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ABSTRACT. Efficient load balancing is useful because load imbalance owing to simulta-
neous attempts to access the same data can significantly degrade the overall performance
of storage systems. Existing algorithms need high communication overhead because they
have to collect sufficient information such as load conditions in order to make correct
decisions on dealing with load imbalance. In this study, we propose a novel load balancing
scheme, which we refer to as ripple load balancing (RLB). RLB creates several replicas
on distributed nodes to resolve load imbalance while keeping low communication overhead.
When a node incurs a heavy load, a simple threshold-based scheduling algorithm is used
to determine new destinations for dealing with the arriving requests. RLB triggers local
balancing and finally achieves global balancing, i.e., a ripple effect. Simulation results
show that RLB significantly improves load imbalance over a No Replica scheme and ap-
proaches to the performance of optimal load balancing under various load conditions.
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1. Introduction. Cloud storage services provide convenient data access so that users
can read/write their data on demand. The main advantages of such services include low
cost, quick response time, high data availability and so on. Consequently, cloud storage
services play a key role in data storage [1]. In cloud computing, the main goal of load
balancing is to uniformly distribute the loads of virtual machines across all computing
nodes. Therefore, an efficient load balancing scheme can improve resource utilization
and user satisfaction. Moreover, data can be processed efficiently with low delay [2].
Based on system information, dynamic load balancing schemes can distribute the loads
of hotspot data to provide low resource response time and high utilization [3]. Thus,
characteristics related to load balancing include distributing access requests among nodes,
system performance, implementation complexity, response time, and resource utilization
[4]. Typically, many users attempt to access popular data at the same time, thereby
resulting in load imbalance. If an adequate load balancing scheme is applied to evenly
distributing access requests to all nodes, it contributes to high system performance and low
response time [5]. In addition to dynamic schemes, genetic algorithms can be employed
to handle load imbalance [6]. In general, the genetic algorithms are useful to reduce
migration and response times while maintaining simplicity of operation and power effect.
However, applying genetic algorithms to storage systems with dynamic and varying load
conditions is too difficult to practice. Existing schemes are known to have performance
issues, high communication overhead, and long convergence times and are limited to
specific load variations.

The control mechanisms of storage systems could be roughly classified as centralized
control [7,8] and distributed control [9,10]. In centralized control, all requests arrive at
a single entity responsible for determining which nodes will process the requests. In a
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distributed control, all requests are handled by different nodes in the system and a sched-
uling algorithm determines the order in which requests are processed. Many well-known
storage companies, such as IBM, offer load balancing services. For example, IBM pub-
lished a study that explained how to use their SoftLayer load balancing service with the
WordPress web application tier in the IBM cloud [11]. SoftLayer can be used to balance
the loads of other web applications that are stateless and use a shared data store. The
application state is stored in a shared relational database and a network-attached file
system. The study also explained how to order and configure shared network-attached
storage in the IBM cloud. As usual, data replication is used to improve load imbalance
while keeping low data access latency in storage systems. Moreover, replica placement
is one of the main topics. Different placement algorithms have different requirements
on infrastructure such as storage capacity, and network bandwidth. A placement algo-
rithm that meets the required performance goals with the lowest infrastructure cost was
proposed [12].

In order to support the mutual consistency of replicated data, a model that consid-
ers the consistency control under failed communication links was proposed [13]. In this
model, an algorithm transfers the constrained resource allocation into a mixed nonlinear
integer program. However, the performance of the proposed algorithm will be deteriorated
whenever the access pattern changes over time. DARE is a distributed adaptive data repli-
cation scheme which assigns data close to computation points as many as possible [14].
Accordingly, DARE assists the scheduler in achieving better data locality. DARE mainly
evaluates the number of replicas for each file and determines the data placement based on
probabilistic sampling and an aging algorithm. However, DARE may cause shortage of
storage capacity. CDRM is used to capture the relationship between data availability and
the number of replicas [15]. Therefore, it estimates the minimal number of replicas under
a given data availability. Moreover, CDRM dynamically adjusts the number of replicas
and their locations based on the variations of workload and node capacity. CDRM is
cost-effective and outperforms default replication management of Hadoop distributed file
system in terms of performance and load balancing. However, CDRM does not take the
data de-replication and synchronization of writable data into account. In storage sys-
tems, internal network bandwidth is limited and hence the misplaced replicas may waste
network bandwidth and accordingly deteriorate the overall performance of the storage
systems. CRMS was proposed to resolve the above mentioned issue [16]. CRMS uses a
model to capture the relationships between block access probability, replica location and
network traffic. Next, the replica placement problem is formulated as a programming
optimization problem. Finally, a heuristic algorithm is proposed to deal with the replica
adjustments. In order to achieve excellent load balancing, SARM scheme was proposed
[17]. This approach estimates the amount of hotspot data and then establishes dynamic
number of replicas on adequate storage nodes. Due to the requirements of replication and
estimation, the proposed scheme is suitable for high-performance storage systems.

