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Abstract. A discrete-time system under finite wordlength implementation may demon-
strate instability in its behavior. This instability is enhanced further in the presence of
delays and parameter uncertainties. This paper, therefore, considers the problem of global
asymptotic stability of a class of discrete-time systems in the presence of finite wordlength
nonlinearities (combination of quantization and overflow nonlinearities), multiple delays
and parameter uncertainties. Two linear matrix inequality (LMI) based delay-dependent
stability criteria are proposed. The first criterion deals with the systems involving mul-
tiple delays of interval-like time-varying in nature and the second criterion is applicable
to systems with multiple constant delays. The parametric uncertainties are time-varying
and unknown but are assumed to be norm-bounded. The forward difference of the Lya-
punov functional is treated using the reciprocally convex approach. Numerical examples
highlighting the usefulness of the proposed criteria are provided.
Keywords: Discrete-time system, Finite wordlength nonlinearity, Lyapunov stability,
Reciprocal convexity, Time-varying delay

1. Introduction. During the implementation of discrete-time dynamical systems, the
signals or the data associated are represented using finite precision arithmetic (i.e., finite
wordlength hardware) [1, 2]. It may happen that due to the arithmetic manipulations,
the size of the data may exceed the maximum value that can be stored or processed
in the given hardware. In order to limit the data, and represent with finite wordlength
hardware, quantization (such as magnitude truncation, rounding and value truncation)
and overflow correction (such as saturation, zeroing, triangular and two’s complement)
techniques are used. Thus, finite word-length implementation introduces quantization
and overflow nonlinearities in the system [3]. In the presence of these nonlinearities,
the system may become unstable and exhibit zero-input limit cycles. Several results
have been reported on the stability of discrete-time systems in the presence of finite
wordlength nonlinearities (see, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
and the references cited therein). Although, in the literature, researchers have studied the
effects of quantization [3, 4, 5] and overflow [1, 2, 3, 6, 7, 8, 9, 10] nonlinearities separately
under the decoupling approximation [19] but it is more realistic to consider the combined
influence of quantization and overflow nonlinearities [11, 12, 13, 14, 16, 17, 18].

The presence of uncertainties due to the modeling errors, external disturbances or
variation in parameters during implementation may also introduce instability into the
system [20, 21, 22]. Parameter uncertainties are generally modeled as norm-bounded [13,
14, 16, 17, 18] or polytopic [22]. In this paper, the norm-bounded parametric uncertainties
have been used for modeling the uncertainties.
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Delays are another source of instability in discrete-time systems. As a result, many
researchers have paid attention to developing stability criteria for discrete-time delayed
systems (see, [7, 8, 9, 14, 16, 17, 18, 23, 24, 25, 26, 27, 28, 29, 30, 31, 20, 22] and the
references cited therein). The stability criteria for systems with delays in the state are
classified into delay-independent [8, 13, 20] and delay-dependent [7, 9, 14, 23, 24, 25, 26,
27, 28, 29, 30, 31, 20, 22]. Many systems are stable in the absence of delay but become
unstable in the presence of delays; on the contrary there are systems which are unstable
under zero delay conditions but are found to be stable over a delay range or interval
[24]. The delay-independent stability criterion is unable to determine the stability of
systems which are stable in the presence of delay (interval-like) having a nonzero lower
delay bound [24]. Thus, delay-dependent stability criteria are less conservative than
delay-independent criteria. Some results on discrete-time systems with multiple delays
(constant and interval-like time-varying) have been reported in [32, 33, 34, 35].

A practical discrete-time system is generally under the combined influence of finite
wordlength nonlinearities, multiple delays and parameter uncertainties. Examples of such
systems include digital control systems with finite wordlength nonlinearities (for exam-
ple memoryless state observer for linear discrete-time systems with multiple delays [36]),
digital filters implemented in finite register length [10, 12, 13, 14] networked control sys-
tem [27], where the delays induced by the network transmission (either from sensor to
controller or from controller to actuator) are actually time-varying and can be assumed
to have minimum and maximum delay bounds without loss of generality. While im-
plementing networked control systems using computer or special purpose hardware with
fixed-point arithmetic for data processing in the network transmission, the nonlineari-
ties (quantization/overflow) due to finite wordlength are generated. Networked filtering,
where multiple sensors send data to the filter over a common network [32], chemical
reactor recycle system [34] are some other examples of practical systems with multiple
interval-like time-varying delays or multiple constant delays. So, obtaining the global
asymptotic stability criteria for systems with finite wordlength nonlinearities, uncertain-
ties and multiple delays is an important problem. In [37], a delay-independent stability
criterion for discrete-time systems with generalized overflow nonlinearities, uncertainties
and multiple constant delays is established. A delay-independent stability criterion for
discrete-time systems with multiple constant delays, quantization and overflow nonlinear-
ities and uncertainties have been studied in [13].

