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ABSTRACT. This paper lays emphasis on heartbeat monitoring. The polyvinylidene diflu-
oride (PVDF') material is used as the sensor for signal acquisition. There are two crucial
subjects in this paper that shall be solved for heart rate calculation. First, the difference
in signal amplitude shall be overcome (each analyte has a different heartbeat amplitude
or intensity), so that the algorithm can calculate the heart rate effectively. Secondly, the
difference in signal frequency or cycle is overcome (each analyte has a different heart
rate or cycle), so that the accuracy of calculated heart rate is increased. Finally, the
signal acquisition makes noise, which influences the calculation of heartbeat. The signal
shall be preprocessed to remove the noise. Added to this, the sensor is placed in different
positions, and the algorithm shall identify the signal as heartbeat signal or other signals,
which contributes to calculating the heart rate rapidly. Our algorithm can calculate the
heart rate effectively when the sensor is placed in different positions (chest and wrist)
and overcome the effect of different signal cycle lengths.
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1. Introduction. In recent years, the heartbeat monitoring plays an important role in
health care and fitness [1]. A highly correct measured data can provide doctors or experts
with more information for decision on diagnosis or advice. The basic physiological signals,
such as heart rate, pulse rate and respiratory rate, are extensively used to evaluate basic
functions of normal persons. The common commercially available medical grade vital signs
monitors in clinical medicine can implement timely and high precision multi-physiological
information monitoring. In general cases, these medical appliances are very expensive
and large sized, unlikely to be carried, so they may obstruct the practical application
of home care. For the patients with cardiovascular chronic disease, the sustained heart
rate or pulse rate monitoring is very important at any time, in any location. In order
to implement physiological information monitoring of home care for patients, a portable
and high precision wearable device is particularly required. The PVDF (polyvinylidene
difluoride) is a sort of PVF2 compound, piezoelectric plastic material with uniform and
solid structure. The piezoelectric characteristic has significant effect on measuring the
physiological signals of human body, especially on cardiorespiratory signal measurement
[2-4]. Besides good sensing function, the PVDF is characterized by thinness, light weight,
flexibility and low cost. These favorable characteristics make it an ideal material for
manufacturing wearable devices. This paper uses CM-01B [5], which is extensively used
in the design of electronic stethoscope. It is a good electronic part for monitoring heart
rate, pulse and respiratory rate. The heartbeat detection technique has progressed greatly
in medicine or fitness. For example, the PPG (photoplethysmography) is extensively used
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in wearable devices, because the PPG sensor has simple operating characteristic (as long
as it is attached to skin) and low cost. Many major companies have used this technique
in smart watches or bracelets for health monitoring.

This paper proposes combining empirical algorithm with dynamic time wrapping (DT-
W) algorithm to increase the accuracy and reliability of heart rate monitoring. The
empirical algorithm judges local peak value effectively based on peak detection in time
domain. The DTW measures the similarity between two signal sequences, and it is usually
used in speech recognition and handwriting recognition [6]. This algorithm can overcome
the difference in signal frequency or cycle effectively. There is significant effect in the
experiment.

The main contribution of this paper is that we propose an intelligent empirical algo-
rithm integrated with DTW (dynamic time warping) to overcome the differences in signal
amplitude and cycle. Our motivation is that this algorithm can be easily ported to em-
bedded systems and applied not only on human beings but also animals. This paper is
devoted to designing an algorithm that can support diversity application areas. Our de-
sign system will be applied to assisting the pig’s surgery in monitoring vital sign. Hence,
our proposed algorithm can be of benefit in the field of veterinary medicine. In addition,
we investigate the household pets are becoming increasingly common in modern society
and pet heart rate monitoring is a major issue for many owners.

The rest of this paper is organized as follows. Background knowledge and related work
are presented in Section 2. The proposed algorithm and experimental evaluations are
presented in Sections 3 and 4, respectively. Section 5 concludes the paper and offers
suggestions for future studies.

