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ABSTRACT. To deal with the simultaneous process for performing large and intensive
computational problem of the existing Bernoulli filter, we propose a low-complezity Bern-
oulli filter in this paper. Based on the random finite set (RFS) theory, this paper mainly
focuses on the analysis and reduction on relative computational complexity. By using
conventional measurement set, the operations of the transition and likelihood functions
are optimized, and then the sequential Monte Carlo (SMC) implementation is further
improved in the Bayes filtering framework. The numerical study results indicate that the
proposed filter can track maneuvering single target in the cluttered environment with low
relative computational complexity and high tracking accuracy.

Keywords: Single target tracking, Bernoulli filter, Computational complexity, Clutter
rate

1. Introduction. Single target tracking (STT) is to complete state estimates of moving
target in cluttered environment. With the development of random finite set (RFS) theory,
the STT has been widely used in surveillance fields without data association [1].

In recent years, many scholars have researched the STT with a great deal of success,
and some articles have been published in international journals [2-7]. The related work is
the Bernoulli filter under the assumption that the target state is considered as a Bernoulli
RFS. Due to no closed-form solution, the filter is usually implemented using the sequential
Monte Carlo (SMC) [2]. In [3], a mathematical formulation of the Bernoulli filter was
proposed. Its update equations were derived for various measurement models encountered
in practice, where the models were illustrated by some applications for location detection
and estimation of dynamic systems. In [4], Ristic and Arulampalam discussed a Bernoulli
filter for observer control for bearings-only tracking in cluttered environment and then
developed the related SMC implementation based on information theoretic criterion. In
[5], a Bernoulli filter was proposed for tracking maritime radiation source in the pres-
ence of measurement uncertainty. The tracking performance under different conditions,
particularly those involving different duration of source opening and switching-off, indi-
cated that the filter was robust. In [6], a joint detecting and tracking Bernoulli filter
for single extended target in the presence of clutter measurements and missed detections
was presented, in which simplification method was used to make it easy to be realized in
dense clutter backgrounds. Lately, a novel Bernoulli filter and its SMC implementation
were proposed to choose the particle proposal distribution for minimizing variance in [7].
Employing the auxiliary particle scheme, the robust particles from a discrete distribution
were intelligently extracted to propagate with their indices. Due to the inherent defects,
the SMC recursions of the existing Bernoulli filters have higher computational complexity
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that restricts tracking performance [8]. What is worse, we have to execute complicated
operations in the prediction and update steps. How to improve tracking performance of
the classical Bernoulli filter has become critically important in practice.

This work aims to perform large and intensive computational problem of the Bernoulli
filter, provides an introduction to derive a low-complexity Bernoulli filter based on the
Bayes recursion, as well as describing its SMC implementation that accommodates the
target-generated measurements and state-dependent clutters. In addition, it emphasizes
how to improve tracking accuracy and computational efficiency in actual detection en-
vironment. Thus, the mainly contribution of this work is threefold: i) we improve the
Bernoulli recursion to achieve optimal measurement likelihood; ii) the updated weight of
sampling particle reduces to simplification form based on the optimal measurement likeli-
hood; iii) the computational complexity is synthetically analyzed to reveal the relationship
between the Bernoulli recursions and the related detection parameters.

The remainder of this paper is organized as follows. In Section 2, the problems of the
STT using the classical Bernoulli filter are briefly formulated. Section 3 discusses the low-
complexity Bernoulli recursion and its SMC implementation. In Section 4, the numerical
study is demonstrated to evaluate tracking performance of the proposed filter. In Section
5, we draw the conclusions with the next working plan for further research.

2. Problem Statements. At time k, suppose that the target state set X = {z14,...,

Tp, k) 18 in the space X C R™ and the measurement set Z = {z14,..., 2m, x} is in the
space Z C R™ and then the stochastic dynamic system is described as [1,7,9]:

T = Frjp—1 (Tp—1) + vp—1 (1)

2 = hi(or) + ug, (2)

where Fk‘k_l(-) denotes the transition function regarding evolution of the current state xy,
hi () defines the relationship between x; and the current measurement zj, and v;_; and
uy, are the process and measurement noises. We have in hand the transitional probability
density 71 (@x|2zk—1) for 541 to xx, and the single target likelihood gj (2x|zx) based on
the conventional measurement z.