To the best of authors’ knowledge, delay-dependent stability criteria for uncertain
discrete-time systems with multiple delays (time-varying and constant) and finite word-
length nonlinearities have not been established previously. The following are the main
contributions of the paper:
(a) To obtain a delay-dependent stability criterion for uncertain discrete-time systems in
the presence of quantization and overflow nonlinearities and multiple interval-like time-
varying delays;
(b) To provide a delay-dependent stability criterion for a class of systems under the in-
fluence of finite wordlength nonlinearities and multiple constant delays;
(c) Using examples, we provide the applicability and advantage of the presented criteria
as compared with previously reported results.

This paper is organized as follows. In Section 2, the system under consideration is
described. Main results of the paper are presented in Section 3. Examples are provided
in Section 4 for illustrating the usefulness of the criteria presented in this paper. Finally,
Section 5 concludes this paper.
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2. System Description. In this paper, we consider a class of discrete-time uncertain
systems with interval-like time-varying delays under various combinations of quantization
and overflow nonlinearities and for the situation where quantization occurs after summa-
tion only. Specifically, the system under consideration is described by

x(k + 1) = O{Q(y(k))} = f(y(k)) (1a)

= [f1(y1(k)) f2(y2(k)) · · · fn(yn(k))]T

y(k) = (A + ∆A(k))x(k) +
m∑

i=1

(Adi + ∆Adi(k))x(k − di(k))

= [y1(k) y2(k) · · · yn(k)]T (1b)

d1i ≤ di(k) ≤ d2i, i = 1, 2, . . . ,m (1c)

x(k) = φ(k), ∀k = −d,−d + 1, . . . , 0 (1d)

d = max {d21, d22, . . . , d2m} (1e)

where x(k) ∈ Rn is the state vector; A, Adi (i = 1, 2, . . . , m) ∈ Rn×n are the known
constant matrices; ∆A(k), ∆Adi(k) (i = 1, 2, . . . , m) ∈ Rn×n are the unknown matrices
representing parametric uncertainties in the state matrices; φ(k) ∈ Rn is the initial state
value at time k; Q(·) represents the quantization nonlinearities; O(·) denotes the overflow
nonlinearities; f(·) characterizes the composite nonlinear functions; di(k) (i = 1, 2, . . . , m)
is the time-varying delay satisfying (1c) in which d1i and d2i are known non-negative
integers representing the lower and upper delay bounds, respectively.

In the event of Q(·) being either magnitude truncation or roundoff, f(·) is confined to
the sector [ko, kq], i.e.,

ko ≤
fj(yj(k))

yj(k)
≤ kq, j = 1, 2, . . . , n (2a)

under the assumption that fj(0) = 0, where

kq =

{
1, for magnitude truncation

2, for roundoff
(2b)

ko =


0, for zeroing or saturation

−1

3
, for triangular

−1, for two’s complement

(2c)

The uncertainties in the state matrices are assumed to be of the form

∆A(k) = H0F0(k)E0 (3a)

∆Adi(k) = HiFi(k)Ei, i = 1, 2, . . . ,m (3b)

where H i ∈ Rn×pi , Ei ∈ Rqi×n (i = 0, 1, 2, . . . ,m) are known constant matrices and
F i(k) ∈ Rpi×qi (i = 0, 1, . . . , m) is a discrete time-varying unknown matrix which satisfies

F T
i (k)Fi(k) ≤ I, i = 0, 1, . . . , m (3c)

