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Abstract. This paper investigates two chattering-free finite-time controllers for the
rigid spacecraft attitude tracking control problem considering modeling uncertainty and
external disturbance. First, the basic controller is designed utilizing integral terminal
sliding mode surface (ITSMS) with prior knowledge of the total system uncertainty con-
sisting of modeling uncertainty and external disturbance. Second, an adaptive controller
is proposed to deal with unknown system uncertainty through on line approximating upper
bound information of the first derivative of the total system uncertainty. Compared with
the existing literature, advantages of the proposed control laws include not only finite-
time convergence rate for the closed-loop system robustness against uncertainty, but also
chattering-free control signal since the derivative of the control input signal is designed
directly and then the switch functions are hidden behind the integration operation. At
last, rigorous stability proof is given via Lyapunov stability theory and digital simulations
are undertaken to verify the effectiveness of the proposed controllers.
Keywords: Attitude tracking control, Finite-time convergence, Chattering-free, Inte-
gral terminal sliding mode surface, Adaptive control

1. Introduction. Attitude tracking control of rigid spacecraft has attracted much at-
tention due to its importance in many space missions. Many scholars have devoted to
related researches and put forward various control methods considering the attitude track-
ing control problem, such as optimal control [1], nonlinear PD + control [2], back-stepping
control [3], adaptive control [4] and variable structure control [5]. To satisfy the high de-
mand of the advanced space missions, fast response, high control precision and robustness
against many kinds of disturbances must be assured for the closed-loop spacecraft system.
Therefore, the sliding mode control (SMC) methods [6,7] are favored, due to its strong
robustness and easy interaction with other control procedures. Especially for the termi-
nal sliding mode control (TSMC) [8], since its sliding mode surface contains a fractional
power term and finite-time convergence for the system can be obtained, which gives the
TSMC method great advantage in both practical and theoretical situations. Hence this
paper utilizes the terminal sliding mode control method to solve the attitude tracking
control problem.

The TSMC based finite-time control methods have been widely researched during the
past decades. In [9], a modified nonsingular terminal sliding mode surface (NTSMS)
based on [8] is firstly constructed for controlling the Euler-Lagrange system. In [10], a
fast terminal sliding mode surface (FTSMS) based control law is proposed by adding a
linear part to the conventional terminal sliding mode surface (TSMS) in [8]. [11] builds
up a switching mechanism between conventional FTSMS and linear sliding mode surface
(LSMS) around the origin to avoid the input singularity and speed up the convergence
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rate. A fast nonsingular terminal sliding mode surface (FNTSMS) based control method
is then derived. Related result has been extended to the spacecraft attitude tracking
control area in [12]. Recently, [13] utilizes the full-order sliding mode surface to formulate
the controller for general systems, which not only eliminates the input singularity, but
also achieves finite-time convergence. However, most of the above mentioned works,
including [13], still depend on priori knowledge of the system uncertainty which may not be
available in most practical situations. And by assigning high gains to respective switching
controllers to suppress the system uncertainty and satisfy the stability theory, the control
performance of these works can be highly affected. Therefore, further research is still
necessary for the attitude tracking control problem with unknown system uncertainties.

Various methods can be associated with the TSMC methods to deal with unknown sys-
tem uncertainty including adaptive control, neural networks and the observers. In [14],
adaptive control method is used to estimate the upper bound of the system uncertainty,
but the input singularity problem is neglected. In [15,16], the system uncertainty is com-
pensated by neural networks. However, by adding switching function into the controllers
or adaptive laws in [14-16], the controllers become discontinuous and the introduced in-
put chattering can debase the system performance seriously if not being treated properly.
Researchers have proposed different procedures to offset the input chattering problem.
For instance, in [17,18], the second-order disturbance observer is utilized to estimate and
compensate unknown system uncertainty online and at the same time attenuate the input
chattering by lowering the controller gains, but upper bound of the second derivative of
the system uncertainty is still needed. Fast-TSM-type reaching law is used to assure the
steady states ultimately bounded and formulate continuous controllers in [18], but only
uncertainties bounded by a constant can be handled by this method.