As we know, the classical Bernoulli filter computes the posterior spatial probability
density function (p.d.f.) of target state s; (x3) = Pr (zx|Z1.x) and the posterior probability
of target existence p, = Pr{|Xy| = 1|Z1.x} in the RFS frame.

Suppose that the set X}, is given by a Bernoulli pair (pg, sg(xy)), and then the posterior
probability generating function (p.g.f.) can be written as:

(601 710) = { peonlre = fd ®

where the first condition represents only one target with x;, and the second condition
denotes no target in the current scene.

Suppose that ps k-1 (Tk—1) and p,kk—1 are the probabilities of target survival and
target birth, by,_q (z) is the target birth density, and then the state transitional p.g.f.
is:

Psel—1 (To—1) Trk—1 (Tr|re—1), Xi={or}, Xoecr = {zp-1}
) Posfk—10kp—1 (@x) Xip={a}, Xpmy =0
g1 (X[ Xoe—1) = 1 — Do spp—1(Tp—1), X =0, Xjo1 = {wp}
I — pokje—1, Xy =0, X411 =0

Similar to (3), we can get the restrictions of four conditions above.
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Then, the predicted equations of the existence probability and spatial p.d.f. are:
Prlk—1 = Poklk—1 (1 = Pr—1) + Do pip—1 (Th—1) Pr—1 (5)

Pr—1 <ps,k\k71(xk71)7rk|k71 (TrlZk-1) s SK1 («kal)>

Pklk—1

(6)

In (6), (,¢) denotes the inner product of ¢ and (. Also, we find that s,y (2}) is directly
dependent on the target existence.

Considering the cardinality distribution of independent identically distributed (i.i.d.)
cluster RE'S Zj, we define the related p.g.f. as:

F(Z) =12Zel'e(1Ze)) T] »(z) (7)

Zk-EZk.

Sk\kfl(mk) =

When Zj follows the Poisson distribution, the cardinality distribution in (7) is given by:
eiA)\‘Zk‘
|Z|!

p(1Zk]) = (8)

where A is the mean clutter number.
On the other hand, we have in hand the clutter distribution ¢ (2x|z), then the standard
p.d.f. p(z) in (7) can be written as:

p(2k) = ck(zr|7k) (9)

After defining the clutter process Acy (2x|rk), we can rewrite (7) as:

= H ey (zg| k) (10)

2L EZY,

Let ppx(zk) be the detection probability of passive sensor, and according to (10), the
p.g.f. of likelihood function is:

e TT Ack (zlzr) | 1 —po (@) + posleonzlon) |y gy
G (Zy| Xy) = P i Ack (zk |k,

e N T Aew (zr|mr), Xp=0

2 €L
(11)
Note that in the top equation in (11), the left term means the clutter process and the right
term denotes the target component when X = {x}, whereas there is only the clutter
process under the condition of Xj, = O.
Consequently, the updated equations of the existence probability and spatial p.d.f. are:

1-A
LA
Prjk—1 — Dk
1 —ppi(wk) + ) %
RS
Sk(xk) = 1 j Akk Sk|k71($k) (13)

where Ay is given by:

Ay = ppr(Tk) ( Z <9k (eh[2) S l(xk)>> (14)

ez )\Ck Zk|l'k)
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Remark 2.1. Note that the propagations of pyp and si(xy) depend on Ay, which are
coupled in the classical Bernoulli filter. Then, si(xy) has high computational complex-
ity because of computing Ay. With the increase of the number of zp, the integration of
gk (2e|wk) and spk—1(2r) becomes more complicated, and the time-consuming on the sum
operation in (13) and (14) is inevitable. How to reduce running load by distinguishing
effective measurement from state-independent clutters has important significance. There-
fore, we will optimize measurement likelihood to simplify the representation of s (xy).

