t)<d (5)

~—

where d;, d, are positive constants. It is easy to check that ¢ € D; implies the event
7(t) € [11,7,] occurs and ¢t € D, implies the event 7(t) € [7,, T2] occurs.

Then, by fuzzy blending of each individual plant rule, the global fuzzy system with
random time delay can be inferred as follows:

f

=3l Zuz DAA(t) +8(0) Aria(t — 7 (1)
(L 8() At — 7a(0)) + B(u(t) + £(1)) + Bad(1)}
d ) =3 (O Zuz D{Ci(t) + 5(0)Cra(t — 7 (1)) (6)

—;(1 —0(t))Criz(t — 7'2( )) + Dgid(t)}
Zuz , t € [—72,0]

where fuzzy basis functions are given by 1;(£(t)) = B;(£(t))/ i, Bi(€(1)), Bi(E(t) =

_ M;;(&(t)), and M;;(&;(t)) represents the grade of membership of &;(¢) in M;;. Here,
we assume that 5;(£(¢)) > 0,4 =1,...,7, >.._, Bi(&(t)) > 0 for any £(¢). Hence, p;(£(2))
satisfies 11;(£(¢)) > 0, i =1,...,7, >.._, u;(€(t)) =1 for any &(t).

It is well known that when state is selected as the premise variable, the fuzzy system can
describe a broader range of systems [27]. Therefore, in this paper, we consider fuzzy time
delay system with the premise variable depending on the state, which is unmeasurable.
For the sake of notation, the following definitions are used:

X Z/”z XZ) X Zﬂz X27 qu ZZMz(m(t))MJ (:i.(t))Xz] (7)

i=1 j=1

Then, the fuzzy system (6) becomes
(t) = Ay (t) + 0(t) Arpx(t — (1)) + (1 — 0(2)) Arpz(t — m2(t)) + Baud(t)
+ Bluft) + /(1) N
y(t) = Cua(t) + 0()Crpa(t — 1 (t) + (1 = 6(4))Crp(t — 72(t)) + Dapd(?)
z(t) = ¢y, t € [—12,0]

Before proceeding further, we will introduce some lemmas to be needed in the develop-
ment of main results through this paper.

Lemma 2.1. [5] Let Q, T', ¥ be matrices with appropriate dimensions, and § is a sym-
metrical matriz, then for every matriz F with FTF < I, we have Q+TFY + (TFX)T <0
if and only if there exists a constant € > 0 such that:

Q+ITT 47127y <0



ROBUST FAULT-TOLERANT CONTROL FOR FUZZY DELAY SYSTEMS 827

Lemma 2.2. [32] For any constant matriz X € R™" X = X7 > 0, scalar r > 0, and
vector function & : [—r,0] — R™ such that the following integration is well defined, then

—r /0 i (t+8)Xa(t + s)ds < [27(t) 27 (t — )] [}f f;] Lc(f(f)r)}

r

Lemma 2.3. [33] For any positive semi-definite matrices X = (X;j)3x3 > 0, the following
integral inequality holds:

t
_ / 7(5) Xagi (5)ds
t—7(t)

Xll X12 X13
t (1)
< / W) (- 7() dT(s)] | XD Xam X |a(t— (1) ds
t—7(t) le;) XQZI;, 0 SL‘(S)

Remark 2.1. A more general fuzzy system with unmeasurable premise variables is consid-
ered in this paper, including possible random state time delay, actuator fault and exogenous
disturbance input simultaneously. If there is no state delay, i.e., T1(t) = 7o(t) = 0, then
system (6) reduces to the existing one in [9]. Further, if 7(t) = 1o(t) # 0, (6) can be
transformed to [22]. Moreover, different from [22], the lower bound of delay is not re-
stricted to zero, which is even more applicable to networked control systems and other
practical systems.

3. Adaptive Fault Estimation Observer Design. In this section, in order to estimate
the system faults, the following adaptive fault estimation observer is constructed, in which
the premise variable £(t) is the estimate of the state.

((3(t) = Api(t) 4+ 0(t) A pii(t — 7 (1) + (1 = 8()) Arpie (t — 72(1))
+ B (u(t) + f(1) + Laly(t) - §(1))

§(t) = Cad(t) + 6()Crpie(t — (1)) + (1 = 6())Crpie(t — 7a(1)) (9)
f(t)=r / Faly(s) — §(s))ds

where #(t) € R is the observer state, §j(¢) € R is the output, f(¢) € R? is the estimate of
fault f(t), symmetric positive definite matrix I' € R?7*? is the learning rate and ¢; denotes
the instant when fault occurs. The matrixes L; € R"*!| F, € R?*! are the gain matrices
based on the notation given in (7) with L; and F;, which are the appropriate dimensions
matrices to be determined by the designer to achieve the fault estimation objectives.