2. Related Works. Electrocardiogram (ECG), photoplethysmography (PPG) and poly-
vinylidene difluoride (PVDF) are wildly used to assess the heart rate in health care and
fitness. Especially ECG has a significant result to detect the heart function due to com-
plete waveform (P wave and Q, R, S peaks) [27], such as heart rate variability (HRV)
diagnosis. However, owing to the complex waveform of ECG, the design algorithm is
complicated than PPG and PVDF. PPG sensor is extensively used in wearable devices,
because the PPG sensor has simple operating characteristic (as long as it is attached to
skin) and low cost. Many major companies have used this technique in smart watches or
bracelets for health monitoring. However, it is very sensitive to motion artifacts (MA)
and vulnerable to the impact of environmental light. In addition, the power consump-
tion is higher than ECG and PVDF. PVDF has merits of both harvest biomechanical
energy and to detect signal cycle events [30]. The PVDF sensor is bonded directly to the
waveguide surface, conforms to curved surfaces, and has low mass, low profile and low
cost [29]. Added to this, PVDF can be implemented to sense the sound wave, such as
the microphone. This merit can be applied to blood pressure detection [32]. In terms
of reducing power consumption [31] and simple algorithm, we adopt PVDF as a sensing
module.

2.1. ECG sensor. At present, most of the studies of heartbeat detection use ECG (elec-
trocardiogram) as sensor. The operating principle of ECG is to use an acquisition device
to record the change in cardiac muscle depolarization during each heartbeat, which is
described as ECG. The traditional ECG signal acquisition unit needs multiple wires and
electrodes connected to human body, and sometimes needs conductive adhesive or wet
electrode to help contact. It is not applicable and not an appropriate sustained home care
wearable device. In recent years, the wearable devices for wireless ECG signal acquisition
have been proposed for this problem [7-9,27,28]. Most of the wireless acquisition units
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are attached to the chest wall, it usually takes a long time to learn how to use them and
they shall cling to the body to obtain good signals. Added to this, [10] proposed a novel
wireless system, using a dry electrode on the plastic steering wheel, so that the ECG
signal was obtained only by putting hand on it for monitoring. The ECG acquisition unit
has been improved a lot, but there is still room for improvement in long-term wearing
and monitoring. The ECG signal is susceptible to 50Hz and 60Hz noise from the power
supply. The technology of sensing signal amplification circuit is more complex because it
is influenced by skin impedance. In addition, the condition of skin contact results in the
drift of input signals level.

2.2. PPG sensor. As the ECG cannot provide enough comfort for the users, the PPG
(photoplethysmography) becomes the mainstream choice in recent years for simple oper-
ating characteristic (as long as it is attached to skin) and low cost. Many major companies
use this technique in smart watches or bracelets for health monitoring [11]. Although the
PPG has so fascinating characteristics, it is very sensitive to motion artifacts (MA), and
the wearer’s slight movement may cause this phenomenon. Therefore, how to remove
MA from the PPG signal is the biggest challenge. At present, there are several common
methods for removing MA, such as wavelet-based method [12], Kalman filtering [13] and
empirical mode decomposition [14]. Added to this, an adaptive filtering method is de-
signed with the assistance of accelerometer [15,16]. Other PPG sensors refer to [17,18].
The wear comfort of PPG acquisition unit is much better than ECG, and the accuracy of
signal measurement is reliable. However, attaching the PPG acquisition unit to skin for a
long time will cause wear discomfort. This device is not recommended for the users with
skin diseases or the users who are liable to sweat. Overcome the power consumption is

another main issue in designing the PPG-based wearable device. In addition, the power
consumption of PPG is higher than ECG and PVDF.