Given the previous analysis, it can be seen that, few of the existing studies can achieve
robustness against unknown system uncertainty, fast finitetime convergence rate and
chattering-free control input at the same time. Therefore, this paper proposes two
chattering-free finite-time attitude tracking control laws considering the previous prob-
lems based on integral terminal sliding mode control and adaptive control laws. The
main contributions of this paper are as follows. Compared with [9,10,12,13,17,18], both
the proposed controllers are capable of dealing with system uncertainty and by utilizing
the adaptive technique, the second controller can also deal with unknown system uncer-
tainty; Compared with [11,14-16], input discontinuousness is avoided and the resultant
controllers can be totally chattering-free.

The rest of the paper is organized as follows. In Section 2, preliminaries and system
dynamics are established. Section 3 presents two robust chattering-free controllers and
respective rigorous stability proofs. In Section 4, numerical simulations are undertaken.
The paper is closed with some concluding remarks in Section 5.

2. Preliminaries.

2.1. Spacecraft attitude dynamics based on quaternion. The quaternion of the
spacecraft body frame with respect to the inertial frame is denoted as q = [q0 qT

v ]T =
[q0 q1 q2 q3]

T . The scalar part q0 and the vector part qv are subject to the constraint
q2
0 + qT

v qv = 1. ω ∈ R3×1 denotes the angular velocity of the spacecraft in the body frame.
J ∈ R3×3 is the inertia matrix of the spacecraft. u ∈ R3×1 and d ∈ R3×1 are the control
torque and external disturbance torque. I3 represents the 3 × 3 identity matrix. For any
a = [a1, a2, a3]

T ∈ R3×1, a× denotes the skew-symmetric matrix generated by a. Denote
qd = [qd0 qT

dv]
T as the desired attitude of the spacecraft in the reference frame, q∗d as the

conjugate quaternion of qd and ωd ∈ R3×1 as the desired angular velocity resolved in
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the reference frame. Define q̃ and ω̃ to represent the error quaternion and error angular

velocity of the spacecraft which are calculated as q̃ = q∗d ◦ q =
[
q̃0 q̃T

v

]T
= [q̃0 q̃1 q̃2 q̃3]

T

and ω̃ = ω − C(q̃)ωd where “◦” is the multiplication operator between quaternion and
C = C(q̃) is the rotation matrix from the reference frame to the spacecraft body frame
defined as C (q̃) =

(
q̃2
0 − q̃T

v q̃v

)
I3 + 2q̃v q̃

T
v − 2q̃0q

×
v . Then it yields the error dynamic

equations of the attitude tracking control system

˙̃q =
1

2

[
−q̃T

v

q̃0I3 + q̃×v

]
ω̃ (1)

J ˙̃ω = −(ω̃ + C(q̃)ωd)
×J(ω̃ + C(q̃)ωd) + J(ω̃×C(q̃)ωd − C(q̃)ω̇d) + u + d (2)

Assume that the inertia matrix in (2) is in the form of J = J0 + ∆J , where J0 is the
known positive constant matrix and ∆J is the unknown inertia perturbation. Then it has

J0
˙̃ω = F + u + δ (3)

where

F = − (ω̃ + Cωd)
× J0 (ω̃ + Cωd) + J0

(
ω̃×Cωd − Cω̇d

)
(4)

δ = [δ1 δ2 δ3]
T = ∆F + d (5)

∆F = − (ω̃ + Cωd)
× ∆J (ω̃ + Cωd) + ∆J

(
ω̃×Cωd − Cω̇d

)
− ∆J ˙̃ω (6)

δ is the total system uncertainty.
This paper aims at solving the rigid spacecraft attitude tracking control problem con-

sidering modeling uncertainty, external disturbance, input singularity and actuator chat-
tering, which is equivalent to designing a chattering-free control input u for systems (1)
and (2), so that finite time convergence of the attitude tracking error q̃ and angular veloc-
ity tracking error ω̃ is obtained even in the presence of modeling uncertainty and external
disturbance.