Equations (1)-(3) can be used to describe a broader class of uncertain discrete-time
state-delayed dynamical systems involving both quantization and overflow nonlineari-
ties. Examples of such systems are ubiquitous in engineering and include digital control
systems with finite wordlength nonlinearities (for example memoryless state observer for
linear discrete-time systems with multiple delays [36]), digital filters implemented in finite
register length [10, 12, 13, 14], cold rolling mills [20, 22], etc. A typical example containing
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time delays that can be represented by (1c) can be found in networked control system [27],
where the delays induced by the network transmission (either from sensor to controller
or from controller to actuator) are actually time-varying and can be assumed to have
minimum and maximum delay bounds without loss of generality. While implementing
networked control systems using computer or special purpose hardware with fixed-point
arithmetic for data processing in the network transmission, the nonlinearities (quantiza-
tion/overflow) due to finite wordlength are generated. Networked filtering, where multiple
sensors send data to the filter over a common network [32], chemical reactor recycle system
[34] are some other examples of practical systems with multiple interval-like time-varying
delays or multiple constant delays.

The following definition and lemmas are needed in the proof of our main results.

Definition 2.1. The zero solution of the system given by (1)-(3) is globally asymptotically
stable if the following holds:
(i) it is stable in the sense of Lyapunov, i.e., for every µ > 0 there exists a δ = δ(µ) such
that ∥x(k)∥ < µ for all k = 0, 1, 2, . . . , whenever ∥x(0)∥ < µ;
(ii) it is attractive, i.e., x(k) −→ 0 as k −→ ∞.

Lemma 2.1. [31, 38] For any vectors ξ1, ξ2, matrices R, S and real numbers α1 ≥ 0,
α2 ≥ 0 satisfying [

R S

∗ R

]
≥ 0, α1 + α2 = 1 (4)

ξi = 0, if αi = 0, i = 1, 2 then

− 1

α1

ξ1
T Rξ1 −

1

α2

ξ2
T Rξ2 ≤ −

[
ξ1

ξ2

]T [
R S

∗ R

][
ξ1

ξ2

]
(5)

Lemma 2.2. [39] Let Σ, Γ, F , and Λ be real matrices of appropriate dimensions with
Λ satisfying Λ = ΛT , and then

Λ + ΣFΓ + ΓT F TΣT < 0 (6)

∀F T F ≤ I, if and only if there exists a scalar ϵ > 0 such that

Λ + ϵ−1ΣΣT + ϵΓTΓ < 0 (7)

Lemma 2.3. [24] For any positive definite matrix J ∈ Rn×n, two positive integers r and
r0 satisfying r ≥ r0 ≥ 1, and vector function x(i) ∈ Rn, one has(

r∑
i=r0

x(i)

)T

J

(
r∑

i=r0

x(i)

)
≤ (r − r0 + 1)

r∑
i=r0

xT (i)Jx(i) (8)

3. Main Results. Inspired by the work of [28, 31], we now present the main results of
the paper.

Theorem 3.1. The zero solution of the system described by (1)-(3) is globally asymptot-
ically stable if there exist n × n positive definite symmetric matrices P , Q1i, Q2i, Q3i,
Z1i, Z2i, matrices Si (i = 1, 2, . . . , m) with appropriate dimensions, a positive definite di-
agonal matrix G = diag(g1, g2, . . . , gn), and positive scalars ϵi (i = 0, 1, . . . ,m) satisfying
(9) and (10)

Θi =

[
Z2i Si

∗ Z2i

]
> 0, i = 1, 2, . . . , m (9)
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Ξ1 0 Ξ2 0 Ξ3 Ξ4 0
∗ Ξ5 Ξ6 Ξ7 Ξ8 Ξ9 0
∗ ∗ Ξ10 Ξ11 0 0 0
∗ ∗ ∗ Ξ12 0 0 0

∗ ∗ ∗ ∗ Ξ13

√
−ko

2
G Ξ14

∗ ∗ ∗ ∗ ∗ −kqG Ξ15

∗ ∗ ∗ ∗ ∗ ∗ Ξ16


< 0 (10)

where

Ξ1 = −P +
m∑

i=1

[
Q1i + Q2i + (d12i + 1)Q3i − Z1i

]
+

m∑
i=1

[
d2

1iZ1i + d2
12iZ2i

]
+ ϵ0E

T
0 E0 (11a)

Ξ2 =
[

Z11 Z12 . . . Z1m

]
(11b)

Ξ3 = −
m∑

i=1

[
d2

1iZ1i + d2
12iZ2i

]
+ kqA

T G (11c)

