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Abstract. Nowadays detection of satellite images is generally difficult due to massive
volume of images in Big Data era, so high processing speed has become an indispensable
requirement for some special applications such as rapid response to disaster warning. In
this paper, we present an effective detection of satellite images via K-Means clustering on
Hadoop system. K-Means algorithm is one of the most popular and widely used clustering
techniques to detect satellite images. We design the effective K-Means algorithm based on
MapReduce programming model and Hadoop distributed file system. Two main operations
in MapReduce: Map and Reduce, are realized to give an efficient implementation. The
results show that we can acquire a fast detection speed and good scaleup while keeping
accuracy both in training and testing.
Keywords: Satellite images, Effective detection, K-Means clustering, Hadoop system

1. Introduction. Satellite image processing provides different services for analysis, and
to support GIS (Geographic Information Systems) and other research applications. In
recent years, the number of satellite images has grown considerably due to the growth
of high resolution satellites. This rapid growth and huge volume of images have created
a new field in image processing which is called Big Data and cloud computing [1] that
nowadays is positioned among state-of-the-art technologies.

In the field of remote sensing images, deforestation, climate change, ecosystem and
land surface temperature are some of the main research areas, where features need to
be classified and clustered to provide research basis. Many clustering algorithms such as
PCA (Principal Component Analysis) [2] and C-Means [3, 4] are based on the assumption
that the image in question depicts one or more features and each of these features belongs
to one of several distinct and exclusive classes. K-Means, a more effective algorithm over
C-Means and PCA clustering, is one of the most popular and widely used clustering
techniques across all fields, including remote sensing processing [5, 6]. However, when
dealing with current massive data called Big Data, they have to spend much more time
implementing K-Means algorithm. In order to improve the implementation speed, parallel
clustering algorithms [7, 8] have been efficiently researched to meet the scalability and
performance requirements. However, all these parallel clustering algorithms have the
following drawbacks: (a) they assume that all objects can reside in main memory at the
same time; (b) their parallel systems have provided restricted programming models and
used the restrictions to parallelize the computation automatically.

Google as one of the leading companies in the field of Big Data, proposes the MapRe-
duce programming model [9] which is designed to process large amounts of distributed
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data efficiently. MapReduce is a programming model which is an associated implementa-
tion for processing and generating large data sets with a parallel, distributed algorithm on
a cluster [10]. However, MapReduce is only a computing architecture, and has no sharing
and storing files system. So distributed file system has to be combined into MapReduce
model to construct an effective cloud computing environment. Over recent years, Hadoop
system has become a highly popular solution to store and process a large amount of data
for analysis purpose. Hadoop is an open source framework for processing, storage, and
analysis of large amounts of distributed and unstructured data [11]. Sharing, storing,
and retrieving large files on a Hadoop cluster is undertaken by its distributed file system
called HDFS (Hadoop Distributed File System). To increase the reliability of the sys-
tem, each part of the file is distributed among multiple computing nodes. Therefore, if a
node stops working, its file can be retrieved again. Trying to explore the feasibility using
MapReduce model for doing large scale image processing, Hadoop MapReduce for remote
sensing image analysis [12, 13] aims to find how to design an efficient solution method
for customized process within the Hadoop framework, which has become a research focus
recently. Although there have been considerable researches utilizing the Hadoop plat-
form for image processing, practical algorithms on Hadoop need to be explored further in
implementation performance. Hence, the utilization of Hadoop for image processing has
focused on some practical image processing algorithms. High computational complexity
and long time computation are still main problems for detection of large size images. It
greatly affects the response time of detection for disaster warning. Recently, one of prac-
tical algorithms is the parallelization of Fuzzy C-Means (FCM) [14], which is investigated
using the MapReduce paradigm that is introduced by Google [9]. Although its implemen-
tation works correctly achieving competitive purity results compared to state-of-the-art
clustering algorithms, K-Means implementation scales better than FCM algorithm since it
is the less computationally expensive algorithm. Also FCM may be not well in accordance
with the compact degree and the membership of the data.

In order to improve scaleup and handle massive volumes of satellite images quickly, a
high processing speed has become an indispensable requirement when providing a rapid
detection for some special applications such as warnings of disasters. In this paper, this is
possible with the help of Big Data platforms: Hadoop system. We have designed parallel
K-Means algorithm based on MapReduce on Hadoop system and find the optimum value
of K by executing the K-Means algorithm with modified values of K in the same set
of MapReduce iterations. The results show that we can obtain less execution time and
higher speedup ratio, especially when the image data size is larger. Also scaleup can
be reasonably reduced with increasing nodes number and test dataset size in proportion,
which indicates the achievement of this proposed method.