2.3. PVDF sensor. The PVDF is a new polymeric material [19,20], a highly sensitive
sensor, applicable to heart rate monitoring. Many references have studied it in [2-4].
The PVDF is characterized by flexible and thin materials that are economic especially in
physiological and wearable applications where the sensor is integrated into clothing or into
daily life objects. The sensor attachments to human can be minimized and the wearable
device can be designed to be unobtrusive and comfortable for the user [2]. [3] presented
the method through the bending-sensitive or bending-insensitive mode of PVDF materials
to optimize the heartbeat signal and respiration. This is a good concept that makes good
use of the PVDF characteristic and proves its usage. [4] introduces a novel wearable
cardiorespiratory signal sensor device for monitoring sleep condition at home. This device
consists of a belt-type sensor head which is composed with a couple of conductive fabric
sheets and a PVDF film. In particular, the conductive fabric is integrated into a PVDF
film, so that the device can obtain clear cardiorespiratory signals. Though the experiment
in [4] demonstrated the good results by the proposed simple data processing algorithms,
it is based on the designed hardware. However, this paper uses CM-01B [5], which is
extensively used in the design of electronic stethoscope. It is a good electronic part for
monitoring heart rate, pulse and respiratory rate. This paper focuses on developing the
simple software algorithm that can easily port to embedded systems. The PVDF sensor
is also used in the fetal heart sounds monitoring system for its high sensitivity and better
SNR values [21]. For heart rate monitoring, the reference recommended frequency is
0.67~5HZ [22]; in other words, the heart rate is 40~300 beats per minute. The common
heart rate computing mode is to filter dominant frequencies off the power spectrum. The
power spectral density (PSD) function [23] can describe the composition of frequency in
data, and then the heart rate is obtained by analysis [24]. However, the defect in this
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mode is that only the average heart rate in a period is known, not the heart rate at
specific timing. Therefore, an empirical algorithm is designed by using peak or pulse
edge detection for heart rate detection at present. This method will be influenced by the
heartbeat amplitude or intensity. Added to this, as everybody has a different heart rate
or cycle, this impact factor shall be considered in the algorithm design.

3. Proposed Algorithm. This paper presents our algorithm that the PVDEF signal
is used to estimate the heart rate. This method comprises four parts. Part 1 smoothes
signals to avoid noise interference. Part 2 uses the designed PVDF sensor device to collect
the wrist and heart signals, and uses DTW algorithm to judge the signal type. Part 3
selects the corresponding parameter model for peak detection according to the information
of previous stage. Part 4 checks whether the peak is effective, and an evaluated heart rate
value is exported at last. The process of this method is shown in Table 1.

TABLE 1. Steps of the proposed method

Steps Description
1. Smooth signal with Butterworth Low-Pass Filter
2. Recognize the type of signals using DTW
3. Peak detection using our empirical algorithm
4. Calculate the heart rate with peaks found by algorithm

3.1. PVDF sensor and hardware design. STM32F401RE development board is based
on ARM Cortex-M4 32-bit RISC core, and its frequency is as high as 84MHz [25]. The
STM32F401 is connected to PVDF sensor CM-01B module, and the signal is captured
and stored in the external SD card (secure digital memory card). The algorithm proposed
in this paper is quite simple, it can be tested in the development board directly, and the
signal can be extracted from SD card to be tested in a more efficient equipment. The
device system design is shown in Figure 1.

CM-01B SD Card

PC11:D3
PD2:CMD
: _ PC12:CLK
GND sIE—C o) (37 - PC9:DI
ADC o) _;: —oviba BB 1’ g 2= 1 PC10:D2

oz "-“"-\ www.stcom/strm32nucleo . b o9 cnioJ

YCC:43.3V
GND:GND

FIGURE 1. Overview of designed hardware system
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3.2. Preprocessing. Even if the PVDF sensor performs well in signal acquisition, it
cannot avoid the external factors distorting signals. The signal higher than the cut-off
frequency is filtered by low-pass filter before signal analysis in this paper, and only the
signal lower than the crossover frequency can pass through the filter to the output end.
The high frequency signal is attenuated to enhance signal. This paper uses Butterworth
Low-Pass Filter [26] to preprocess signals. The effect is shown in Figures 2 and 3. Figure
2(a) and Figure 2(c) show the original signal waveforms captured by the sensor on the
chest. Figure 2(b) and Figure 2(d) show the results of Figure 2(a) and Figure 2(c) through
the filter. Figure 3(a) and Figure 3(c) show the original signal waveforms captured by
the sensor on the wrist. Figure 3(b) and Figure 3(d) are the results of Figure 3(a) and