3. Main Results. In this section, two robust chattering-free finite-time controllers are
designed to deal with the problem of attitude tracking for rigid spacecraft considering
modeling uncertainty and external disturbance. The fast nonsingular terminal sliding
mode surface (FNTSMS), the integral terminal sliding mode surface (ITSMS) and some
useful lemmas are introduced firstly.

The basic FNTSMS is firstly designed as:

S = [S1 S2 S3]
T = ω̃ + α1q̃v + α2β (q̃v) (7)

where

β (q̃v) = [β (q̃1) β (q̃2) β (q̃3)]
T (8)

β (q̃i) =

{
sigγ (q̃i) |q̃i| > η
r1q̃i + r2sgn (q̃i) q̃2

i |q̃i| ≤ η
, i = 1, 2, 3 (9)

r1 = (2 − γ)ηγ−1, r2 = (γ − 1)ηγ−2, 0 < γ, η < 1 (10)

sigγ (q̃i) = sgn (q̃i) |q̃i|γ , i = 1, 2, 3 (11)

sgn (q̃i) =

 1 q̃i > 0
0 q̃i = 0
−1 q̃i < 0

, i = 1, 2, 3 (12)

Motivated by [13], in order to provide chattering-free and finite-time stabilizing control

input, the ITSMS σ = [σ1 σ2 σ3]
T is constructed as

σ = Ṡ + k1S + k2β(S) (13)



908 H. CHEN, X. LI AND S. SONG

where S is defined in (7), 0 < γ1 < 1, k1 and k2 are positive constants, β(·) is similar to
(8) and (9) except that respective parameters are set as γ1 and η1 which are all positive.
Then it yields

σ = J−1
0 F + J−1

0 u + J−1
0 δ + α1

˙̃qv + α2β̇ (q̃v) + k1S + k2β(S) (14)

Lemma 3.1. [20] For any real numbers ni, i = 1, . . . , n and 0 < c < 2, the following
inequality holds (

n2
1 + n2

2 + · · · + n2
n

)c ≤ (nc
1 + nc

2 + · · · + nc
n)2 (15)

Lemma 3.2. [12] For system y = f(x), x ∈ Rn×1, f(0) = 0. Assume V (x) is C1 smooth,
positive definite and defined on U ⊂ Rn×1 and V̇ (x) + aV (x)c is negative semi-definite
and defined on U ⊂ Rn×1, where a > 0, 0 < c < 1, then there exists an area U0 ⊂ Rn×1

such that any V (x) starting from U0 ⊂ Rn×1 is able to reach V (x) ≡ 0 in finite time.
Moreover, if T is the time for V (x) ≡ 0 to be reached, then

T ≤ V (x(t0))
1−c

a(1 − c)
(16)

where V (x(t0)) is the initial value of V (x). And the system y = f(x) is finite time stable.

Lemma 3.3. [20] For system y = f(x), x ∈ Rn×1, f(0) = 0. If V (x) defined in Lemma
3.2 satisfies V̇ (x) ≤ −aV (x) − bV (x)c, where a > 0, b > 0, 0 < c < 1. Then V (x) ≡ 0
can be reached after

T ≤ 1

a(1 − c)
ln

aV (x(t0))
1−c + b

b
(17)

3.1. Basic integral terminal sliding mode controller design. To facilitate the con-
trol system design in this subsection, the following assumption is introduced firstly.

Assumption 3.1. [13,19,21-23] The total system uncertainty δ is upper bounded and its

derivative δ̇ is also upper bounded as
∥∥δ̇

∥∥
1

< l, where
∥∥δ̇

∥∥
1

represents the 1-norm of δ̇ and
l is a positive constant.

Remark 3.1. The total uncertainty δ contains both external disturbance and modeling
uncertainty. Assumption 3.1 means that both the total uncertainty and its first derivative
are upper bounded, which agrees with most of the practical situations. For example, when
the spacecraft system or other plants are under control, the control torques may vary with
the system states, but the change rate of the control torques and system states cannot be
infinite in practical situations, which is shared by many works [13,19,21-23].