Ξ4 = −kq

√
−2koA

T G (11d)

Ξ5 = diag {ρ1,ρ2, . . . , ρm} (11e)

ρi = −Q3i − 2Z2i + Si + ST
i + ϵiE

T
i Ei, i = 1, 2, . . . , m (11f)

Ξ6 = diag
{
Z21 − ST

1 ,Z22 − ST
2 , . . . , Z2m − ST

m

}
(11g)

Ξ7 = diag {Z21 − S1,Z22 − S2, . . . , Z2m − Sm} (11h)

Ξ8 =
[

kqGAd1 kqGAd2 · · · kqGAdm

]T
(11i)

Ξ9 =
[
−kq

√
−2koGAd1 −kq

√
−2koGAd2 · · · −kq

√
−2koGAdm

]T
(11j)

Ξ10 = diag {−Q11 − Z11 − Z21,−Q12 − Z12 − Z22, . . . ,

−Q1m − Z1m − Z2m} (11k)

Ξ11 = diag {S1, S2, . . . , Sm} (11l)

Ξ12 = diag {−Q21 − Z21,−Q22 − Z22, . . . ,−Q2m − Z2m} (11m)

Ξ13 = P − 2G +
m∑

i=1

[
d2

1iZ1i + d2
12iZ2i

]
+
( ko

2kq

)
G (11n)

Ξ14 =
[

kqGH0 kqGH1 . . . kqGHm

]
(11o)

Ξ15 =
[
−kq

√
−2koGH0 −kq

√
−2koGH1 . . . −kq

√
−2koGHm

]
(11p)

Ξ16 = diag {−ϵ0I,−ϵ1I, . . . ,−ϵmI} (11q)

d12i = d2i − d1i, i = 1, 2, . . . , m (11r)

Proof: Define
η(k) = x(k + 1) − x(k) = f(y(k)) − x(k) (12)

Consider the following Lyapunov functional

V (x(k)) = V1(x(k)) + V2(x(k)) + V3(x(k)) + V4(x(k)) + V5(x(k))

where

V1(x(k)) = xT (k)Px(k)
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V2(x(k)) =
m∑

i=1

[
k−1∑

j=k−d1i

xT (j)Q1ix(j) +
k−1∑

j=k−d2i

xT (j)Q2ix(j)

]

V3(x(k)) =
m∑

i=1

−d1i∑
j=−d2i

k−1∑
r=k+j

xT (r)Q3ix(r)

V4(x(k)) =
m∑

i=1

[
0∑

θ=−d1i+1

k−1∑
j=k−1+θ

d1iη
T (j)Z1iη(j)

]

V5(x(k)) =
m∑

i=1

[ −d1i∑
θ=−d2i+1

k−1∑
j=k−1+θ

d12iη
T (j)Z2iη(j)

]
(13)

Taking the forward difference of the Lyapunov functional along the trajectories of the
system (1) yields

∆V (x(k)) =
5∑

r=1

[Vr(x(k + 1)) − Vr(x(k))] =
5∑

r=1

∆Vr(x(k)) (14)

where

∆V1(x(k)) = fT (y(k))Pf(y(k)) − xT (k)Px(k) (15)

∆V2(x(k)) =
m∑

i=1

xT (k)[Q1i + Q2i]x(k) −
m∑

i=1

xT (k − d1i)Q1i

× x(k − d1i) −
m∑

i=1

xT (k − d2i)Q2ix(k − d2i) (16)

∆V3(x(k)) =
m∑

i=1

(d12i + 1)xT (k)Q3ix(k) −
m∑

i=1

k−d1i∑
j=k−d2i

xT (j)Q3ix(j)

≤
m∑

i=1

(d12i + 1)xT (k)Q3ix(k) − xT (k − di(k))Q3ix(k − di(k)) (17)

∆V4(x(k)) =
m∑

i=1

d2
1iη

T (k)Z1iη(k) −
m∑

i=1

k−1∑
j=k−d1i

d1iη
T (j)Z1iη(j) (18)

∆V5(x(k)) =
m∑

i=1

d2
12iη

T (k)Z2iη(k) −
m∑

i=1

k−d1i−1∑
j=k−d2i

d12iη
T (j)Z2iη(j) (19)