In this study, we propose a static load balancing scheme for a general storage system
because it uses a simple method to improve load imbalance while keeping reasonable load
balancing. In this study, we propose a load balancing scheme for a storage system that uses
a simple and efficient method to avoid congestion. The proposed load balancing scheme
effectively avoids overloaded situations on a certain number of nodes. The remaining of
this paper is organized as follows. The detailed design of RLB scheme is presented in
Section 2. Simulation results are demonstrated and discussed in Section 3. Section 4
concludes the paper with future work.
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2. Ripple Load Balancing. Figure 1 shows the architecture of a storage system com-
prising a metadata server (MDS) and N storage nodes [17]. MDS is in charge of dealing
with arriving requests and storage nodes are in charge of data access. The arriving requests
can be processed in two ways: centralized control or distributed control. For centralized
control, all requests are handled by the MDS, which is responsible for determining which
node should process the requests. To determine the best node, the MDS generally uses
a scheduling algorithm to dispatch arriving requests according to specific requirements,
such as loads and response time. Centralized control is considered a simple scheme, but
its reliance on the MDS may result in a performance bottleneck. Moreover, centralized
control architecture has a high communication overhead. However, for distributed con-
trol, each request is delivered to a default node that stores the required data. The default
node that stores the original data is responsible for dispatching requests to other nodes
with the same replicas. In general, hotspot data access patterns possess short-term and
unpredictable characteristics. By duplicating replicas, a default node can adequately dis-
patch requests to other nodes, thereby improving load imbalance. The proposed ripple
load balancing (RLB) scheme adopts distributed control for handling arriving requests
that avoids the MDS server becoming a performance bottleneck in centralized control.

Centralized Control MetaData
== Distributed Control Server

Storage  Storage  Storage  Storage Storage
Node 1 Node 2 Node 3 Node 4 Node N

Storage System

FIGURE 1. Storage system architecture

First, we estimated the average load of any node ¢ whenever a request arrives or is
processed using Equation (1). Load; e, denotes the updated estimate of the average
load of node 7 comprising both hotspot and non-hotspot data. Load; 4 is the load of
node ¢ prior to updating Load; yew. Load; e, denotes the current load. Moreover, k, is a
parameter that prevents the estimates of Load; e, from having excessive dependency on
short-term or long-term load conditions.

Load; pew = ko * Load; g1q + (1 — k) * Load,; poy (1)

Next, we classified the average load of each node into corresponding thresholds accord-
ing to Equation (2). T; denotes the threshold of node 7 and ceil() is a function that returns
the smallest integer greater than or equal to a given number. C' denotes the maximum
processing capacity of simultaneous requests and k;, denotes a ratio of threshold. In other
words, k;, * C' represents the range of the threshold. For example, when node 1 redirects a
request to node 2, node 1 will label the threshold information in the request. Next, node
2 will compare its threshold to the threshold in the request when it receives the request.
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If the threshold of node 2 is greater or equal to that of node 1, it will send a message with
threshold information to node 1. By dividing the loads into different thresholds, RLLB can
avoid frequent updates of load variations. Therefore, RLB adopts an intelligent update
method such that it creates low communication overhead.

T; = ceil(Load; peyw/ (ky * C)) (2)

When threshold-based scheduling is adopted, the node with the minimum threshold is
selected via Equation (3). Then, the arriving request related to node i is dispatched to
node p. Here, S; denotes the set of nodes that store the replicas of node ¢

p = {min(T;),i € S;} (3)

In general, hash algorithms can approximately distribute stored data evenly to each
node. Thus, all nodes have approximately equivalent loads unless hotspot data requests
occur. A new replica represents a certain number of requests to be redirected to another
node. After completing the request scheduling, replica allocation is responsible for deter-
mining the locations of new replicas by selecting nodes according to Equation (4). Here,
r. denotes the number of replicas of node ¢. For simplicity, we assumed that all nodes have
the same replicas. In addition, mod() is a function that obtains the modulus after divi-

sion. If mod(i+ j * (N —1)/r., N) = 0, then the target node is node N. With additional
replicas and efficient replica allocation, RLB can efficiently improve load imbalance.

S; ={mod(i+ j* (N —1)/r., N),where 1 < j <r.} (4)

3. Main Results. We performed all simulations based on the storage system architec-
ture, as shown in Figure 1. The request that generates the model of the hotspot data
comprises an ON-OFF model. When a request arrives at the MDS, it will be transferred
to the node with the required data. Similarly, we use the ON-OFF model to simulate the
request variations for non-hotspot data in each node. In optimal load balancing (OLB),
we assume that the MDS can obtain the real-time status of load conditions, and each
node stores a replica of each data in the storage system. Therefore, the MDS always
forwards requests to the node with the lowest load. Although OLB imposes a very large
burden on the MDS and requires the maximum number of replicas, it demonstrates the
best performance relative to handle load imbalance. In the following simulations, OLB
served as a benchmark but it is too complicated to implement in current storage sys-
tems. Furthermore, we considered a scheme of no replicas for any data, i.e., a No Replica
scheme.