Figure 3(c) through the filter.
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FIGURE 2. Preprocessed signals on chest wall

3.3. DTW. Dynamic time warping is one of the algorithms often used in speech recog-
nition or gesture recognition. This algorithm mainly uses dynamic programming to solve
the problem of different time series in signals. For example, in gesture recognition, even
if one performs an action in the same way as possible every time, there are differences in
the speed of the action, and the length of time series changes accordingly. However, the
action tracks are similar. The DTW algorithm can correct the time series again to find
out the suited track of two actions.

As each analyte has a different heart rate or cycle, this paper uses DTW to recognize
wrist signal, chest signal or non-heart rate signal automatically, which contributes to
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increasing the accuracy of heart rate calculation. A lot of wrist signals and chest signals
are collected as training sample set before the DTW algorithm is executed.

If R represents reference sample, there are M sample points, and if T represents test
sample, there are N sample points. The mesh of T as vertical axis and R as horizontal
axis is shown in Figure 4. The distance between R and T can be expressed by Manhattan
distance as d[T'(n), R(m)], see (1); thus, the overall accumulated distance cost D can be
expressed as (2).

d[T(n), R(m)] =Y [tnk = Tl (1)

D[T(N), R(M)] = Z d[T(n), R(m)] (2)

However, in actual situation the imported track sequence length may be different each
time, and the test sample and reference sample time axis variation is very large. Therefore,
the local minimum accumulated cost must be considered. According to the principle of
dynamic programming, the minimum path shall be extracted when deciding the local
minimum path, so that the accumulated distance cost of all the cross-points on the optimal
path is minimized, as shown in Figure 5. Therefore, the accumulated distance cost D can
be expressed as (3). The heart rate type can be recognized automatically according to
the calculated cost.

D[T(n), R(m)] = min{D[n—1,m—1], D[n—1,m], D[n—1,m|, D[n,m—1]}+d[n,m] (3)
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FIGURE 4. Distance and path of DTW
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FIGURE 5. Local path constraint of DTW

3.4. Empirical algorithm. The signal value is obtained from the sensor, and the re-
ceived signal value represents the signal amplitude. The larger the signal amplitude is,
the higher the heartbeat intensity is. Let S be the signal sample set, its number depends
on the sampling time ¢ and the processing time length {. The number of set S equals [/t.
For example, if the sampling time is 50ms, each signal processing time is 2 seconds, and
the number is 40.

Before the heartbeat value is calculated, the minimum value and maximum value of
signals are found out, and the minimum value is subtracted from each element of the signal
sample set. This step is similar to removing DC (direct current) or DC bias (subtracting
average value of signals from signal), so as to avoid DC bias of signal leading to errors,
expressed as (4). The ming. is the minimum value of set S, maxg. is the maximum value
of set S, and offset,, is the gap between maximum value and minimum value in set S.

ming. = arg min{x|z € S}

T
maxg. = arg max{z|r € S}

v (4)
Vr; €S, x; =x; — ming,

offset ;. = maxgy. — ming,

The signal is quantized again by using offset,, value and scale,qe, expressed as (5).
The scale,qe is an adjustable parameter, and it can be adjusted according to the signals
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captured by different sensors.