By employing Lemma 2.3 (i.e., the discrete Jensen inequality), we have

∆V4(x(k)) ≤
m∑

i=1

d2
1iη

T (k)Z1iη(k) − [x(k) − x(k − d1i)]
T Z1i[x(k) − x(k − d1i)] (20)

and

∆V5(x(k)) ≤
m∑

i=1

d2
12iη

T (k)Z2iη(k) −
m∑

i=1

1

(di(k) − d1i)

d12i

γT
1i(k)Z2iγ1i(k)
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−
m∑

i=1

1

(d2i − di(k))

d12i

γT
2i(k)Z2iγ2i(k) (21)

where

γ1i(k) = x(k − d1i) − x(k − di(k)) (22a)

γ2i(k) = x(k − di(k)) − x(k − d2i), i = 1, 2, . . . ,m (22b)

It may be observed that γ1i(k) = 0, if
(di(k) − d1i)

d12i

= 0 and γ2i(k) = 0, if
(d2i − di(k))

d12i

=

0. In the light of Lemma 2.1 (i.e., the reciprocally convex approach) and (21), the following
relation is obtained if there exist matrices Si (i = 1, 2, . . . , m) such that (9) is satisfied

∆V5(x(k)) ≤
m∑

i=1

{
d2

12iη
T (k)Z2iη(k) −

[
γ1i(k)
γ2i(k)

]T

Θi

[
γ1i(k)
γ2i(k)

]}
(23)

Employing the terms ∆Vr(x(k)) (r = 1, 2, . . . , 5), we have the following inequality

∆V (x(k)) ≤ ξT (k)Ψξ(k) − 2β (24)

where

β =
n∑

j=1

gj[kqyj(k) − fj(yj(k))][fj(yj(k)) − koyj(k)]

= [kqy(k) − f(y(k))]T G[f(y(k)) − koy(k)] (25)

is a nonnegative quantity [12, 13, 14] for the nonlinearities given by (2),

ξT (k) =
[

xT (k) xT (k − d1(k)) · · · xT (k − dm(k)) xT (k − d11)

· · · xT (k − d1m) xT (k − d21) · · · xT (k − d2m) fT (y(k))
]

(26)

Ψ =


Ψ1 Ψ2 Ξ2 0 Ψ3

∗ Ψ4 Ξ6 Ξ7 Ψ5

∗ ∗ Ξ10 Ξ11 0
∗ ∗ ∗ Ξ12 0
∗ ∗ ∗ ∗ Ψ6

 (27)

Ψ1 = −P +
m∑

i=1

[
Q1i + Q2i + (d12i + 1)Q3i − Z1i

]
+

m∑
i=1

[
d2

1iZ1i + d2
12iZ2i

]
− 2kqkoĀ

T
GĀ (28a)

Ψ2 =
[
−2kqkoĀ

T
GĀd1 −2kqkoĀ

T
GĀd2 · · · −2kqkoĀ

T
GĀdm

]
(28b)

Ψ3 = −
m∑

i=1

[
d2

1iZ1i + d2
12iZ2i

]
+ (kq + ko)Ā

T
G (28c)
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Ψ4 =


ρ̄1 − 2kqkoĀ

T
d1GĀd1 −2kqkoĀ

T
d1GĀd2 · · · −2kqkoĀ

T
d1GĀdm

−2kqkoĀ
T
d2GĀd1 ρ̄2 − 2kqkoĀ

T
d2GĀd2 · · · −2kqkoĀ

T
d2GĀdm

...
...

. . .
...

−2kqkoĀ
T
dmGĀd1 −2kqkoĀ

T
dmGĀd2 · · · ρ̄m − 2kqkoĀ

T
dmGĀdm


(28d)

ρ̄i = −Q3i − 2Z2i + Si + ST
i , i = 1, 2, . . . ,m (28e)

Ψ5 =
[

(kq + ko)GĀd1 (kq + ko)GĀd2 · · · (kq + ko)GĀdm

]T
(28f)

Ψ6 = P +
m∑

i=1

[
d2

1iZ1i + d2
12iZ2i

]
− 2G (28g)

and

Ā = A + ∆A, Ādi = Adi + ∆Adi, i = 1, 2, . . . , m (29)