Then, let us define e, (t) = &(t) — 2(t), ef(t) = f(t) — f(1), e,(t) = §(t) — y(t), and by
adding and subtracting the term > ._, p; (£(¢)) 2;(t) and Y;_, p; (2(¢)) yi(t) to the state
and output residual dynamical from (8) and (9), the error dynamic of state and output
can be obtained as follows:

(é:(t) = (Ap— LaCp) ex(t) +0(t) (Arp — LaCrp) €t — 71(2))

+ (1= 0(t) (Arp — LpCrp) €5 (t — 72(t)) + Bey(1)

+ (Bay — LyDgy,) d(t) + 61 (2, 2,t) — Lpde (2, 2, t) (10)
ey (t) = Chen(t) + 0(t)Crpen(t — T1(t)) + Daud(t) + 02(2, z, 1)

+ (1= 6(8))Crpea(t — 12(1))

\
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where 01 (Z,z,t) = f1(Z,z,t) — fi(z,x,t),02(2, 2, t) = fo(Z, 2, t) — folx,z,t) with

fil@y,t) = Aga(t) + 6(0) Agar(t — 7 (0) + (1= 6() Araar(t — (1)) (11)
fa(Z,2,t) = Cpa(t) + 6(t)Crpx(t — (1)) + (1 — 0(2))Crpx(t — 12()) (12)

Assumption 3.1. The functions fi(Z,z,t) and fo(Z, z,t) in (11) and (12) are Lipschitz
with respect to its first variable. Then, there exist positive scalars ny, ne, such that

0f (&, 2,)01(2, 2, 1) < mfeg (Dea(t), 0y (2,2, 8)05(2,2,t) < Myeg (teal(t)

Remark 3.1. It should be noted that this assumption s a mild condition when trying to
design an observer for fuzzy systems with unmeasurable premise variables. According to
(34, 35|, this condition is satisfied if p;(t) is differentiable w.r.t x(t) almost everywhere
and has a bounded first derivative for almost all x(t) that is satisfied by most membership
functions in practice.

Based on this transformation, the H,, fault estimation observer design problem to be
addressed in this paper can be formulated as follows: (i) The error dynamic system (10)
with d(t) = 0 is asymptotically stable for any time-delay satisfying (2)-(5); (ii) For a given
scalar v, the following H,, performance is satisfied:

E{ | ||ex<t>||2dt} <97 [ laolrar (13)

for all d(t) € L,[0,00) under zero initial conditions and the FE algorithm can realize
limy o €f(t) = 0.

Theorem 3.1. For the given scalars T, 75, n, v and 0 < p < 1, the error dynamic system
(10) is asymptotically stable with d(t) = 0 for any time-varying delay T(t) defined in (2)-
(5), while satisfying a prescribed Hy, performance (13), if there exist matrices P > 0,
Qn>0 W,>0 (n=12,...,N), S >0,8>0,8 >0,5>0,5>0,R >0,
Ry >0,Y = (Yij)sx3 > 0, Z = (Zij)sx3 > 0 and Y;, F;, A1, Ao, Ag such that the following
LMIs hold:

qu<0 221,2,,7” (14)
IWije + 1 + 11y <0 1< <j<k<r (15)
gji + i + Ty <0 1 <i<j<k<r (16)
Ry —Y332>20, Ry—Z33>0 (17)
where
Hzljk szjk P vr 0
* H?jk 0 0 F;
Hijk = * * —)\1] 0 0
* * x =Xl 0
* * * 0 =Xl
with
m} wy - 0 0 T ngy 0 Tiny 0 TG ng i ng O
x Iy -+ 0 0 0 0 0 0
Hzljk_ . ) H?jk: . . .
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Min1,1y v 0 0 0 0 0 07

* H(N2,2) H(N2,3) 0 0 H(N2,6) 0 0

x * H(N373) H(N374) 0 0 0 0

3. — * * * H(N4,4 H(N4,5) H(N4,6) 0 0
igk * * * * (5,5 0 0 0
* * * * M H(Nﬁ,?) 0

* * * * * 0 —v*I 0

B * * * * 0 0 I1,, ]

where
Y, = sym (PA; — Y;C) + Q. — Wy + S, + So+ S + (Mm+ Qo+ A3)m3) T

Hi{’N2) = 50 (PATZ - Y;'CT]') , Hi{’N4) = (]_ - (50)(PA” - Y;'CT]‘) (18)
1_[Zjl,NG) =PB - CjTFia Hg,zw) = PBy — YD

Hnn:_anl_anl—i_Qn_Wna n:1727""N_1

My = —Qn — Wy + Sa 4 pdYis + Yz + Yy

Minooy = —(1 —dy)S1 + pdYa — Yo3 — Y + poYiy + Yig + Y,

M(n33) = S5 — So 4 pdYar — Yoz — Yob + (1 — p)6Z11 + Zi3 + Z1;

Minggy = —(1— do)S1 + (1 — p)6(Z11 + Zag) — Zoz — Zy + Zi3 + 71y (19)
ins5) = ~So = Ss+ (1 — p)6Zas — Zoz — Zy

Hin12) = Pvag) = pdYi2 — Yisg + Y5, N6y = —5OC]-TFia

Minsay = Pivagy = (1 — p)6 212 — Zis + Zgg, Minag) = (6 — 1)C] F;

N
Miven) = —FiDak, o =) h*Wi + pdR + (1= p)OR;
n=1

P=[P 0 --- 0,Y;i=[Y; 0 --- 0, F=[0 0 0 0 0 F 0 0] (20)
Then the fuzzy fault estimation algorithm in (9) can realize e,(t) and ef(t) uniformly
ultimate bounded, and the observer gain matrices can be obtained as follows:

Li=P"Y; (21)

Proof: For simplicity, we introduce the following vector, ({ (t) = [el(t) el (t, h)
ex(t—mi(t) ex(t—7) eg(t—7(t) er(t—m) ep(t) d'(t) € (t)], wheree,(t h)
=lel(t—h) el(t—2n) --- el(t—Nh)|],h=m7/n(n=1,2,...,N)is the length of
each division, and N is the number (a positive integer) of divisions of the interval [—7y, 0].
Then, the following novel Lyapunov-Krasovskii functional candidate is constructed to

prove system (10) is asymptotically stable with H,, performance.