Ve, €S, x; =1+ ( ) * scaleygiye (5)

offset 4

Afterwards, a simple signal filter is used to enhance the robustness of data. Moving
average filter reduces the noises in the discrete time signal and increases the readability
of peak by averaging the signals in the filter range. It is characterized by simple theory
and rapid calculation. It is quite applicable to heart rate calculation. The BPM (beats
per minute) represents the heart rate per minute numerically, and it is known that if
the heartbeat is recorded once every a couple of seconds, it fluctuates in one minute, not
keeping at a value. The heart rate per minute is the average value of heartbeats in one
minute. However, when it is displayed as the average value per minute, if there is no
drastic change in motion, the heart rate per minute is kept at a fixed value. In terms of
digital signal processing theory, the part without drastic change is the low frequency part,
and the quickly changed part is the high frequency part. Therefore, in terms of digital
signal processing, the moving average filter is a low pass filter, the low frequency can pass
the filter, and the high frequency part is filtered. The signal filtering is expressed as (6).
Let M AN be the number of moving average number and max,,,s be the maximum value
in the signal set S which is updated.

MAN-1
3
Vx; € S, XT; = M114N Z Titj
j=—(MAN=1) (6)

MaX,,,; = arg mgx{x|x €S}

The last step is to calculate heart rate. A simple peak detection mode is used, which
depends on the previous signal processing. First, a peak threshold is defined, and a peak
threshold factor is designed, multiplied by maximum value of signals max,,,; as peak
threshold. Tt is expressed as (7).

peakthreshold = Imax x peakfactor (7)
maf

The peak value selected by this method satisfies the following conditions: (1) the peak
is greater than the right adjacent signal; (2) the peak is greater than the left adjacent
signal; (3) the peak is greater than the peak threshold; (4) if the peak is not the first
found, it is peak gse; away from previous peak. The peak,g.; is an adjustable parameter,
as the heartbeat is regular, there will not be two peaks in a short period of time. It is
expressed as (8).

Z.last S Ia
peakj = {l'] € S; Zj Z Tj-1,T5 Z Tjt1, 25 Z peakthresholda (] - Z.la,st) Z peakoﬁset} (8)
I=T1U{j)
All the found peak index values are stored in set I. All the index values in set I are
subtracted pairwise and multiplied by sampling time to obtain the pulse rate. All the
pulse rates are added up and averaged to obtain an average pulse rate. It is expressed as

(9). The calculation of BPM equals 1 minute divided by average pulse rate, expressed as
(10).

num(I)—1
. 1 . .
Vi€, avgpluserate = W([) ; k1 — Uk (9)
60000
BPM = ———— (10)

aVGpluse_rate
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TABLE 2. Steps of empirical algorithm

Steps Description
1. Calculate the minimum, maximum and the distance between min and max.
Update the value of signal by reducing the minimum of signals.
Scale the data by scaling value.
Do moving average filter process.
Calculate the peak threshold.
Peak detection.
Calculate the heart rate.

Nk W

The empirical algorithm processing procedure is summarized as Table 2.

4. Experimental Result. This section evaluates the performance of the proposed algo-
rithm.

4.1. Experimental environment and parameter settings. All experiments were
performed on a computer with a core(TM)i5-5200U 2.20GHz Intel CPU with 4GB RAM
running on Ubuntu 14.04. The basic parameter settings of all experiments are listed in
Table 3. The signal is sampled 300 times per second to do analog-to-digital conversion.
The signal values are normalized by scaling value. The moving average number is the
window size of the moving average filter to filter out short-term fluctuations and indicate
longer-term trends or cycles. In order to detect the peak correctly, the peak factor is used
to adjust the threshold of peak. Finally, the peak offset is used to remove the unexpected
signal that is very close to previous peak.