The rest of this paper is organized as follows. The MapReduce programming model
is given in Section 2. Design of parallel K-Means algorithm on Hadoop system is given
in Section 3. Experimental results are discussed in Section 4, and finally conclusions are
given in Section 5.

2. MapReduce Programming Model. MapReduce is a programming model designed
for processing large volumes of data in parallel by dividing the work into a set of indepen-
dent tasks. From a user’s perspective, there are two basic operations in MapReduce: Map
and Reduce. The Map function reads a stream of data and parses it into intermediate
< Key, V alue > pairs. When that is complete, the Reduce function is called once for each
unique key that was generated by Map, and is given the key and a list of all values that
were generated for that key as a parameter. The execution model for programs written
in the MapReduce style can be roughly characterized by three steps as follows:
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1. Split inputting images
a. inputting images→ split→ {split}

2. Mapper task: process splitting images
a. {split}→read→{< k1, v1 >}
b. {< k1, v1 >}→map & partition→{< k2, v2 >}

3. Reducer task: process mapper output images
a. {< k2, v2 >}→shuffle & sort→{< k2, {v2} >}
b. < k2, {v2} >→reduce→< k3, v3 >
c. {< k3, v3 >}→write→output images

MapReduce is implemented in a master/worker configuration, with one master serving
as the coordinator of many workers. A worker may be assigned a role of either a map
worker or a reduce worker. MapReduce execution model can be graphically represented
in Figure 1. There may be MN mapper tasks (step 2) and RN reducer tasks (step 3)
executed in parallel.

Figure 1. MapReduce execution model

As shown in Figure 1, three steps are described in more detail as follows.
Step 1: A usually very large input file is subdivided into a number of logical “splits”.

Each split starts and ends at record boundaries specific to a given file format. In the case
of image files, a record may represent a single line in one 2D matrix and thus, splitting
occurs at line endings.

Step 2: Each split is passed as input to a mapper task. Up to MN mapper tasks may
run in parallel. The mapper tasks read the split and convert it into a vector of key-value
pairs < k1, v1 > (step 2.a). If the input is an image file, the key k1 could be the line
number and the value v1 is the pixel value. Each input pair < k1, v1 > is then passed to
the user supplied Map function which transforms it into zero, one or more intermediate
key-value pairs < k2, v2 > (step 2.b).

Step 3: RN reducer tasks run in parallel. Each reducer gets one or more specific parti-
tions of the output of a mapper. The partition number ranging from 1 to RN is computed
from each intermediate key-value pair < k2, v2 > by using a partitioning function (usually
a hash function of k2). This step is already performed by mapper tasks. Each reducer
task reads all the intermediate key-value pairs < k2, v2 > of its partitions of all mappers,
merges and sorts them by key k2 (step 3.a). All values v2 that have same keys k2 are
aggregated in a list and passed as < k2, v2 > to the reducer function. The reducer function
will reduce all the intermediate values v2 for a given key k2 and output a new key-value
pair < k3, v3 > (step 3.b). Finally the new key-value pairs are collected, formatted and
written to the output file (step 3.c).
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3. Design of Parallel K-Means Algorithm Based on MapReduce Model on
Hadoop System. In the parallelization of K-Means algorithm, each iteration corre-
sponding to a Job, is a MapReduce operation: calculating the distance of each data
object to all cluster centers and sending the data object corresponding to a Map task,
updating the cluster center corresponding to a Reduce task. The data records of dataset
are stored in rows, in order to expediently start Map task. Therefore, each Map task
automatically gets a record for executing and is finished automatically by MapReduce on
Hadoop system.

3.1. K-Means algorithm. The K-Means algorithm is an efficient iterative method to
partition a given dataset into a user specified number of clusters, K. Its objective is to
minimize the average squared Euclidean distance of documents from their cluster centers.
Let µk

c denote the mean for cluster center c, and the K-Means objective function can be
written as

J(c, µ) =
k∑

i=1

n∑
j=1

∥ xj − µi
c ∥2 (1)

where J measures the sum of squared distances between each training example xj and
the cluster centroid µi

c to which it has been assigned. It can be shown that K-Means
is exactly coordinate descent on J . Specifically, the inner-loop of K-Means repeatedly
minimizes J with respect to c while holding µ fixed, and then minimizes J with respect
to µ while holding c fixed.

With this function well defined, we can split the process in several steps, in order to
achieve the wanted result. Our starting point is a large set of data entries and a K defining
the number of centers. The K-Means clustering algorithm is as follows.