Unless otherwise specified, we used the following settings in our simulations: k, = 0.8,
N =65, k, = 0.01, and C' = 25000. In addition, we set the residing number of requests
in each node to be between 7500 and 20000 in all experiments. When a request arrives at
a node and the number of residing requests reaches maximum capacity, the new request
is immediately discarded. Note that the simulation time in each experiment is of 20
hours. Other related parameter settings in each simulation are shown in corresponding
figure. Related to generating requests from the hotspot data, on_off_pb denotes an ON-
OFF parameter and off_on_pb denotes an OFF-ON parameter in the ON-OFF model.
In addition, on_off_factor is a parameter used to adjust the load of generating requests.
Related to background requests, decr_load_variation is a parameter used to control the
request’s decrement and incr_load_variation is a parameter used to control the request’s
increment.

In the first experiment, we considered the effect on load balancing when 8 nodes have
high hotspot data loads. The experimental results are shown in Figure 2. In general, the
excessive requests should be redirected to other nodes to distribute the load; otherwise,
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large number of requests will simply be discarded. This is exactly the case in the No
Replica scheme. As a result, nodes that did not contain hotspot data were under-utilized
and nodes that contained hotspot data were over-utilized. Although the No Replica
scheme requires only one replica, it demonstrated the worst load balancing, request loss,
and long response time. OLB achieved the best load balancing because each node received
an approximately equal amount of requests because it redirects the requests to the node
with the lowest number of requests. As mentioned previously, OLB is too difficult to
implement in an efficient storage system because it must maintain a replica of all data
regardless of whether they are hotspot data. In addition, OLB leads to very low storage
utilization, and each node must update its load conditions frequently.
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FIGURE 2. The average requests per node using eight nodes with high loads
of hotspot data

With the RLB scheme, RLB-2 means that the hotspot data had two replicas (i.e.,
r. = 2), whereas RLB-4 means that the hotspot data had four replicas, and so on. When
the number of replicas was increased from two to eight, RLB demonstrated obviously
improved load balancing because nodes with hotspot data can redirect requests to more
candidates. Thus, it achieves better load balancing. In RLB-2, many requests arriving
at nodes 1 to 8, 33 to 40, and 65 were discarded due to limited processing capability of
those nodes. These were caused by high hotspot data loads at nodes 1 to 6 as a result
of replica allocation. For example, node 1 redirected requests to nodes 33 and 65. In
other words, the number of nodes was insufficient to relieve the load imbalance. RLB-4
has the same problem but it provides a little improvement. Finally, load balancing in
RLB-8 was close to that of OLB. This means that the ripple effect was activated. Despite
requiring fewer replicas, RLB tends to approach best load balancing and outperforms the
No Replica scheme.

In the second experiment, we considered the effect on load balancing when 16 nodes
have low hotspot data loads. The experimental results are shown in Figure 3. In RLB-2,
many requests arriving at nodes 1 to 16, 33 to 48, and 65 were discarded due to limited
processing capability of those nodes. These were caused by high hotspot data loads at
nodes 1 to 16 as a result of replica allocation. For example, node 1 redirected requests
to nodes 33 and 65. In other words, the number of nodes was insufficient to relieve the
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FIGURE 4. The average requests per node using thirty-two nodes with high
loads of hotspot data

load imbalance. RLB-4 was much better than RLLB-2 because the replicas were distributed
fairly to all nodes. This means that the ripple effect was activated early as compared with
the first experiment. Finally, load balancing in RLLB-8 was close to that of OLB. However,
the increased number of replicas showed little effect on improving load balancing. Despite
requiring fewer replicas, RLB tends to approach best load balancing and outperforms the
No Replica scheme.

In the last experiment, we considered the effects on load balancing when 32 nodes
have high hotspot data loads. The experimental results are shown in Figure 4. Here,
RLB-2, RLB-4, and RLB-8 all demonstrated better load balancing compared with the
previous experiment because there are twice amount of nodes with hotspot data. In
addition, the replicas were allocated fairly to nodes in the storage system. Therefore, the
ripple effect worked much better. OLB maintained the best load balancing because it
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always dispatches requests to a node with the lowest load. The No Replica scheme still
demonstrated the worst performance. In other words, RLB shows better performance,
especially for larger load variations. From Figure 2 and Figure 4, we conclude that RLB
achieves excellent load balancing with a small number of replicas. In addition, RLB is
simple to implement and consumes limited communication overhead under various load
conditions. Thus, the proposed RLB scheme is suitable for deployment in general storage
systems with reasonable performance and efficient storage usage.

4. Conclusions. Efficient load balancing is critical because it can avoid performance
degradation by distributing load imbalance to appropriate nodes in a storage system.
In this study, we proposed the RLB scheme. RLB works with limited communication
overhead and requires a few replicas. The load sharing of RLB is much better than
that of the No Replica scheme and approaches the performance of OLB with adequate
number of replicas. However, OLB requires replicas of each data and hence it consumes
a lot of storage space. In addition, real-time information updates are required by OLB.
Accordingly, OLB is too complicated to implement on general storage systems. The RLB
scheme satisfies the requirements of general storage systems owing to its simplicity and
efficiency. In the future, we would like to consider user access behaviors, data types, and
storage cost to develop an efficient and practical load balancing scheme for wide types of
storage systems.
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