Based on previous analysis, the following controller is proposed:

u = −F − α1J0
˙̃qv − α2J0β̇(q̃v) − k1J0S − k2J0β(S) −

∫ t

0

lsgn(σ)dτ (18)

where l is defined in Assumption 3.1.
Then it yields the following theorem.

Theorem 3.1. Consider the system described by (1) and (2), if Assumption 3.1 holds,
the integral terminal sliding mode surface is defined as (13) and the attitude tracking
controller (18) applies, then it obtains the following conclusions:

(i) The sliding mode surface σ can converge to the origin in finite time and S can
converge to a small region around the origin in finite time;

(ii) q̃ and ω̃ can converge into small regions around the expected equilibrium in finite
time.
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Proof: The candidate Lyapunov function is defined as

V1 =
1

2
σT J0σ (19)

Taking the derivative of V1 and substituting controller (18) yields

V̇1 = σT
(
δ̇ − lsgn(σ)

)
≤ ∥σ∥1

(∥∥δ̇
∥∥

1
− l

)
≤ −ε0 ∥σ∥2

≤ −
√

2ε0√
λmax(J0)

·
(

1

2
σT J0σ

) 1
2 (20)

where λmax(J0) is the maximum eigenvalue of J0 and ε0 = l−
∥∥δ̇

∥∥
1

is a positive constant.
Then it yields

V̇1 ≤ −µ0V
1
2

1 (21)

where µ0 =
√

2ε0

/√
λmax(J0) is a positive constant. Using Lemma 3.2, σ = 0 can

be reached in finite time. Then it obtains Ṡ = −k1S − k2β(S). Define the candidate
Lyapunov function as V2 = 1

2
ST S, taking the derivative of which yields

V̇2 = ST (−k1S − k2β(S)) (22)

For |Si| > η1, it yields

V̇2 ≤ −2α1V2 − 2
γ1+1

2 α2V
γ1+1

2
2 (23)

Based on Lemma 3.3, |Si| ≤ η1 could be reached in finite time. Then (22) becomes

V̇2 = − 1

2
(α1 + α2r) · (2ST S) − α2r2

3∑
i=1

(
|Si| · S2

i

)
≤ − 1

2
(α1 + α2r) · V2

(24)

S could converge to the origin asymptotically and into a small region around the origin
in finite time which can be expressed as |Si| ≤ ϕi where ϕi can converge to the origin as
time tends to infinity.

Now (i) has been proved.
Proof of (ii): When |q̃i| > η for i = 1, 2, 3, it obtains

ω̃i + α1q̃i + α2sgn (q̃i) |q̃i|γ = Si (25)

which can be rewritten as:

ω̃i +

(
α1 −

Si

q̃i

)
q̃i + α2sgn (q̃i) |q̃i|γ = 0 (26)

ω̃i + α1q̃i +

(
α2 −

Si

sgn (q̃i) |q̃i|γ
)

sgn (q̃i) |q̃i|γ = 0 (27)

As long as α1 > |Si|/|q̃i| or α2 > |Si|/|q̃i|γ are satisfied, (26) or (27) become a classical
FTSMS and fast finite-time convergence for q̃i and ω̃i can be assured, until |q̃i| ≤ |Si|/α1

and |q̃i|γ ≤ |Si|/α2 have all been reached. Using |Si| ≤ ϕi and |q̃i| > η, the following
regions can be reached in finite time:

|q̃i| ≤ Qi
∆
= max

{
η, min

{
|ϕi|
α1

,

∣∣∣∣ ϕi

α2

∣∣∣∣ 1
γ

}}
(28)

|ω̃i| ≤ |Si| + α1 |q̃i| + α2 |q̃i|γ ≤ ϕi + α1Qi + α2Q
γ
i (29)

Now (ii) has been proved.
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The proof of Theorem 3.1 is completed.