VI(t) = Va(t) + Va(t) + Vs(t) + Va(?) (22)
where
Vi(t) = ey (t) Pes(t)
N t—(n—1)h t . t
Vo(t) = Z/t ) eg(s)Qne,ﬁ(s)als+/lt 65(8)5’0633(s)als+/lt " el(s)Sie,(s)ds

t—7p

o (98 (s)ds + / T () Saeas)is + [ s

—72(t) t—7, t—7o
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N

Z/ nlh/ §)hWéo(s)dsdf

+/ / S)R1éx(s d8d9+/ / s)Roé(s)dsdd
t+0 t+0

Va(t) = 5 (75)F Yes(t)

where the unknown matrices P > 0, S; > 0, Sy > 0, S > 0, S > 0,5 >0, R >0,
Ry, >0,Q, >0and W, >0 (n=1,2,...,N) are to be determined. Then, the time
derivatives of V() along the trajectories of the argument systems (10) satisfy
B{Vi(t)} = B{ el (t) (P43 — LaCal + (A5 — LaCil” P) ea(t)

+ 20T (OP (A — LiCrg] ealt — 7 (8)) + 2¢7 (1P [Bay — LyDa] d(t) (23)

+2(1 = 8(t)el ()P [Arp — LpCrp) ex(t — 72(t)) + 2eL PBeg(t)

+2¢7P6, (&, 2, 8) + 267 PLis (i, 2, 1) }
With Assumption 3.1 and since it is well known that the following inequality holds

XY +Y'X < X"SX +YV'ETY

for any matrices X, Y and ¥ = X7 > 0, then, for any positive )\, it follows

2e] Py (&, x,t) < A\ ey (t)PPey(t) + el (t)eq(t) (24)
2el PLidy (&, 3, 1) < Ay el (t)(PL;)" (PLy)es(t) + Aamsel (t)ea(t) (25)
For V5(t) and V3(t), one can obtain that
]E{VQ(t)} = ]E{ Z ey (t—(n—1)h)Ques(t — (n— 1)h) — Z er (t — nh)Qney(t — nh)
+ el (1) Speq (t) — el (t — ) Soeq (t — 7)
+ef (1) Steq(t) — (1 = 71(t))er (t — 71(t)) Siea(t — (1))
+ el (1) Siea(t) — (1 = 7(t))el (t = 7a(1)) Sieq(t — (1)) (26)
+ el (t — 1) Sees(t — 1) — el (t — 7,)Sae,(t — 7,)

+£u_m&%u—m—ea—mwﬁﬁ—w%

E{ Vi) | = E{ € (1) Ay (t) — XN: /t ::Dh ¢T(3)hWeo (s)ds
— /tt:1 e (s)(Ry — Ya3)éq(s)ds — /ttTTl ¢T(5)Ys36,(s)ds (27)

- /t o ¢L(s)(Ry — Z33)én(s)ds — / o éf(s)zgg,ém(s)ds}

—T2 t—7o

where A,, = 25:1 h*W, + pd Ry + (1 — p)dRy. When 7 < 71(t) < 7, and 7, < 1o(t) < 79,
the following equations are true:

t—71 t—71 t—Tl(t)
- / &7 (5)Yaén (5)ds = — / &7 (5) Yaén (5)ds — / &7 (5)Yagén(s)ds  (28)
t t

—Tp —71(t) t—7p
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t—7, t—T7, t—T2(t)
—/ éz;(S)Zg,gén(S)dS: —/ ég(s)Zg,gén(s)ds—/ ég(s)Zggén(s)ds (29)
t t

—T2 —72(t) t—T2

By utilizing Lemma 2.3 and the Leibniz-Newton formula, we have

b (t) () Yii Yo Yi3
—/ éZ;(S)YEBén(S)dS < / eZ(t, s) | Y, Yao Yas| en(t,s)ds
t—7p t—7p
Vi Y 0 (30)
< €Tt = 7a(1)) [0Vir + Vig + V] enlt — 71 (1)
+ep(t =) [P5Y22 — Y3 — Y2:g] en(t —7p)
+2e, (t = 7i(t)) [P(SYH — Y13 - Yfg] en(t —7p)
where el (t,s) = [el(t — 71(t)) el (t — 7,) €7 (s)]. Similarly, we obtain
t—71
—/ & (5)Yagén(s)ds < T (t — 1) [p6Yir + Yig + Y] enlt — )
t—Tl(t)
31
+2e(t — 1) [p6Yia — Yis + Yo5 ] en(t — 1 (1)) (31)
+en (t— () [p0Y22 — Yas — Vo en(t — 7 (1))
t—7p
_/ éZ(S)Zg,gén( Jds < e (t —7,) [(1 —p)0Zy + Zi3 + Zﬂ] en(t —7,)
t—Tz(t)
32
+ 2l (t —7,) [(1 = p)0Z12 — Z13 + Z33] en(t — 12(1)) (32)
+ep(t —1o(t) [(1 = p)0Zsy — Zog — Zyg) en(t — Ta(t))
t TQ(t)
—/ éZ(S)Zggén( Yds < e (t — 1o(t)) [(1 —p)0Zy + Ziz + ZII;,] en(t — 7o(t))
t—7o
(33)