TABLE 3. Parameter settings for the proposed algorithm

Dataset Parameter Value
Chest  Sampling rate 3.33ms
Scaling value 1024
Moving average number 10
Peak factor 83
Peak offset 75
Wrist ~ Sampling rate 3.33ms
Scaling value 1024
Moving average number 10
Peak factor 90
Peak offset 75

4.2. Data description. The data for this experiment are captured by PVDEF sensor CM-
01B module, and stored in SD card (secure digital memory card). The data are extracted
from SD card, imported into computer for algorithm development and experiment. The
wrist and chest signal data are collected for experiment, as shown in Figure 6. Figure
6(a) shows the device on wrist, and Figure 6(b) shows the device on chest wall.

4.3. Using DTW to recognize signal type. A lot of wrist and chest signals are
collected by sensor. These signals are classified as training set. In order to reduce the
overall experimental complexity, a training sample length is fixed at sampling time ¢
divided by processing time length [, the same as the test sample length. In terms of
the wrist and chest signals training models, the wrist signal model and chest model are
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FIGURE 6. Scenario of capturing signals
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Ficure 8. Cost path of chest signal

obtained by averaging. To be specific, a lot of signals are observed, which are added up
and averaged to obtain a signal pattern of average value. The accumulated distance cost
is obtained by actual experiment, as shown in Figures 7 and 8. Figure 7(a) shows the
distance costs of wrist test signal and wrist reference signal. Figure 7(b) shows the distance
costs of wrist test signal and chest reference signal. Figure 8(a) shows the distance costs
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of chest test signal and chest reference signal. Figure 8(b) shows the distance costs of
chest test signal and wrist reference signal.

The overall test signal and reference signal data test results are shown in Table 4. The
wrist-to-wrist signal maximum distance cost is 17.86. the wrist-to-chest signal minimum
distance cost is 21.78. The chest-to-wrist minimum distance cost is 21.49. The chest-to-
chest maximum distance cost is 17.89. According to the experimental data, the wrist and
chest signals can be recognized easily by using the distance costs calculated by DTW.

4.4. Calculating heart rate. When the signal type is recognized by DTW algorithm,
the peak detection and BPM calculation are implemented by using the corresponding
parameters. Figure 9(a) and Figure 9(b) show the peaks point found corresponding to
the original chest signal by the empirical algorithm proposed in this paper.

TABLE 4. The overall cost of test signal and reference signal

Testing data Reference data of wrist Reference data of chest
Wrist 17.86 21.78
Chest 21.49 17.89
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FiGure 11. Comparison of the proposed algorithm with medical instrument

TABLE 5. Chest and wrist heart rate calculation comparison

Record number Proposed algorithm

Medical instrument

Percentage error (%)

oximeter

Chest 1 93.36 93.00 0.39
Chest 2 91.83 92.00 —0.18
Chest 3 93.72 96.00 —2.4
Chest 4 92.06 92.00 0.07
Chest 5 93.24 93.00 0.26
Chest 6 94.94 96.00 —-1.1
Chest 7 95.96 94.00 1.8

Chest 8 89.35 89.00 0.39
Wrist 1 77.87 77.00 1.13
Wrist 2 78.21 79.00 —1.0
Wrist 3 75.92 76.00 0.11
Wrist 4 86.58 86.00 0.68
Wrist 5 78.71 77.00 2.22

Figure 10(a) and Figure 10(b) show the peaks point found corresponding to the original
wrist signal. The peak point is close to the peak of signals. In order to approach the real
peak, the parameter can be adjusted for optimization. However, the parameter is set so

for more extensive application to everybody.

This experiment uses medical instrument oximeter for experimental comparison, as
shown in Figure 11.