Remark 3.2. Since Ṡ in (13) is not available, it will be impossible to use the information
of σ directly to formulate the feedback control law (18). In [13], an alternative way is
proposed to get the information of sgn(σ), which involves defining a function as:

g(t) =

∫ t

0

σdt = S +

∫ t

0

(k1S + k2β(S))dt (30)

Therefore, sgn(σ) can be approximately calculated as:

sgn(σ) = sgn(g(t) − g(t − τ)) (31)

where τ is a time delay. Since σ(t) = limτ→0 (g(t) − g(t − τ))/τ , it gets the approximation
of sgn(σ).

3.2. Adaptive integral terminal sliding mode controller design. To deal with
unknown system uncertainty and provide chattering-free finite-time control efforts at the
same time, the adaptive control method is introduced to combine with the ITSMS in
this subsection. A second-order differentiator [22,23] is firstly designed to achieve the
approximation of Ṡ:

ż0 = v0

v0 = −λ1 |z0 − S|
2
3 sgn(z0 − S) + z1

ż1 = v1

v1 = −λ2 |z1 − v0|
2
3 sgn(z1 − v0) + z2

ż2 = −λ3sgn(z2 − v1)

(32)

where S is defined in (7), z0, z1 and z2 are estimates of S, Ṡ and S̈ respectively.
A new sliding mode surface σ̂ based on the approximation of Ṡ is then defined as:

σ̂ = z1 + k1S + k2β(S) (33)

where k1, k2 and β(·) are the same as (13). Denote e1 = Ṡ − z1 as the estimation error of
Ṡ. Referring to [22], e1 will reach zero in finite time. (33) can be rewritten as:

σ̂ = Ṡ + k1S + k2β(S) − e1

= J−1
0 F + J−1

0 u + α1
˙̃qv + α2β̇(q̃v) + J−1

0 δ − e1 + k1S + k2β(S)
(34)

Denote δ∗ = J−1
0 δ−e1 as the new total uncertainty which contains modeling uncertainty,

external disturbance and estimation error e1. Inspired by the works of [13,24], an adaptive
chattering-free finite-time controller is proposed as:

u = −F − α1J0
˙̃qv − α2J0β̇(q̃v) − k1J0S − k2J0β(S) + u1 (35)

u̇1 + λu1 = ua + un (36)

ua =

 0, if σ̂ = 0

− σ̂

∥σ̂∥2

(
ĉ0 + ĉ1 ∥ω̃∥2 + ĉ2 ∥ω̃∥2

2 + ĉ3 ∥ω̃∥3
2

)
, if σ̂ ̸= 0

(37)

un =

 0, if σ̂ = 0

− σ̂

∥σ̂∥2

k0, if σ̂ ̸= 0
(38)

˙̂cn = pn (∥σ̂∥2 ∥ω̃∥
n
2 − χnĉn) , n = 0, 1, 2, 3 (39)

where λ, k0, p0, p1, p2, p3, χ0, χ1, χ2 and χ3 are all positive control parameters. ĉ0, ĉ1, ĉ2

and ĉ3 are the adaptive parameters. The derivative of σ̂ is ˙̂σ = δ̇∗ − λu1 + ua + un. To
facilitate controller (35), the following assumption is introduced.
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Assumption 3.2. [9,24] δ̇∗ − λu1 is assumed to be bounded and can be expressed as∥∥∥δ̇∗ − λu1

∥∥∥
2
≤ c1 + c2 ∥ω̃∥2 + c3 ∥ω̃∥2

2 + c4 ∥ω̃∥3
2 (40)

where c1, c2, c3 and c4 are unknown positive constants and will be adjusted on line by the
adaptive laws defined as (39).

Remark 3.3. For Assumption 2 in [24], the lumped term Td of the disturbances and
modeling uncertainties satisfies ∥Td∥ ≤ γ0(1+∥ω∥+∥ω∥2) where γ0 is an unknown positive
constant and ω is the angular velocity tracking error defined by [24]. The highest power
of ∥ω∥ that occurs in Ṫd is ∥ω∥3. Then it yields

∥∥Ṫd

∥∥ ≤ c0 + c1 ∥ω∥ + c2 ∥ω∥2 + c3 ∥ω∥3,
where c0, c1, c2 and c3 are positive constants. Then it obtains Assumption 3.2.