3. Proposed Bernoulli Filter.

3.1. Filtering principle. We utilize three RFSs to define measurement equation at time
k, i.e., the primary target-generated measurement T} (zy), the suspicious target-generated
measurement Sg(zy), and the state-independent clutter Cy [10,11]:

With respect to Tj(xy), we have the following definition:
(16)
Q, L —pp (k)

where the probability of not obtaining primary measurement z; from zj is 1 — ppx (z).
For simplification, we unite Si(z;) and Cy in (15) because they are defined by the
non-primary measurement zj:

Ty(zy) = { {z:}, pox (xr) gk (z5|vk)

In (17), Ki(z) is a union of two statistically independent RFSs, and its intensity is:
vick (26l k) = v (2k) + ve (2k|zk) (18)
where the intensities vgy (-|xx) and vey(+) are corresponding to Sk(xy) and Cy.
Independent on xj, each z; follows the i.i.d. based on the probability density:
vick(2k|T1)
UK.k (Zk|$k) ) 1>

cr(2k) = ci (2klzk) = < (19)
Remark 3.1. Assuming no suspicious target-generated measurement, (17) and (18) re-
duce to the single-target Bayes recursion because of Sk(x) = 0 or vgi(zr) = 0. Due to no
new target appearing or old target disappearing, except exactly one target present ensures
consistency with the dynamic model. Then (18) becomes vk k(2k|xr) = vor(zk|Tr), and
the computational complezity of (19) can be simplified into the standard normalized form.

According to the Bayes recursion, in the prediction step, we can predict the p.d.f.:

Skik—1 (k] Z1o-1) = (Tt @e|ze-1) , Sk-1 (@e-1|Z1s-1)) (20)

where sg_1 (2g_1|Z1.k—1) denotes the posterior p.d.f. at time &k — 1.
Then, the corresponding p.d.f. is updated when the measurement set Zj is available:

Or (Zk|wk) sk1 (Th1| 210 1)
o (Zilzk) s sk-1 (Tr-1|Z1k-1))
In (21), we should find the optimized measurement likelihood.

Consequently, suppose that the Bernoulli recursion accommodates at most one target-
generated measurement, i.e., pyrp—1 = 0, then (5) reduces to:

Phlk—1 = Ds klb—1(Tk)Pr—1 (22)

In (22), there is only the target survival term and no target birth term.
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Usually, the lower probability of detection is unrealistic for actual target tracking. When
the detection probability is pp(xx) = 100%, the undetected probability 1 — pp(zy) — 0.
According to z;, (13) reduces to:

E:Z pD’k(ikc)(g:;()z”k)'Skk1 (xk)
2} €
Sk($k) = kk (2) ( | ) (23)
EE:Z <%,Sk|k1(%)>
2, €Ly,
At this time, (14) can be rewritten as:
. Gk (ZZ|$1¢) s Sklk—1 (xk)>
A= < y
k= Dok (Tk) Z er (2]) (24)

Z]:GZ]c

Subsequently, we use Y. e *X(c(zx) + ¢ (2;)) to multiply both numerator and de-
2552k €2,
nominator in (23). According to (21), we have the following recursion:

por(er) > gk (zplzk)  TT e *Acr(zk)sppe—1 (@)

Z;;GZ]C ZkGZk,Zk#ZE

sk(zy) =
<PD,k(fEk) > gk (lek)  TI e Aek (), sk (xk)> (25)
5E2, €Tk 2k A2
Ok (Zklzk) kg1 (1)
a <¢k (Zk|$k) ) Sk\kfl(xk)>
Note that (25) is the generalized form of si(xy), where ¢y (Zg|zx) can be obtained:

O (Zklvk) = ppk(Tk) Z 9k (2] 2r) H e e (2) (26)

Z;GZ]C ZkGZk,Zkfzz

where ¢y (Z|xy) is the Radon-Nikodym derivative of probability distribution of Z; given
xg. It is easy to derive the completed ¢y, (Zx|zx) when the undetected component exists:

ok (Zi|zk) = (1 _pD,k(«Tk))ei)\ H Ack (2k)

2L EZY

+ooa(ee) D o (zlz)e™ T Aelz)

Z]:EZk- ZkEZk-,Zk;éZ;;

(27)

3.2. SMC implementation. According to the Bayes recursion above, the related SMC
implementation is derived in this subsection.

Prediction step. Suppose that the posterior density at time k — 1 is approximated by

- - () 0 V1
a set of weighted particles {x;”,,w,”, :

i=1
Ly

Pk—1 (Ik—1|lek—1) = Z wfﬁlé (%-1 - ﬁ;@l) (28)
i=1

where §(-) denotes the Dirac delta function, Ly ; is the number of particles, x,gzzl is the
state of the ith particle, and w,(ﬁl is its normalized weight.