Due to the non-negativeness of β (see (25)), one can infer from (24) that ∆V (x(k)) < 0
if Ψ < 0. Thus, Ψ < 0 along with (9) are sufficient conditions for the zero solution of
the system (1)-(3) to be globally asymptotically stable. The condition Ψ < 0 can be
rewritten as

Ψ̂ − Υ[−kqG]−1ΥT < 0 (30)

where

ΥT =

[
−kq

√
−2koGĀ Π 0 0

√
−ko

2
G

]
(31)

Π =
[
− kq

√
−2koGĀd1 − kq

√
−2koGĀd2 . . . − kq

√
−2koGĀdm

]
(32)

Ψ̂ =


Ψ̂1 0 Ξ2 0 Ψ̂2

∗ Ψ̂3 Ξ6 Ξ7 Ψ̂4

∗ ∗ Ξ10 Ξ11 0
∗ ∗ ∗ Ξ12 0
∗ ∗ ∗ ∗ Ξ13

 < 0 (33)

Ψ̂1 = −P +
m∑

i=1

[
Q1i + Q2i + (d12i + 1)Q3i − Z1i

]
+

m∑
i=1

[
d2

1iZ1i + d2
12iZ2i

]
(34a)

Ψ̂2 = −
m∑

i=1

[
d2

1iZ1i + d2
12iZ2i

]
+ kqĀ

T
G (34b)

Ψ̂3 = diag {ρ̄1, ρ̄2, . . . , ρ̄m} (34c)

Ψ̂4 =
[

kqGĀd1 kqGĀd2 · · · kqGĀdm

]T
(34d)

Using the well-known Schur’s complement, (30) yields[
Ψ̂ Υ
∗ −kqG

]
< 0 (35)

Employing (3a), (35) can be rewritten as

M0 + H̄0F0(k)Ē0 + Ē
T
0 F T

0 (k)H̄
T
0 < 0 (36)
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where

H̄
T
0 =

[
0 0 0 0 kqH

T
0 G − kq

√
−2koH

T
0 G
]

(37)

Ē =
[
E0 0 0 0 0 0

]
(38)

M0 =



Ψ̂1 0 Ξ2 0 Ξ3 Ξ4

∗ Ψ̂3 Ξ6 Ξ7 Ψ̂4 ΠT

∗ ∗ Ξ10 Ξ11 0 0
∗ ∗ ∗ Ξ12 0 0

∗ ∗ ∗ ∗ Ξ13

√
−ko

2
G

∗ ∗ ∗ ∗ ∗ −kqG


< 0 (39)

In the light of Lemma 2.2, (36) is equivalent to

M0 + ϵ−1
0 H̄0H̄

T
0 + ϵ0Ē

T
0 Ē0 < 0 (40)

where ϵ0 > 0. Using Schur’s complement, (40) can be rewritten as

Ξ1 0 Ξ2 0 Ξ3 Ξ4 0

∗ Ψ̂3 Ξ6 Ξ7 Ψ̂4 ΠT 0
∗ ∗ Ξ10 Ξ11 0 0 0
∗ ∗ ∗ Ξ12 0 0 0

∗ ∗ ∗ ∗ Ξ13

√
−ko

2
G kqGH0

∗ ∗ ∗ ∗ ∗ −kqG −kq

√
−2koGH0

∗ ∗ ∗ ∗ ∗ ∗ −ϵ0I


< 0 (41)

Repeating the steps similar to (36)-(41), it is easy to show that (41) is equivalent to (10).
This completes the proof of Theorem 3.1.

It can be observed that, under the condition where d1i = d2i = di (i = 1, 2, . . . , m),
Equations (1)-(3) can be used to represent a class of uncertain discrete-time systems with
multiple constant delays subject to quantization and overflow nonlinearities.

Pertaining to the above, we have the following result.