Theorem 3.2. Consider systems (1) and (2), if Assumption 3.2 holds the second-order
differentiator is defined as (32), the integral terminal sliding mode surface is defined as
(13) and the attitude tracking controller is designed as (35), then it obtains the following
conclusions:

(i) σ and S can converge into small regions around the origin in finite time;
(ii) q̃ and ω̃ can converge into small regions around the expected equilibrium in finite

time.

Proof: The Lyapunov function candidate is selected as

V3 =
1

2
σ̂T J0σ̂ +

1

2

3∑
n=0

1

pn

c̃2
n (41)

where c̃n = cn − ĉn for n = 0, 1, 2, 3 are the estimation errors.
Taking the derivative of V3 and substituting (35) obtains

V̇3 = σ̂T
(
δ̇∗ − λu1 + ua + un

)
−

3∑
n=0

1

pn

c̃n
˙̂cn

≤ ∥σ̂∥2

∥∥∥δ̇∗ − λu1

∥∥∥
2
−

(
ĉ0 + ĉ1 ∥ω̃∥2 + ĉ2 ∥ω̃∥2

2 + ĉ3 ∥ω̃∥3
2

)
∥σ̂∥2

− k0 ∥σ̂∥2 −
3∑

n=0

1

pn

c̃n
˙̂cn

=
(
c0 + c1 ∥ω̃∥2 + c2 ∥ω̃∥2

2 + c3 ∥ω̃∥3
2

)
∥σ̂∥2

−
(
ĉ0 + ĉ1 ∥ω̃∥2 + ĉ2 ∥ω̃∥2

2 + ĉ3 ∥ω̃∥3
2

)
∥σ̂∥2 − k0 ∥σ̂∥2 −

3∑
n=0

1

pn

c̃n
˙̂cn

≤ − k0 ∥σ̂∥2 −
3∑

n=0

χn (ĉn − cn) ĉn

(42)

Using the inequalities of − (ĉn − cn) ĉn ≤ −
(
ĉn − 1

2
cn

)2
+ 1

2
c2
n (n = 0, 1, 2, 3), (42) becomes

V̇3 ≤− k0 ∥σ̂∥2 −
3∑

n=0

χn

(
ĉn − cn

2

)2

+
3∑

n=0

χn · c2
n

2

≤− k0 ∥σ̂∥2 −
3∑

n=0

χn |ĉn − cn| +
3∑

n=0

(
χnc

2
n

2
+ χn |ĉn − cn|

)

≤− k0 ∥σ̂∥2 −
3∑

n=0

χn |ĉn − cn| +
3∑

n=0

(
χnc

2
n

2
+ χn |cn|

)
(43)
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Based on Lemma 3.1, it obtains

V̇3 ≤ −α

[(
1

2
σ̂T J0σ̂

)0.5

+
3∑

n=0

(
c̃2
n

2pn

)0.5
]0.5

+ χ ≤ −αV 0.5
3 + χ (44)

where both α = min
(√

2k0

/√
λmax(J0), χ0

√
2p0, χ1

√
2p1, χ2

√
2p2, χ3

√
2p3

)
and χ =

3∑
n=0

(
1
2
χnc2

n + χn |cn|
)

can be adjusted by the controllers parameters

(44) can be rewritten as

V̇3 ≤ −
(

α − χ

V 0.5
3

)
V 0.5

3 (45)

Based on Lemma 3.2, as long as α − χ/V 0.5
3 > 0 is satisfied, the convergence of (45)

is assured. The time consumption T1 for V 0.5
3 ≤ χ/α to be reached can be estimated as

T1 ≤ 2V 0.5
3 (0)/(α − χ/V 0.5

3 (t)) which may tend to infinity as α − χ/V 0.5
3 (t) tends to 0.