Update step. Suppose that g (xg|zg_1, Zk) is the proposal density distribution that
represents the posterior p.d.f. at time k:

xl(j) ~ q (Tg|Tr—1, Zk) (29)
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Then, the posterior py, (zx|Z1.x) is approximated by the set {xlgz'), u?,il)} ik,
i=1

Lgjk—1

=1

where Ly;—; is the updated number of particles, and the updated weight u?,(f) is given by:

¢k(Zk‘fE;(ci)>7rk|k—l(Ix(:) I;@l) (i)

w
D
Wy = : —— (31)
Lijk—1 ¢y (Zk‘xl(;))ﬂk\k—1<xl(f) xz(fll) (i)
AT W1
S ()

For simplification, we select g, (mk‘xk_l, Zk) as Thlk—1 (x,(cl)‘x,(;zl), and then (31) reduces
to:

) d)k (Zk‘l‘](;)) wl(le

Wy~ = (32)

Lijk—1

o (at) ol

Resampling and state estimation step. Considering a few particles having a sig-
nificant and non-zero weight after iterations, we resample L, particles from the set

N (i) ) Dele- . . . . .
{xg), w/,(;)}i:1 " to relieve particle degeneracy where the weight of the ¢th particle equals

. N
w,(j) = 1/L;. Then, a new particle set {x,&z), w,gl)}_ * is achieved.

=1
Finally, the target state estimates can be obtained as:

Ly
b= wzy (33)
=1

Remark 3.2. Note that (32) represents the kernel estimate of updated weight, which
follows the Bayes theory. When pp (:175?) 15 a fized constant and its upper bound approz-

imates 1, it can be deleted in (26) to reduce complexity of computing u?,gi). At this time,

we have:
o (Zo?) = 3 o (i) T e ranlz) (34)

Z;EZk- Zk-EZk,Zk-;éZ;;

3.3. Analysis of computational complexity. Given that 2}, =4, and x;_; are known,
the computational complexities of mjx_ (x,(;) ‘x,(jzl) and g (zk‘x,(j)) are O(«) and O(p).
Usually, a single sensor interrogates a certain scene containing n targets and L, particles
per target. Then the computational complexity of the classical Bernoulli filter is [10]:

O (n(a + n!B)Ly) (35)

In the proposed Bernoulli filter, the complexity of (x,(j)‘x,(jzl) is reduced by

half because of the assumption of no target birth except for target survival. Regarding
9k (ZZ DDk (JU;(;)))
number of z; is 1. Under the situation of different values of |Zy|, we can find that the

, its relative computational complexity is O (nf/|Z;|) owing to the
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larger the value of | 7| is, the smaller the relative computational complexity is. Therefore,
the total relative complexity is:

- 1 ' 2 =pPpD.kN
o <<n2a L (n Z) n B) Lk> Zipoant, %+ f.) L, (36)
| k| n=1 PD.k (l’kl ) + A

Note that the total relative complexity approximates to O (aLy/2) with the increase of
A, whereas the original value of the classical filter in (35) is O ((a + §)Ly) in the same
situation. Obviously, we can find that the running load in the whole recursion is shortened.

4. Numerical Study and Discussion. In the numerical study, we will verify the low-
complexity Bernoulli filter. The experimental environment was: Intel™ Core™ i5, RAM
4 GB, Winows™ 7 and MATLAB™ V8.0.

4.1. Scenario. Given that the maneuvering target tracking in cluttered environment is
very representative, in this scenario, we suppose that a constant turn (CT) motion target
travels in a top half-disc region of [—2000, 2000] x [0,2000] m?. The sensor is located on
the origin (0,0) m with the detection probability of 98.5%. The surveillance time is 60
s and the sampling period is 1 s. Suppose that the target executes the anti-clock CT
motion of the turn rate 0.01 rad/s and the velocity (—10,30) m/s from initial position
coordinate (10,10) m during the surveillance time. The equations of the dynamic system
in (1) and (2) are:

1 0.99998 0 —0.00500 O 05 0 0
0 0.99995 0 —-0.01000 0 1 0O 0
zp,= | 0 0.00600 1 099998 O | xp_1+ 0 05 0| vy (37)
0 0.01000 0 0.99995 0 0 1 0
0 0 0 0 1 0 0 1
tan
2 = [ retan (ue/ 1) ] ui (38)
VTt i

where the standard deviations of v,_; and wuy are diag(100, 10, 100,10, 1) and diag(27/
180,10), and diag(-) denotes the diagonal matrix. Besides, the probability of target
survival is 99%, and the mean clutter rate in surveillance region is 10.