Table 5 shows the heart rates of chest and wrist signals. The average heart rate cal-
culated by the proposed algorithm is very close to the reference heart rate, and the mea-
surement error is 1 to 2%. Added to this, Figure 11 shows this experiment is developing
the implementation of heart rate algorithm in the embedded system, and the heart rate
is transferred to tablet PC or smart devices by Bluetooth communication. It will be a

complete heart rate monitoring system in the future.
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5. Conclusions. In order to calculate the heart rate effectively and to overcome the
differences in signal amplitude and cycle, we propose an intelligent empirical algorithm
integrated with DTW (dynamic time warping). According to the experimental results,
the method proposed in this paper is reliable. The algorithm is quite simple mathematical
operation, and it can be easily implemented in wearable systems which can be worn on the
chest or wrist. It is a flexible algorithm. In the future application to life, some problems
shall be overcome. For example, when the device is worn on the body, the user’s talking
or movement will produce additional noise. For this scenario, an effective algorithm for
removing noise will be developed in the future. Added to this, the wrist and chest signal
models can be trained by robuster algorithms, such as SVM (support vector machine).
Thus, it can be applied to fitness or care to enhance human welfare.

Acknowledgment. This research is financially supported by the Ministry of Science and
Technology of Taiwan (under grants No. 104-2221-E-006-119-MY 3, No. 103-2221-E-006-
145-MY3 and No. 104-3115-E-194-001).

REFERENCES

[1] I. Korhonen, J. Parkka and M. Van Gils, Health monitoring in the home of the future, IEEE Eng.
Med. Biol., vol.22, pp.66-73, 2003.

[2] S. Rajala and J. Lekkala, Film-type sensor materials PVDF and EMFi in measurement of cardiores-
piratory signals — A review, IEEE Sensor Journal, pp.439-446, 2012.

[3] Y. Jiang, H. Hamada, S. Shiono, K. Kanda, T. Fujita, K. Higuchi and K. Maenaka, A PVDF-
based flexible cardiorespiratory sensor with independently optimized sensitivity to heartbeat and
respiration, Procedia Engineering, pp.1466-1469, 2010.

[4] S. Choi and Z. Jiang, A novel wearable sensor device with conductive fabric and PVDF film for
monitoring cardiorespiratory signals, Sensors and Actuators A: Physical, vol.128, pp.317-326, 2006.

[5] http://www.te.com/usa-en/product-CAT-PFS0013.html.

[6] A. K. Jain, F. D. Griess and S. Connell, On-line signature verification, Pattern Recognition, pp.2963-
2972, 2002.

[7] C. Lin, K. Chang, C. Lin, C. Chiang, S. Lu, S. Chang, B. Lin, H. Liang, R. Chen, Y. Lee and L. Ko,
An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation,
IEEE Trans. Inf. Technol. B., vol.14, pp.726-733, 2010.

[8] H. Wang, D. Peng, W. Wang, H. Sharif, H. Chen and A. Khoynezhad, Resource-aware secure ECG
healthcare monitoring through body sensor networks, IEEE Wirel. Commun., vol.17, pp.12-19, 2010.

[9] C. Park, P. H. Chou, Y. Bai, R. Matthews and A. Hibbs, An ultra-wearable wireless lowpower ECG
monitoring system, IEEE BioCAS, pp.241-244, 2006.

[10] J. Gomez-Clapers and R. Casanella, A fast and easy-to-use ECG acquisition and heart rate moni-
toring system using a wireless steering wheel, IEEE Sensors Journal, pp.610-616, 2012.

[11] J. Allen, Photoplethysmography and its application in clinical physiological measurement, Physiol.
Meas., vol.28, pp.1-39, 2007.

[12] M. Raghuram, K. V. Madhav, E. H. Krishna and K. A. Reddy, Evaluation of wavelets for reduction
of motion artifacts in photoplethysmographic signals, Proc. of the 10th Int. Conf. Inf. Sci. Signal
Process. Appl. (ISSPA), pp.460-463, 2010.

[13] S. Seyedtabaii and L. Seyedtabaii, Kalman filter based adaptive reduction of motion artifact from
photoplethysmographic signal, World Acad. Sci., Eng. Technol., vol.37, pp.173-176, 2008.