Considering the definition of V3 in (41), it yields

V 0.5
3 ≥

(
1

2
σ̂T J0σ̂

)0.5

≥
√

λmin(J0)

2
∥σ̂∥2 (46)

where λmin(J0) is the minimum eigenvalue of J0. Using V 0.5
3 ≤ χ/α and (46) yields

|σ̂i| ≤ χ/α
√

2/λmin(J0). As a result, though |σ̂i| ≤ χ/α
√

2/λmin(J0) may be reached as

time tends to infinity, the convergence of σ̂ toward χ/α
√

2/λmin(J0) can still be achieved

which can be expressed as |σ̂i| ≤ κi (i = 1, 2, 3) and the limit of κi is χ/α
√

2/λmin(J0)
with time going to infinity. Given the finite-time convergence property of (32), |σi| ≤ κi

(i = 1, 2, 3) can also be reached in finite time.
To analyze the dynamic characteristic of S, the following Lyapunov candidate function

is defined:

V4 =
1

2
ST S (47)

Taking the derivative of V4, substituting (13) and considering |Si| > η1 yields

V̇4 = ST (−k1S − k2sig
γ1(S) + σ) (48)

which can be further rearranged into the following two forms for i = 1, 2, 3:

V̇4 = −ST

[
diag

(
k1 −

σi

Si

)
S + k2sig

γ1(S)

]
(49)

V̇4 = −ST

[
k1S + diag

(
k2 −

σi

sgn(Si) |Si|γ1

)
sigγ1(S)

]
(50)

where diag(xi) represents a diagonal matrix with diagonal elements of xi, i = 1, 2, 3.
If k1 > |σi|/|Si| or k2 > |σi|/|Si|γ1 for i = 1, 2, 3 are satisfied, the matrixes of diag(k1 −

σi/Si) or diag(k2 − σi/sgn(Si) |Si|γ1) can be kept positive, which yields V̇4 ≤ −(2k2

/λmax(J0))
(γ1+1)/2

(
1
2
ST J0S

)(γ1+1)/2
and V̇4 ≤ −(2k1/λmax(J0))

(
1
2
ST J0S

)
where λmax(J0)

is the maximum eigenvalue of J0. Based on Lemma 3.2 and Lyapunov stability theory,
convergence of the closed-loop system is obtained until k1 ≤ |σi|/|Si| and k2 ≤ |σi|/|Si|γ1

have all been reached. As a result, S can converge into the following regions in finite time:

|Si| ≤ φi
∆
= min

{
|κi|
k1

,

∣∣∣∣κi

k2

∣∣∣∣ 1
γ1

}
, i = 1, 2, 3 (51)

where κi is the upper bound of σi (i = 1, 2, 3).
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The stability analysis for q̃v and ω̃ is similar to the proof of (ii) within Theorem 3.1
and can be omitted here. The following results can be obtained:

|q̃i| ≤ Qi
∆
= max

{
η, min

{
|φi|
α1

,

∣∣∣∣φi

α2

∣∣∣∣ 1
γ

}}
(52)

|ω̃i| ≤ |Si| + α1 |q̃i| + α2 |q̃i|γ ≤ φi + α1Qi + α2Q
γ
i (53)

where φi (i = 1, 2, 3) is defined in (51).
Now (i) and (ii) have been proved. The proof of Theorem 3.2 is completed.

4. Numerical Examples. To illustrate the effectiveness of the proposed control meth-
ods, numerical simulations are conducted. Based on the works of [11,18], initial values of
the spacecraft system are decided. The nominal inertia matrix J0, initial quaternion q(0),
initial angular velocity ω(0), inertia uncertainty ∆J , external disturbance d and desired
angular velocity ωd are designed as:

J0 = [20, 1.2, 0.9; 1.2, 17, 1.4; 0.9, 1.4, 15] kg·m2

q(0) = [0.4031,−0.2584, 0.7386, 0.4745]T

ω(0) = [0, 0, 0]T rad/s

∆J = diag{sin(0.1t), 2 sin(0.2t), 3 sin(0.3t)} kg·m2

d = 0.1 × [sin(0.1t), 2 cos(0.2t), 3 sin(0.3t)]T N·m
ωd = [0.1 sin(t/40),−0.1 sin(t/50),−0.1 sin(t/60)]T rad/s

Parameters for the second-order differentiator defined in (32) are set as: λ1 = 2, λ2 =
0.8 and λ3 = 0.3. The simulation time is set as 100 seconds. 3 different groups of
simulations are undertaken under the same initial values defined above.