+2ep (t — 72(t) [(1 = p)6Z1s — Zis + Zog) en(t — T2)
+ef(t—72) [(1= p)6Zas — Zog — Zo3] en(t — T2)

Based on Assumption 3.1 and the derivative of f(¢) with respect to time is norm-bounded

||f(t)|| < fi, it is easy to show that for a symmetric positive definite matrix M, it can
obtain that

26?( Fi)o2(2,2,t) < Ay ef( )FTF er(t) + Asmael (t)ex(t) (34)
and
2ef (T 1 () < ef (8)Meg(t) + [T M T f(2)
<ef(t)Mep(t) + fidmax (DT'MT'T™Y) = ef () Mes(t) +6  (35)
Therefore,

B{Va(n | = B{2et()r 1,0} = Bf2eTr (F(1) - f)) }
- E{ — 26T (8) F [Crea(t) + () Crpen(t — 71(1)) + (1= 5(£) Crpea(t — (1))
+ Dy d(t) + 0o(, 2, )] + 2ej§(t)1“—1f'(t)} (36)
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In order to study the H,, performance of error dynamic system (10) and minimize the
external disturbance effect on fault estimation, we introduce the following relation

J(t) = E{ /0 T (e (t) — 2 (Hd(D)] dt} V> 0

= IE{ /0 ) L (Dealt) = 42" (0)d() + V{t, (1) + V(0,2(0)) = V (00, 2(o0))] dt}

(37)
Under the zero initial condition, substituting (23)-(36) into (37), by using Lemma 2.2, a
straightforward computation gives

<E{Zzzm RE0) k(x@)){cf(t)mjkcl(t)w

i=1 j=1 k=1

- N (38)
—/ ¢l'(s) (R, —Yg,g)éz(s)ds—/t_ él'(s)(Ry —Z33)éx(s)ds}}

T2

where I1;;; = ( ik ) and IT};, is defined as in (19), where II(yeg = M + N FLF;
0
0

my 0 MM ysy O vy O T ve Tay O
) * ]._.[22 . 0 0 0 0 0 0 0 0
HU’C_ : : ) H”k : : : : : : :

* ke Hnn Wi 0 0 0 0 0 0 0

Y, = sym(PA; — PL,C;) + Q1 — Wi + Si + So + Si + (Min + (o + Ag)m2)
+A'PP+ )\, (PLT(PLy)), Hg va) = 0(t) (PA; — PLiCry)
ﬁg,N4) = (1-6(t)) (PAy — PLiCr;), HZ(JI,NG) =PB - CTFu Hh NT) = = PBay — YiDgy

From (38), it is clear that when Ry — Y33 > 0, Ry — Z33 > 0, that is the last two terms
in (38) are all less than 0. Then, it follows from Schur complement theorem and with the
changes of variables as Y; = PL;, we can see if the inequalities (14)-(17) hold, one has
J(t) < 0, and there exists a scalar ¢ > 0, such that V() < —¢[|¢;(t)||> + 6. It follows
that V(t) < 0 for ¢||¢.(t)||> > &, which means estimation errors of both the state and the
fault are uniformly ultimately bounded.

In addition, by choosing the same Lyapunov function as (22) and following the similar
line in the earlier deduction under conditions (14)-(17), we can easily obtain that the
time derivative of V() along the solution of error dynamics (10) with d(¢) = 0 satisfies
V(t) < 0, which indicates the asymptotic stability of systems (10). This completes the
proof of Theorem 3.1.

Remark 3.2. An important aspect to be considered in the FE problem for fuzzy systems is
the unavailability of all premise variables in real time for implementation. Different from
the existing results [16, 17, 19, 20, 21, 22, 23| the proposed method designs an adaptive FE
observer with random time-varying delay when the premise variables are unmeasurable,
which have a wider application range in practical engineering.

Remark 3.3. Motivated by the delay partitioning approach, we divide the constant part
of time-varying delay [0, 1] into n segments, that is, [O, %7‘1], [%Tl, %7’1], e [”T’lﬁ,ﬁ],
n=1,2,...,N. Because different energy functions are defined in LKF (22) to correspond
to different delay interval, the conservativeness of fault estimation result can be reduced
as fault estimation steps n increase.
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Remark 3.4. In view that time-varying delay occurs randomly, the interval [Ty, 1| is
divided into two unequal variable subintervals [11,7,] and [1,, 3]. It is clear that different
information on error state variable e, (t —7,) is utilized when p is changed, which is more
general than the one in [19, 20, 21, 22, 23]. Moreover, when 1,(t) = 15(t), p is a tunable
parameter. By seeking an appropriate p, the result of fault estimation or stability criterion
can further reduce the analysis and synthesis conservatism.