[14] Y. Zhang, B. Liu and Z. Zhang, Combining ensemble empirical mode decomposition with spectrum
subtraction technique for heart rate monitoring using wrist-type photoplethysmography, Biomed.
Signal Process. Control, vol.21, pp.119-125, 2015.

[15] H. Han and J. Kim, Artifacts in wearable photoplethysmographs during daily life motions and their
reduction with least mean square based active noise cancellation method, Comput. Biol. Med., vol.42,
pp-387-393, 2012.

[16] M. Z. Poh, N. C. Swenson and R. W. Picard, Motion-tolerant magnetic earring sensor and wireless
earpiece for wearable photoplethysmography, IEEE Trans. Inf. Technol. Biomed., vol.14, pp.786-794,
2010.



966 S.-H. LEE AND C.-S. YANG

[17] M. R. Ram, K. V. Madhav, E. H. Krishna, N. R. Komalla and K. A. Reddy, A novel approach for
motion artifact reduction in PPG signals based on AS-LMS adaptive filter, IEEE Trans. Instrum.
Meas., vol.61, pp.1445-1457, 2012.

[18] R. Yousefi, M. Nourani, S. Ostadabbas and I. Panahi, A motion-tolerant adaptive algorithm for
wearable photoplethysmographic biosensors, IEFE J. Biomed. Health Inform., vol.18, pp.670-681,
2014.

[19] Y. Osada and D. E. DeRossi, Polymer Sensors and Actuators, Springer-Verlag, Berlin, Germany,
2000.

[20] M. N. Ansourian, J. H. Dripps, J. R. Jordan, G. J. Beattie and K. Boddy, A transducer for detecting
fetal breathing movements using PVDF film, Physiol. Meas., vol.14, pp.365-372, 1993.

[21] L. Dai and Y. Wang, Design and simulation of curved sensors of PVDF fetal heart rate monitoring,
Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA ), 2015.

[22] X. Zhu, W. Chen, T. Nemoto, Y. Kanemitsu, K. Kitamura, K. Yamakoshi and D. Wei, Real-time
monitoring of respiration rhythm and pulse rate during sleep, IEEE Trans. Biomed. Eng., pp.2553-
2563, 2006.

[23] J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, Wiley, New
York, 1971.

[24] P. D. Welch, The use of fast Fourier transform for the estimation of power spectra: A method based
on time averaging over short, modified periodograms, IEEE Trans. Audio FElectroacoust., vol.15,
pp.70-73, 1967.

[25] http://www.st.com/en/microcontrollers/stm32f401re.html.

[26] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, 1975.

[27] M. J. Wy, S. F. Shieh, Y. L. Liao and Y. C. Chen, ECG measurement system based on Arduino and
Android devices, International Symposium on Computer, Consumer and Control (IS3C), 2016.

[28] S. H. Liu, G. H. Cai, Y. F. Huang and Y. F. Chen, A wearable ECG apperatus for ubiquitous health
care, [EEE International Conference on Systems, Man, and Cybernetics (SMC), 2016.

[29] B. Ren and C. J. Lissenden, PVDF multielement lamb wave sensor for structural health monitoring,
IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol.63, pp.178-185, 2016.

[30] A. Proto, B. Fida, I. Bernabucci, D. Bibbo, S. Conforto, M. Schmid, K. Vlach, V. Kasik and M.
Penhaker, Wearable PVDF transducer for biomechanical energy harvesting and gait cycle detection,
IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 2016.

[31] A. Rasheed, E. Iranmanesh, W. Li, S. Andrenko and K. Wang, Heart rate/impulse monitoring using
autonomous PVDF-integrated dual-gate thin-film transistor, International Conference on Computer
Aided Design for Thin-Film Transistor Technologies (CAD-TFT), 2016.

[32] X. Li, G. V. Panicker and J. J. Im, A study for the development of K-sound based automatic blood
pressure device using PVDF film, IEEFE the 38th Annual International Conference of the Engineering
in Medicine and Biology Society (EMBC), 2016.