Theorem 3.2. The zero solution of the system described by (1)-(3) with 0 < d1i =
d2i = di (i = 1, 2, . . . , m) is globally asymptotically stable if there exist n × n positive
definite symmetric matrices P , Qi, Zi (i = 1, 2, . . . , m), a positive definite diagonal
matrix G = diag(g1, g2, . . . , gn), and positive scalars ϵi (i = 0, 1, . . . , m) satisfying

Λ1 Λ2 Λ3 Ξ4 0
∗ Λ4 Ξ8 Ξ9 0

∗ ∗ Λ5

√
−ko

2
G Ξ14

∗ ∗ ∗ −kqG Ξ15

∗ ∗ ∗ ∗ Ξ16

 < 0 (42)

where

Λ1 = −P +
m∑

i=1

(Qi + d2
i Zi − Zi) + ϵ0E

T
0 E0 (43)

Λ2 =
[

Z1 Z2 · · · Zm

]
(44)
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Λ3 = −
m∑

i=1

d2
i Zi + kqA

T G (45)

Λ4 = diag {Γ1,Γ2, . . . ,Γm} (46)

Γ1 = −Q1 − Z1 + ϵ1E
T
1 E1 (47)

Γ2 = −Q2 − Z2 + ϵ2E
T
2 E2 (48)

Γm = −Qm − Zm + ϵmET
mEm (49)

Λ5 = P +

(
ko

2kq

− 2

)
G +

m∑
i=1

d2
i Zi (50)

Proof: Choosing the Lyapunov functional as

V (x(k)) = xT (k)Px(k) +
m∑

i=1

−1∑
j=−di

xT (k + j)Qix(k + j)

+
m∑

i=1

[
0∑

θ=−di+1

−1∑
j=−1+θ

diη
T (k + j)Ziη(k + j)

]
(51)

and following the similar steps as shown in the proof of Theorem 3.1, one can easily arrive
at Theorem 3.2. The details of the proof of Theorem 3.2 are, therefore, omitted. This
completes the proof of Theorem 3.2.

In the following, we present how a delay-independent stability criterion [[13], Theorem
1] for systems with multiple constant delays is recovered from Theorem 3.2 as a special
case.

Corollary 3.1. The zero solution of the system described by (1)-(3) with 0 < d1i =
d2i = di (i = 1, 2, . . . , m) is globally asymptotically stable if there exist n × n positive
definite symmetric matrices P , Qi, Zi (i = 1, 2, . . . ,m), a positive definite diagonal
matrix G = diag(g1, g2, . . . , gn), and positive scalars ϵi (i = 0, 1, . . . , m) satisfying

Ω1 0 kqA
T G Ξ4 0

∗ Ω2 Ξ8 Ξ9 0

∗ ∗ Ω3

√
−ko

2
G Ξ14

∗ ∗ ∗ −kqG Ξ15

∗ ∗ ∗ ∗ Ξ16

 < 0 (52)

where

Ω1 = −P +
m∑

i=1

Qi + ϵ0E
T
0 E0 (53)

Ω2 = diag
{
−Q1 + ϵ1E

T
1 E1,−Q2 + ϵ2E

T
2 E2, . . . ,−Qm + ϵmET

mEm

}
(54)

Ω3 = P +

(
ko

2kq

− 2

)
G (55)

Proof: By choosing the parameters Zi =
λiI

d2
i

(i = 1, 2, . . . ,m), for sufficiently small

scalars λi (i = 1, 2, . . . , m), the LMI (42) of Theorem 3.2 leads to Corollary 3.1. This
completes the proof of Corollary 3.1.

Remark 3.1. Relative to the methods presented in previous works [13, 14], the criteria
presented in this paper utilize a tighter bounding technique based on the reciprocal convexity
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method [31] to deal with the sum terms, which may reduce the computational burden and
simplify system analysis/synthesis procedure. It is also important to mention that the
present criteria may provide better solution to check the global asymptotic stability of
the system under consideration of which involves multiple time-varying delays/constant
delays.

Remark 3.2. Condition (52) has been reported in [13] in the context of the global as-
ymptotic stability of discrete-time state-delayed systems using quantization and overflow
nonlinearities.

Remark 3.3. The delay-independent stability criteria do not depend on the size of the
delays which makes them unsuitable for determining the global asymptotic stability of
systems that are stable under non-zero delay conditions.

Remark 3.4. The global asymptotic stability criteria obtained in Theorems 3.1 and 3.2
are dependent on the values of ko and kq. For a given system described by (1)-(3), it
may happen that the system is globally asymptotically stable for a set of values of ko

and kq, while the system may show unstable behavior for another set of values of ko

and kq. Thus, Theorems 3.1 and 3.2 may also be helpful to identify the combinations of
quantization and overflow that would ensure the global asymptotic stability of the systems
under consideration.