4. Fault-Tolerant Controller Design. On the basis of the obtained online fault esti-
mation information, we consider a dynamic output feedback controller where the actual
values of the premise variables are the unmeasurable system states. Hence, the following
controller with the premise variables being state estimates is constructed:

=Y > (@) (E()){ Acije(t) + 6(8) Areijre(t — 7 (2))

i=1 j=1

+ (1 — (S(t))ATCij.TL‘C(t — Tg(t)) + Bczy(t)}
= Zui (&) {Came(t) + 0(t)Crame(t — T () + y(t) — f(®)

| - 60t — )

where A.; € RV" A, € RV B, € R C,; € R*", C,; € R" are the designed
controller matrices. So the closed-loop system for T-S fuzzy model (8) with this controller
can be written as

#(t) = [A, + BCy + EF(H)Hu(t) + 6(t)[Ary + BCrp + EF(t) HyoJa(t — (1)
(L= 8(t)[Ary + BCoi+ BF () H,Ja(t — 7a(1))
+ [Buy + BDgy + EF(t) Hyd(t) + BCpzo(t) + B ( () — f(t))
+ 0(t) BCrepwe(t — 1 (t)) + (1 — 0(£)) BCrepxe(t — m2(t))

where
E=[I1T - I]eR™, HcT _ [(BCI)T (BCT)T] c R

HZ; = [(BCTI)T (BCTr)T] € Rnxnr, Hg = [(BDdl)T (BDdr)T] c Rnxnr

clp * crp Telp Terf

denote 77 () = (mT(t) xT(t)), er(t) = f(t) — f(£), &T(t) = (dT( ), el (t)), then one can

Similarly, with HA;L [AT . AT } € Rvxnr HA W= [AT . AT ] € R™™  and

»7e

obtain the following closed-loop augmented system.
F(t) = [Aﬂﬂ o+ BE(t) o | 5(8) + 8(8) | Ay + BE() Hr| (¢ — 71(8))
(1—6(t [AW + EF(t) TW] (t — (1)) + [BW + Eﬁ(t)ﬁdu]&;(t) (40)
y(t) = Cui(t) + 8(t)Crud(t — mi(t)) + (1 = 6(1))Crud(t — 72(1)) + D o(2)

where
i _ A,+BC; BCy i A, + BC;;, BCi; P M0
pe BcﬂCu Acuﬂ ’ THE BCﬂCT“ ATcu/l ’ o 0 VI

= _ |[Bauw+BuDgp —B| 5 _ [1He 0 = [5Hrew 0
Bw””_{ BepDay o > Han= %07 g, | e =] —5Ha,p
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Remark 4.1. In order to design a stabilizing output feedback controller for a fuzzy system,
the PDC method is feasible only if it shares the same premise variables as those of fuzzy
system (8), which are often assumed to be measurable in [7, 8,9, 10, 11, 12, 22]. Howewver,
in this paper, we note that although the state x(t) is not measurable and p;(x(t)), i =
1,...,7 are unknown, a closed-loop system (40) can be obtained by using uncertain system
approach. In addition, it is easy to see that F(t) in (40) is a time varying unknown
function but satisfies FT(t)F(t) < I, because —1 < pg(x(t))—ps (2(t)) < 1 fori=1,...,r.

So far, the problem of robust dynamic output feedback control for system (8) is to
design the gain matrices of (39) such that: (i) The closed-loop fuzzy system (40) with
@(t) = 0 is asymptotically stable for any time-delay satisfying (2)-(5); (ii) For a given
scalar v > 0, the following H,, performance is satisfied:

E{ | ||y(t>||2dt} <7 [ ol (41)

for all @(t) € L»[0, 00) under zero initial conditions.
In what follows, a less conservative delay dependent sufficient condition is given for the
existence of controller (39) with unmeasurable premise variables.

Theorem 4.1. For the given positive scalars T, To, v and 0 < p < 1, the closed-loop sys-
tem (40) with @(t) = 0 is asymptotically stable for any time-varying delay 7(t) satisfying
(2)-(5), and the prescribed Hy, performance (41) is satisfied under zero initial condition
for any nonzero @(t) € Ls[0,00), if there exist appropriately dimensional matrices X > 0,
V>0, Q,>0 W,>0, (n=1,2,...,N), Sy >0, (k=0,1,2,3), B >0, Ry, >0, and
Aij; ATij) Bj, éj, éTj such that

;i <0 i=1,2,...,r (42)
U+, <0 1<i<j<r (43)
where
C /31 J2 A
o) i & 0
B — ij §l = * 22
1] * _I 0 0 9 Y . :
* x —el 0 2
L * * —el * * Wi
[0 %E1 0 (1-6)Z1 0 0 =%
5o 0 0 0 0 00 O
Yas Do
Wy 0 0 0 00 0
(v R 0 0 0 0 0 ]
* \II(NZ,Q) Rl 0 0 0 0
R * * \II(N373) R2 0 0 0
\Ij?] - * * * \IJ(N4,4) . R2 0 0
* * * * VU (ns5,5) A 0 0
* * * * * \II(NG,G) 0
| x * * * * * —721_
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with
W =5+ (éz)isiﬁsﬁ@l Wiy o = =Quit + Qo — Wot — 1V,
\i](Nl,l) =Sy — Ry — Qn — W, ‘i’(N2,2) =—(1—d)S - 2R,
U (vs3) = S5 — 52 Ry — Ry, \i’(N4 n=—(1—dy)S — 2R,

~

‘i’(N5,5) =53 — Ry, ¥ (N6,6) Z W W, + (pd)* Ry + ((1 — p)d)* Ry

Py = [(CiX C) 0 -+ 0 (CuX Cr) 0 (D 0)]"

and éi{, éiAjT, égw Q4 Qgi]‘ are defined as (48)-(52). Then, the gain matrices of the
dynamic output feedback fault tolerant controller are given by

Acij = Nil (AZ] — (YAl — BlC]> X) MﬁT + N71YBCC]‘

Arij=N~" <A7'ij - (YAm' - Bi07j> X) M~"+ N7'YBC,,;

B =N"'Bj, C; = (Cj - CjX> M, Crey = (Cm' - CTjX) Mt
where M, N satisfy MNT =1 — XY

Remark 4.2. Since inequalities (42) and (43) include the term QT , it is not possible to
solve them for € and Y or N simultaneously as an LMI. Thus, a line search algorithm
should be employed to find €. After initialization of ¢ with a small positive value, if the
LMI problem is infeasible, € should be increased until the problem becomes feasible.