In order to evaluate tracking performance, we use the 1-order optimal sub-pattern

assignment (OSPA) distance d(© (X, X) in (39).

. 1 RY . . .
d) (X,X) = — | min 3 d© (z;,300) +c (‘X‘ - ‘XD X < ‘X‘
‘X‘ €0 %) i=1

d© (X, X) = min (c, |o — 7] X| > ‘X‘

(39)

o

where X = {z;}_, and X = {i;}_, are the original and estimated state sets, @|X| is the

permutation set in ‘X‘, and ¢ (¢ > 0) is the cut-off parameter that determines the weight

of penalties assigned to cardinality and localization error. In this scenario, we set ¢ = 100
m to define the maximal value of the OSPA distance that determines cardinality error
as well as position error. It also represents a threshold at which no distinction is made
between whether X and X are paired together, or whether one of them is unassigned
when the other is an exact match.
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4.2. Discussion. Figure 1 shows the true track of the target and current measurements.
Note that the target track among random clutters in the surveillance region is a continuous
curve, which represents that the target is executing the CT motion. Subsequently, the
true track, measurements and two filter estimates in the  and y coordinates are plotted
in Figures 2 and 3. As seen, two filters can estimate the position of target, whereas the
proposed Bernoulli filter gives stable position-estimates. For comparison, the position-
estimates from the classical Bernoulli filter are biased during the surveillance time. We
can find that there is a false alarm happened in the z and y coordinates on the 40th
s. Figure 4 demonstrates the number-estimates versus time for two filters. It can be
seen that the proposed filter produces cardinality results essentially in agreement with
the ground truth. However, the classical filter over-estimates a target on the 40th s. The
reason can be explained that the classical filter mistakes a surrounding clutter for actual
target. Figure 5 compares the OSPA distance of two filters under consideration. Note that
the classical filter settles to distance error, whilst the proposed filter achieves the lower
error as a direct result of always approaching the true position. During the surveillance
time, the OSPA distance is lower than that of the classical filter. Especially, the intensive
peak on the 40th s represents cardinality error owing to the given value of ¢. In Figure
6, we plot the relative computational complexity under different clutter rates. Compared
with the classical filter, the proposed filter gives decreasing the relative complexity with
the increase of .

2000 .
o H Nin B True track
*
= 1500} %K s * Measurements
é & Xxx o
D Eowm KIE
£ 1000+ % . o
2 K x ® ox )
8 S SR
i 500 %& i % s |
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TABLE 1. Tracking performance statistics

OSPA Max error Computational
distance (m) of track (m) complexity

Proposed Mean: 1.0003 | Mean: 14.42 | z coordinate: 10.73 | A = 10, L = 200
Bernoulli filter | Std: 0.0046 Std: 7.37 | y coordinate: 24.08 0(3818)

Classical Mean: 1.0156 | Mean: 20.85 | x coordinate: 13.84 | A =10, L = 80
Bernoulli filter | Std: 0.1273 | Std: 15.12 | y coordinate: 32.56 0(3818)

Kinds of filters | Target number

In Table 1, the tracking performance statistics are shown. Combining Figures 2-6,
we can find that the proposed filter has smaller number-estimates and OSPA distance.
Regarding the track bias in the z and y coordinates, the proposed filter reports the ex-
pected position improvements. The classical filter requires 80 particles to get the value
0O(3818.18) under the circumstance of A = 10. In terms of the same computational com-
plexity, the required particle number of the proposed filter can achieve about 200, which
means the relative computational complexity reduces 150%. Therefore, the proposed
Bernoulli filter has remarkable solution, no matter tracking accuracy or computational
efficiency.

5. Conclusions. This paper discusses a novel Bernoulli filter for the STT. With respect
to computational complexity of tracking process, we simplify the Bayes recursion using
the optimized transition and likelihood functions. The proposed filter accommodates the
target-generated measurement and state-dependent clutters. Besides, its SMC implemen-
tation distinguishes the actual target from random clutters. The numerical study suggests
that the proposed filter provides promising results with low relative computational com-
plexity and high tracking accuracy. Further works will continue the development of the
proposed filter to track multi-target with different dynamic motions. Moreover, the ex-
tended target tracking should be considered.
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