1) The first step is to choose K of our points as partition centers randomly.
2) Next, we compute the distance between every data point on the set and those centers,

and store that information.
3) Supported by the last step calculations, we assign each point to the nearest cluster

center. This is, we get the minimum distance calculated for each point, and we add that
point to the specific partition set.

4) Update cluster center positions by using the following formula:

µi
c =

1

| ki |

k∑
j∈k

xj (2)

5) If the cluster centers change, we repeat the process from Step 2. Otherwise we have
successfully computed the K-Means clustering algorithm, and got the partition’s members
and centroids.

The achieved result is the minimum configuration for the selected start points. It is
possible that this output is not the optimal minimum of the selected set of data, but
instead a local minimum of the function. To mitigate this problem, we can run process
more than one time in order to get the optimal solution.

3.2. Design of Map function. The mapping phase of the Map/Reduce approach ap-
plies a function to each input value, producing a list of Key/Value pairs for each input.
All these lists (each containing several Key/Value pairs) are gathered into another list to
constitute the final output of the mapping phase as shown in Figure 2.

The task of Map function is calculating the distance from data object to cluster cen-
ters and sending the data object to the nearest cluster. The input data format is
< Key, V alue >, where key is the number of row, and value is the data record. In
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Figure 2. Process of mapping phase

addition, each Map function also reads K cluster centers, which are initial cluster cen-
ters or the cluster centers after several iterations. The format of Map function output is
< Key, V alue >, where key is clustering ID, and value is data record. The pseudo code
of Map function is shown as follows:

1 void Map ( Writable key , Image po int ) {
2 min di s tance = MAXDISTANCE;
3 for ( i = 0 ; i < k ; i++){
4 i f ( d i s t ance ( point , c l u s t e r [ i ]<min di s tance ) ){
5 min di s tance = d i s t anc e ( point , c l u s t e r [ i ] ) ;
6 cur r entC lus t e r ID = cluster number ;
7 }
8 }
9 Emit Intermediate ( cur rentClus te r ID , po int ) ;

10 }

In this pseudo code, the ‘for’ circulation is traversing K points. If there is a distance
less than min distance, then we re-assign the min distance and get serial number of the
cluster.

3.3. Design of combination phase. The combination phase takes the output of the
mapping phase, and collects each key and associated values from the collection of lists
of Key/Value pairs. The combined output is then essentially a map with unique keys
created during the mapping process, and each associated value is a list of values from the
mapping phase. Process of combination phase is shown in Figure 3.

In this phase, the partial sums are calculated and an associated counter for each group
is updated. The input is < currentCluster ID, point > pairs from the Map phase. The
output is pairs of < currentCluster ID, R > where R is a data structure containing a
partial sum and the count of summed up patterns. The phase proceeds as below.

1) Add up pairs according to their corresponding centroid identifiers.
2) Update the counters and partial sums in the R data structure for each unique centroid

identifier.
3) The output is < currentCluster ID, R > pairs.
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Figure 3. Process of combination phase

Figure 4. Process of Reduce phase

3.4. Design of Reduce function. The input to the Reduce phase is the output of com-
bination phase, which is a map, with keys being all the unique keys found in the mapping
operation and the values being the collected values for each key from the combination
phase. The output of the Reduce phase can be any arbitrary value. Process of Reduce
phase is shown in Figure 4.

After obtaining the intermediate results from combination phase, Reduce function will
update the corresponding center of the cluster ID and output the new center of each
cluster. These data records sets are composed of all the intermediate results from the
combination task. The pseudo code of Reduce function is shown as follows:

1 void Reduce ( Writable key , I t e r a t o r <PointWritable>po in t s ){
2 num = 0 ;
3 while ( po in t s . hasNext ( ) ){
4 PointWritableCurrentPoint = po in t s . next ( ) ;
5 num + = currentPo int . getNum ( ) ;
6 for ( i = 0 ; i < dimension ; i++){
7 sum [ i ]+ = currentPo int . po int [ i ] ;
8 }
9 }

10 for ( i = 0 ; i < dimension ; i++){
11 mean [ i ] = sum [ i ] /num;
12 }
13 Emit ( key , mean ) ;
14 }
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In this pseudo code, the ‘while’ circulation is traversing each point, and then calculating
the summation of each dimension of each point in clusters. Finally, it will respectively
calculate the mean of each dimension and determine the new cluster center that is the
mean.

When the Reduce tasks are completed, the change of the center will be calculated to
see whether it is within a threshold range. If it is in the threshold range, the final result
will be output; otherwise, it will start a new MapReduce task following the K new centers
to iterate again. Before getting the final clustering results, it needs to start another Job
which only includes Map task to allocate all data points.