Remark 4.3. As in [9, 22|, from FI' PF, > 0, we can obtain Y > 0 and X =Y~ < 0
which imply that I — XY is nonsingular. Therefore, we can always find nonsingular
matrices M and N satisfying MNT = I — XY, and they can be calculated by the QR
function of Matlab toolbox.

Remark 4.4. The conditions (42) and (43) indicate that the robust controller design
problem can be included as an optimization variable, which can be exploited to reduce the
attenuation level bound. Then, the minimum attenuation level of Hy, performance can be
obtained by solving a conver optimization problem P: mind subject to (42) and (43) with

V) = 2.

5. Numerical Example. We provide an illustrative example with simulation result
which is based on the truck-trailer model to demonstrate the applicability of the pro-
posed design method. To provide a realistic framework for the simulation result, we
assume that the system x;(¢) is perturbed by time-delay and the delayed model is given
as

(1) = —aLv—;xl(t) (1— a)LU—;xl(t — () + % )
i) = aL“—;xl(t) . )g—;xl(t _ (1)) (44)
ia(t) = :—Otsm 2a(t) + a%xl(t) . a)%xl(t — ()

where x,(t) is the angle difference between the truck and the trailer, zo(t) is the angle
of the trailer, x3(¢) is the vertical position of the rear end of the trailer, and w(t) is
the steering angle. The constant a = 0.7 is the retarded coefficient, which satisfies the
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conditions: a € [0,1]. The limits 1 and 0 correspond to no delay term and to a completed
delay term, respectively. In order to make the model have practical significance, in this
example, the parameters in (44) are given as [16, 20, 21, 22], that is a = 0.7, | = 2.8,
L =55 v=-10,t=2.0,ty = 0.5, where [ is the length of truck, L is the length of
trailer, ¢ is sampling time, and v is the constant speed of backing up.

Remark 5.1. The truck-trailer example is often used in stability analysis and controller
design for fuzzy systems. However, in most existing results, such as [16, 20, 21, 22, 24],
the premise variables of the obtained T-S fuzzy model are assumed to be measurable. It is
well known that when system state is selected as the premise variable, the aforementioned
results cannot be used in practical application because of the unmeasurable state. In this
paper, both the observer and the controller are designed based on the premise variables
depending on the estimates of state, which is more common in practice.

To demonstrate the results in Theorems 3.1 and 4.1, we assume the delay in (44) as
randomly occurring and satisfy (2)-(5). Then system (44) with actuator fault f(¢) and
disturbance d(t) can be represented by the following T-S fuzzy model

=1
2
w(t) =Y il () gi(t), t € [=72,0]
\ =1
where z(t) = [x1(t) x2(t) z3(t)]" and
i vt T r vt 7
—0— 0 0 —(1—a)— 0 0 - T
aLtO (1-a) Lty lv_t
A n t
vt vt 0
A = 2y o], A= - 0 0|, B =
' aLto ! (1-a) Lty !
vt? wt V22 0
— 0 1-— 0 0 LY
| 9Lty RSbT |
i vt I i vt 7
—05— 0 0 —(1—a)— 0 0 -
aLtO ( a)Lto lv_t
+ n t
vt vt 0
Ay = o 0], A= 1—a)2X 0 0|, B, =
’ aLto ? ( a)Lto 2
dv’t?  dut dv?P?
2 1-a)2" 0 0 L 0]
i 2Lt to i L 2Lt i

Here, in order to facilitate simulation, it is supposed that C; = Cy = [-0.2, 0.05, —0.15],
Cr;1 = Cry = (1 — a)C}, the disturbance matrices are By = By = [0.01, 0.01, 0.01]7,
Dy = Dg = 0.05. Meanwhile, we choose membership functions for Rules 1 and 2
are puy(x(t)) = 1/(1 + exp(z1(t) + 0.5)), po(z(t)) = 1 — pi(z(t)) with initial condition
(0.5 0.75m — 5]T, d = 10 * 0.05/7. Due to the fact that z(t) is unmeasurable, the
membership functions for observer (9) and controller (39) are selected as puq(Z(t)) =
1/(1+exp(Z1(t) +0.5)), po(2(t)) =1 — p1(2(¢)). For the random time-varying delay 7(t)
satisfying (2)-(5), we assume that 71(¢) = 0.5 + 0.2cos(t), 72(t) = 1 + 0.3sin(¢). Thus,
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T = 03, d1 = 02, Ty = 13, d2 = 03, P = 04, 0 =1. Then, we set )\1 = )\2 = )\3 = 05,
n = 10 and &y = 0.05, which means 71 (¢) with a small occurring probability, by solving
the conditions (14)-(17) in Theorem 3.1 based on the mincx function of Matlab toolbox,
one obtains the feasible solution as follows:

—61.5852 —73.0435
L,y = | 72.0660 |, Fy =4.0998, L, = | 42.2620|, F, = 1.5521
—49.2033 —63.1385
Then, a constant fault and a time-varying fault are respectively created as
0 0<t<b 0 0<t<b
filt) = , falt) = -
10 5<t<30 10sin((t 4+ 0.2)/0.5) 5 <t < 30

and the disturbance d(t) is band-limited white noise with power 0.001 and sampling
time 0.1s. When u(t) = 0, Figure 1(a) shows that all the trajectories of the system
states are unstable. Then, by taking the learning rate I' = 100 and the sample time is
0.1s, and using the obtained observer gain matrix, Figure 1(b) and Figure 2 illustrate
the simulation result of the estimates of system states (d(t) = 0), actuator fault f(¢)
and fo(t) (d(t) # 0), respectively. As shown in Figure 2, it is obvious that the robust
adaptive fault estimation observer is insensitive to the exogenous disturbance and has a
good performance to estimate the constant and time-varying fault f().

Next, by solving the conditions in Theorem 4.1, we design a dynamic output feedback
controller with attenuation value v = 0.5 on the basis of the obtained fault estimation as
follows:

[—0.3453  0.7082  0.1383 | [—0.3489 0.6490  0.1527 |
Auy = | 52522 —4.6526 —3.8435|, As = | 5.4580 —4.0907 —3.7796
| 0.5727  —4.8792  0.6050 | | 05571  —5.0332  0.6649 |
[—0.6059 0.7382  0.2548 | [—0.5891 0.7550  0.3091 |
Ay = | 86252 —5.6198 —4.3884|, Apne = | 8.1457 —5.3109 —5.6569
| 12169  —5.6382  0.4717 | | 12120 —5.3278  0.2228 |
[ 0.0383  0.1357 —0.0469] [ 0.0445  0.1313  —0.0459]
Aren = |—0.2785 —0.8260 0.2851 |, Ao = |—0.3120 —0.6957 0.2477
| —0.2987 —1.5179  0.5033 | | —0.3153 —1.5170  0.5035 |
[ 0.0524  0.1473 —0.0517] [ 0.0573  0.1419 —0.0508]
Areor = | —0.4526 —0.9755 0.3527 |, A, = |—0.4413 —0.7939 0.2981
| —0.3394 —1.5498  0.5169 | | —0.3498 —1.5457 0.5167 |
and

B!l = [-1.3570 7.7444 16.8299], Bl, = [-1.2177 5.5418 16.6085]
Cop = [-12.1897 —1.6331 —11.9848], Cr.y = [—0.6275 —0.6262 0.2567]
Cep = [—12.9225 —2.1864 —14.2795], Crep = [-0.5299 —0.5249 0.2181]

Simulation results for the stability of the closed-loop systems and the systems output
response are shown in Figures 3(a) and 3(b) and Figures 4(a) and 4(b). It can be seen
that although the open-loop system is unstable in Figure 1(a), the proposed fuzzy dy-
namic output fault tolerant control design method still achieves the performance under
actuator faults and unmeasurable premise variables, and the stability of closed-loop sys-
tems is guaranteed while satisfying the prescribed H,, performance. As indicated by the
simulation result graph, we can see that whether the random time delay fuzzy systems
with constant fault or time-varying fault, the fuzzy adaptive fault estimation observer can
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FIGURE 1. Response curves of system states and estimates with d(t) =0
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TABLE 1. The comparison with the existing results

System state x(t) [16] [20] [22] | our method
Measurable FS FS FS FS
Unmeasurable No FS | No FS | No FS FS
Interval time delays | No FS FS | No FS FS
Random time delays | No F'S | No FS | No FS FS

almost realize accurate fault estimation, and the fuzzy dynamic output feedback control
strategy can effectively accommodate the effect of actuator faults on system performance.

In addition, if time delay occurs randomly, the methods proposed in [16, 20, 22] fail to
give a feasible solution. To better illustrate the advantage of the proposed method, the
comparison with some existing results is given in Table 1 (FS = feasible solution), which
shows that the adopted design method refers to be less conservative than other methods.

6. Conclusions. In this paper, by using improved delay partitioning method and un-
certain system approach, the problem of FE and FTC for a class of T-S fuzzy systems
with unmeasurable premise variables and random time-varying delay has been investi-
gated. Some less conservative conditions for the existence of fault estimation observer
and fault-tolerant controller are provided. Finally, simulation example has clearly verified
the effectiveness of the proposed method. This paper focuses on robust FTC for T-S fuzzy
systems with actuator fault, not contains sensor fault. The consideration of the system
with actuator and sensor fault simultaneously will be studied in our future work.
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Appendix A. Proof: Consider Lyapunov-Krasovskii functional candidate in the follow-
ing form