The first group is under controller (18), parameters of which are set as: η = 0.001,
η1 = 0.001, γ = 0.9, α1 = 0.5, α2 = 1.8, γ1 = 0.5, k1 = 0.05, k2 = 0.4 and l = 0.2. The
simulation results are presented in Figures 1-3. As shown in Figures 1 and 2, q̃ and ω̃
can be stabilized within less than 10 seconds with accuracy of 3 × 10−6 and 4 × 10−5,

Figure 1. The curves of q̃v under (18)
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Figure 2. The curves of ω̃ under (18)

Figure 3. The curves of control torque of controller (18)

respectively. Figure 3 shows the actual control torques can be constrained to ±0.4 N·m
at last.

The second group is under controller (18), parameters of which are set as: η = 0.001,
η1 = 0.001, γ = 0.9, α1 = 0.5, α2 = 1.8, γ1 = 0.5, k1 = 0.05, k2 = 0.4 and l = 2. The
simulation results are presented in Figures 4-6. As shown in Figures 4 and 5, q̃ and ω̃
can be stabilized within less than 10 seconds with accuracy of 3 × 10−6 and 4 × 10−5,
respectively. Figure 6 shows the control torques can be constrained to ±0.4 N·m at last.
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Figure 4. The curves of q̃v under (18)

Figure 5. The curves of ω̃ under (18)

The third group is under controller (35), parameters of which are set as: η = η1 = 0.001,
γ = 0.9, α1 = 0.5, α2 = 1.8, γ1 = 0.5, k1 = 0.05, k2 = 0.4, λ = 1, k0 = 0.001,
p0 = p1 = p2 = p3 = 1 and χ0 = χ1 = χ2 = χ3 = 1. The simulation results are presented
in Figures 7-10. It can be seen from Figures 7 and 8, q̃ and ω̃ can also be stabilized in
10 seconds with accuracy of 6× 10−4 and 4× 10−4, respectively. Figure 9 illustrates that
the control torques can be constrained to ±0.4 N·m at last. Figure 10 shows that at last
the adaptive parameters are bounded by 0.03.

Through comparison of the simulation results, it can be observed that:
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(1) As seen from Figure 3, Figure 6 and Figure 10, the proposed controllers in this paper
are chattering-free, which agrees with the analysis of Theorem 3.1 and Theorem 3.2 and
verifies the advantages of the proposed controllers compared with the switch controller in
[10].

(2) Comparison of group 1 and group 2 shows that, parameter l with larger values
may lead to control precision decrease and more serious fluctuation. However, since the
sign functions within (18) and (35) are all hidden behind the integration operation, the
resultant control laws are still continuous and without chattering phenomenon.

Figure 6. The curves of control torque of controller (18)

Figure 7. The curves of q̃v under (35)
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Figure 8. The curves of ω̃ under (35)

Figure 9. The curves of control torque of controller (35)

(3) The attitude tracking control missions can all be finished in finite time with sat-
isfactory control accuracy. Controller (18) in group 1 achieves higher control precisions,
since theoretically under (18) the tracking errors can reach the expected equilibriums, but
controller (35) only assures ultimate boundedness for the system. However, in controller
(18) l must be large enough and decided using priori information of system uncertainty
which restricts the application scope of this method. While for controller (35), with the
help of the adaptive control procedure, parameters ĉn (n = 0, 1, 2, 3) can be adjusted on
line and have much smaller values, which obtains more smooth simulation results.
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Figure 10. The curves of adaptive parameters under (35)

5. Conclusions. This paper researches the attitude tracking problem of rigid spacecraft
under inertia uncertainty and external disturbance with two different controllers designed.
Benefits of the proposed two controllers include finite time convergence, chattering-free
control input and robustness against system uncertainty. Stability of the closed-loop
system has been proved through Lyapunov stability theory. Simulations are undertaken
to show the effectiveness of the controllers.
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