4. Experiment and Results. We have implemented the effective detection of satellite
images via K-Means clustering on Hadoop system. The servers are configured in sets of
3, 5, 7 and 9 on the cluster on which the K-Means algorithm is run. The single processor
speed is 3.2GHz and of type AMD Opteron 6-Core 4180. Therefore, each server has six
processors and each processor has six cores. The servers are running Centos OS and
each has 32GB memory. The program used for the experiments is implemented in the
Scala programming language. In addition, Apache Hadoop 2.6 is used as the framework
for distributing the computations on the cluster. In the experiments, the programming
framework is used to provide the needed connectivity. Its component packages allow
access to the MapReduce and the HDFS. Our data set includes satellite images varying
sizes from 475KB to 15MB with number of pixels in the range of 2 million to 14 million.
Multiple sequence files are created with the data set varying from 1GB to 32GB.

The time taken by the K-Means algorithm is recorded in minutes and each value
recorded is an average of three repeated trials for a given data set on a particular cluster
configuration. The max number of iterations for all the experiments is 1000, with four
centers or clusters, and none of the data sets used converge within those iterations. To the
different size image files, Table 1 shows comparison of execution time between sequential
codes and our method.

Table 1. Comparison of execution time between sequential codes and our method

Different Methods Small Size Middle Size Large Size
Sequential codes 1089m 4623m 5867m

Our method 32m 92m 103m

In order to give a clearer comparison, Figure 5 shows the detection speedup ratio of the
three different size images comparing with sequential execution. Apparently, the image
size determines the speedup due to the I/O and CPU processing time. In our Apache
Hadoop 2.6 system, it is designed to achieve better performance and shows a maximum
56.96 times speedup ratio for large size images.

Also we compare different algorithms to highlight effectiveness of our method. Using
our method we have obtained about 38m when implementing detection on 1G size images;
however, the C-Means [14] on Hadoop system acquires 68m. The difference of detection
time between our method and C-Means [14] on Hadoop is more obvious when increasing
size of images greatly. The difference of detection on different size image files is between
two methods as shown in Figure 6.

From Figure 6, our method is about 1.79-1.87 times faster than C-Means [14] while
keeping the same detection accuracy both in training and testing. This is because K-
Means on Hadoop is less computationally expensive over C-Means on Hadoop in the
membership update computation. Also the resulting membership values of C-Means do
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Figure 5. Speedup ratio of the three different size images

Figure 6. Detection time on different size image files

not always correspond well to the degree of belonging of the data, and it may be inaccurate
in noisy environment.

In our experiment, the Hadoop system has good robustness and scalability. Compared
with the traditional parallel program [8], MapReduce programs are able to complete jobs
even one or more computing nodes in a cluster are down. New nodes could be added into
the Hadoop system at runtime to meet dynamic requirements, thus get better performance
in most cases and provide elastic computing as needed. Scaleup is demonstrated in this
framework as well as speedup, and we use three group datasets to implement and test it.
The numbers of data points in the datasets used are as follows: 1G, 2G, 4G, 8G in the
first group, 2G, 4G, 8G, 16G in the second group, and 4G, 8G, 16G, 32G in the third
group. Data in each group is implemented on 1 node, 2 nodes, 4 nodes, 6 nodes and 8
nodes respectively. Figure 7 shows the test result of scaleup performance.

From Figure 7, for the same dataset, when the number of nodes and the size of the
test dataset increase in proportion, the scaleup has linearly and reasonably reduced using
Hadoop with the proper configuration of HDFS and MapReduce. This is because when the
number of nodes increases, the communication cost between the nodes will also linearly
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Figure 7. Testing scaleup on three group datasets

increases, which is in agreement with true computation and shows our method scales very
well.

5. Conclusions. We have implemented an effective detection of satellite images via K-
Means clustering on Hadoop system. From experiment and results, we can see comparison
of execution time between sequential codes and Hadoop system. A clear speedup ratio
is acquired on different size images and it is shown a maximum 56.96 times speedup
ratio for large size images. Also our method is about 1.79-1.87 times faster than C-
Means on Hadoop [14] while keeping the same detection accuracy. Furthermore, scaleup
is demonstrated in this framework as well as speedup and reasonably reduced with increase
of nodes number and test dataset size in proportion.

To our knowledge, Hadoop is not good at frequent interactive operation. Apache Spark
is a new engine for big data processing with in-memory computing nature. So Spark
programs can better utilize the cluster resources to solute the low latency problem. In next
step, we will try to move to Spark platform, and evaluate the performance of detection.
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