Remark 3.5. The presented approach is based on exploiting the sector information of
the nonlinearities and, therefore, not applicable for the discrete-time systems involving
value truncation quantization. The value truncation quantization, owing to its peculiar
characteristics is not fit for sector-based analysis.

Remark 3.6. The conditions given in Theorems 3.1 and 3.2 are in the form of LMIs and
can be conveniently solved using MATLAB environment along with YALMIP 3.0 parser
[40] and SeDuMi 1.21 solver [41].

4. Examples.

Example 4.1. To demonstrate the applicability of the presented results, we now consider
the following example.

Consider a discrete-time system described by Equations (1)-(3) with

m = 2, A =

[
1 0.05

0.1 0.4

]
, Ad1 =

[
−0.1 0
−0.1 −0.1

]
, Ad2 =

[
0 0.1

0.01 −0.2

]
, (56)

H0 = H1 =

[
0

0.12

]
, H2 =

[
0

0.14

]
, E0 = [0.01 0] ,

E1 = [0 0.01] , E2 = [0.02 0] , d11 = 2, d12 = 4 (57)

and the sector [ko, kq] = [0, 1] which includes saturation, zeroing, magnitude truncation,
combination of saturation and magnitude truncation, combination of zeroing and magni-
tude truncation, etc. Now, our objective is to determine the upper delay bounds d21 and
d22 for given lower delay bounds d11 and d12, respectively such that the present system is
globally asymptotically stable. Using the criterion given in Theorem 3.1, it is observed
that the present system is found to be globally asymptotically stable over the delay ranges
2 ≤ d1(k) ≤ 16 and 4 ≤ d2(k) ≤ 12.

It may be noted that the example under consideration falls outside the application scope
of [13, 14, 16].
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In the next example, we present the advantages of our criterion as compared to a
previously reported criterion.

Example 4.2. Consider the following autonomous delay-difference system [36]

x(k + 1) = Ax(k) +
3∑

i=1

Adix(k − di) (58)

where di (i = 1, 2, 3) represent the constant delays in the state and the system matrices A
and Adi (i = 1, 2, 3) are given by

A =

[
0.3 0.15
0 0.45

]
, Ad1 =

[
0.05 −0.2
0.05 0.05

]
,

Ad2 =

[
0 0.3

0.1 0.1

]
, Ad3 =

[
−0.2 0.2
−0.1 0.22

]
(59)

Under finite wordlength implementation and in the presence of parameter uncertainties,
the system described by (58) can be written in the following form

x(k + 1) = O{Q(y(k))} = f(y(k)) (60a)

y(k) = (A + ∆A(k))x(k) +
m∑

i=1

(Adi + ∆Adi(k))x(k − di) (60b)

with m = 3. A delay-independent criterion for the stability of the system (60) is provided
in the form of Theorem 1 in [13] which has been reproduced in the form of Corollary 3.1
in this paper. Now, with

H0 =

[
0.8
0.5

]
, H1 =

[
0

0.12

]
, H2 =

[
0

0.14

]
, H3 =

[
0

0.01

]
, E0 = [0.01 0.18] ,

E1 = [0 0.01] , E2 = [0.02 0] , E3 = [0.02 0] , ko = 0, kq = 1 (61)

it is observed that the delay-independent criterion Theorem 1 [13] is unable to determine
the feasibility of the system under consideration.

Next, using Theorem 3.2 the present system is found to be stable for d1 = 8, d2 = 5
and d3 = 6. Thus, the proposed Theorem 3.2 demonstrates the advantage in terms of
conservativeness as compared to the previously reported criterion [13].
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Figure 1. State trajectories of the system with quantization and overflow
nonlinearities considered in Example 4.2
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With arbitrary initial conditions, the results obtained in Example 4.2 via Theorem 3.2
have also been verified by the simulation result shown in Figure 1. The simulation result
is obtained by assuming the system to be under the influence of magnitude truncation
quantization and saturation overflow nonlinearities.

5. Conclusion. Two new delay-dependent stability criteria have been presented for un-
certain discrete-time systems with multiple delays subject to various combinations of
quantization and overflow nonlinearities. The examples show the applicability of the pre-
sented results for the system under consideration. The presented results may be extended
to multidimensional systems.
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