N t—(n—1)h t
V(t)=a"(t)PE(t) + Y /t_ ) iT(5)Qna(s)ds + /t_ Y 77 (s)Soi(s)ds

+ /t;(t) 7 (5)5,3(s)ds + /t T () Sy (5)ds + / T AT() Sy (5)ds

t—7o

with

/ / s)pOR % (s dsd9+/ / p)0 Ry (s)dsdf
t+0 t+0

where the unknown matrices P > 0, Sy > 0, S; > 0, S5 > 0, S3 > 0, R; > 0, Ry > 0,
Qn>0and W, >0 (n=1,2,...,N) are to be determined. Then, by using Lemma 2.3
to the time derivatives of V,(¢) and following the same proof process as Theorem 3.1 with
the introduced vectors as follows:

()= [3"(t) @ (t—n) - PT(t—nh)

F(t—m(t) &(t—1,) F(t—nt) F(t—7) 27(t) &)T(t)]
FZM[L:[A#[L 0 o 0 d(HAy; 0 (1-06(t)An; 0 0 Bwuﬂ]
Pgu:[ Co 0 o 0 6(BC, 0 (1—6t)Cru 0 0 Dwu]

One obtains that the performance (41) can be satisfied, if the following inequality is true

E{V(t) + 47 (0)y(t) - 5" (A1)}

i (45)
= E{ CQT(t)( wi F P3M + or F( )92““ + QQMM (t)Ql>C2(t)} <0
T, W, --- 0
1 g2 Uoy o+ 0
where U, = [\I]““ Yy } with ¥}, = .22 _ .
* uu
0 J(t)PA,; 0 (1-6(1t)PA,; 0 0 PBu,
9 0 0 0 0 0 0 0
\Ilﬂﬂ - . :
Wy 0 0 0 0 0 0
W (N1, Ry 0 0 0 0 0 T
* \IJ(N2 2) R1 0 0 0 0
* * \IJ(N3,3) R2 0 0 0
U= * £ Upugy R 00
ES ES * S \II(N5 5) 0 0
* * * * * Y (n6.6) 0
| x * * * * * —~2] ]
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\Ijll - PA;L[L + AZ;}P + Ql - Wl + SO + Sl; \Ilnn - _anl + Qn - anl - Wn
Uiniy =952 — R — Qn — Wh, Yooy =—(1—dy)Sy — 2R,
U(n33) =93 — Sy — R — Ry, Yinagy = —(1—dz)S1 — 2R,

N
U(ns5 = —53 — Ry, Winee) = Zh2Wn + (p0)? Ry + ((1 — p)d)* Ry
n=1

and

le[ETPO .. 0000 0 0 0,
quﬂ:[ﬁwﬁ 0 o 0 S(O)Hrpy 0 (1—6t)Hyews 0 0 Hyp

By separating uncertain part of inequality (45) and using Lemma 2.1, the condition
(45) is equivalent to the existence of £ > 0 such that
o F3Tu eQf QzTMz
x —1 0 0
* x —el 0
* * * —el

<0 (46)

Since matrices P and A, Arepp, Bep are multiplied in equality (46), it is non-convex.
Therefore, to derive LMI conditions, let symmetric positive definite matrix P and its
inverse matrix P~! be partitioned as

Yy N o [x M
P= L W] e
Since PP~! = I, where NTX + WM" =0, YM + NZ = 0, we denote

X I [T Y ]
F1:|:MT 0:|;F2: 0 NT

and then it follows that PF; = F5.
(N+7)

Let YT = diag{%’lT, Fr ... FI FI' FT FT, f}, pre- and post-multiplying (46) by the
diag {Tf, I,1,1 } and its transpose, respectively, and denoting

Ay =Y"(A, + BCy)X + NB,uOW X + YT'BC, MT + N (AguMT)

Ay =Y" (A, 4+ BCrp) X + NByiCry X + Y 'BCroyM" + N (AreuMT)

Bﬂ = NB, C’ﬂ =X +CM”, éTﬂ = CrpX + CrogM"
we have
i : A,X + BC; A, + BG;
=M = FTPA, R = | e TP PO ] (47)
A 1 5 Aup Ay YT (A, + BC,) + B,C,
The equal conditions to satisfy (47) when i, = 1,2, ..., r are as follows:
2ij - (A4, X + BC; A; + BC,
Ei = FTpA,F, = |7 TP ' ! 48
A ! o i Ajj YT(A; + BCj) + B,C; )
Similarly,
i . (AiX + BC, Ari + BC,;
:.Z] = FTPATzF o T ~ 73 i i A 49
A, 1 G4 A YT(A;; + BCyj) + B;C»; 49)
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. Byi + BDy ~B
=ij T o di dj .
=g, = I PBuij {YT(Bdi+Bde)+BdeZ~ —YTB] (50)
A AE 0
Ql_[(AYTE ANE) O --- 0 0 0 0 0 O O] (51)
QQU = [@2]1 0 - 0 60Q;{N2 0 (1 - 5O)Q;{N4 0 0 QZZ{N?] (52)
where
i XH?Z —MH?Y. N T XH;FCZ —MHTT- Aid HT;- 0
Qg = [ HT 0 A]] s 2 e = Q) g = [ HT. 0 4 ]] , Qg = [ Od 0]

Then, it is easy to show that (45) is equivalent to the following inequalities:

Z e ) Wi + Z Z e #(t)) (W + 55) <0 (53)
=1 1<J
Thus, if (42) and (43) are satisfied for all 4,5 = 1,2,...,r, then the closed-loop fuzzy
system (40) with random time-varying delay is asymptotically stable (with &(t) = 0)
while satisfying the prescribed H., performance (41) when @(t) # 0. This completes the
proof.



