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Abstract. This paper addresses the problem of distributed energy management system
(EMS) design considering network-induced delays. First of all, the distribution power
network incorporating solar panels is modelled as a discrete-time linear state-space equa-
tion and its measurements/control information is obtained using a set of sensors and
actuators. These electronic devices send the observation information to the EMS via un-
reliable communication links. In order to stabilize the system, we propose discrete-time
distributed static output feedback control strategies based on the linear matrix inequality
and semidefinite programming approaches. Using the Taylor series method, delays are
integrated into the closed loop system so that the proposed controller runs with less energy
resources and computation. Simulation results demonstrate that the proposed method is
able to stabilize the system in a fairly short time.
Keywords: Delays, Energy management system, Feedback controller, Microgrid

1. Introduction. There are many different feedback control techniques available for the
power system stability in the literature. To begin with, the load frequency control scheme
is modelled considering delays, and then the proportional integral (PI) controller is used
for stabilizing the system. [1] focuses on the prediction based H∞ control design strategy
taking delay into account in the feedback control signals. Next, the centralized control
strategy considering delay is suggested for a large-scale interconnected power system [2]. It
shows that time delay in the feedback loop can destabilize the system. In other words, the
communication impairments can mislead the design engineer and consumers even causing
blackouts in the system. Recently, a unified distributed control strategy for the DC
microgrid is proposed in [3]. It shows that the standard distributed PI voltage controllers
are no longer able to regulate the average DC microgrid bus voltage, so the distributed
voltage controllers are replaced by double integrator controllers. Interestingly, the three
types of H∞ delay free feedback controllers (centralized), namely static output feedback
controllers, dynamic output feedback controllers, and observer-based output feedback
controllers are investigated for linear discrete-time systems in [4]. The controller synthesis
in discrete-time linear systems with uncertainty is proposed in [5]. Due to the simplicity
and easy implementation point of view, the static output feedback controller is preferred
in the complex and mission critical network such as smart grid. Usually, the partial
system state information is only available so the static output feedback controller design
remains an open question in the control and smart grid communities. Finally, computing
machines have finite memory and temporal resolution [6], so the discrete-time controller is
obviously preferred from the engineering aspects. Inspired by the above discussions and
analysis, this paper focuses on the delay-dependent distributed static output feedback
control strategy in the context of smart grids. After transforming the continuous-time
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state space model into a discrete-time framework, the optimal output feedback gain is
calculated using a convex optimization process. The efficacy of the developed approaches
is verified through numerical simulations.

The remainder of this paper is organized as follows. A microgrid model is illustrated
in Section 2. In Section 3, the delay-dependent control strategy is proposed. Section 4
presents simulation results. This paper ends with a conclusion in Section 5.

Notation: Bold face upper and lower case letters are used to represent matrices and
vectors, respectively. Superscripts x′ denotes the transpose of x, eig(X) denotes eigen
values of X, |X|2 denotes the 2-norm of X, diag(x) denotes diagonal matrix and I denotes
the identity matrix.

2. Distribution Power Network Incorporating Microgrids. The considered solar
cells are connected through the IEEE-4 bus distribution system shown in Figure 1 [7, 8].
The state space framework of this microgrid is written as follows:

ẋ(t) = Ax(t) + Bu(t), (1)

where x(t) = vs−vref is the point of common coupling (PCC) state voltage deviation, vs =
(v1 v2 v3 v4)

′, vi is the ith PCC voltage, vref is the PCC reference voltage, u(t) = vp−vpref

is the distributed energy resource (DER) control input deviation, vp = (vp1 vp2 vp3 vp4)
′,

vpi is the ith DER input voltage and vpref is the reference control effort. The matrices A
and B are given in [7, 8, 9].
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Figure 1. Micro-sources are connected to the distribution power network [7].

The microgrid state information is obtained by a set of smart sensors as follows:

y(t) = Cx(t), (2)

where y(t) is the system measurements.

3. Proposed Delay-Dependent Distributed Control Strategy. The feedback con-
trol is employed for stabilizing the microgrid states, which is given by:

u(t) = Fy(t) = FCx(t). (3)

Here, F is the sparse feedback gain to be designed. If there is no connection between a
sensor and a controller, the corresponding element of F is zero. For example, in Figure 1,
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F belongs to the following structure:

F =

F | F =


F11 F12 0 0
0 F22 F23 0

F31 0 F33 0
0 0 F43 F44


 . (4)

Here, the feedback element FNM is the connection between subsystem sensor N and
controller M . Using u(t), (1) can be written as follows:

ẋ(t) = Ax(t) + BFCx(t) = (A + BFC)x(t) = Ãx(t), (5)

where Ã = A + BFC is the closed loop system state matrix. Now, (5) is expressed as a
discrete-time state-space model as follows:

x(k + 1) = Ãdx(k), (6)

where Ãd = Ad + BdFC, Ad = I + A∆t, ∆t is the discretization step size parameter,
Bd = B∆t, C = Cd and F = Fd [10]. If there exists a gain matrix F given symmetric
positive-definite matrix P, then the following LMI holds:

Ã′
dPÃd − P < 0, P > 0

(Ad + BdFC)′P(Ad + BdFC) − P < 0, P > 0. (7)

It can be seen that the Lypunov matrix P is unknown which makes (7) quite difficult to
solve. Inspired by the two-step procedure in the continuous-time case [7], P can be firstly
computed as follows:

(βAd)
′P(βAd) − P < 0. (8)

Here, β = 1/[γ max{eig(Ad)}], γ > 1 is a free parameter and max{eig(Ad)} is the
maximum eigen values of Ad. The quantity γ ensures eigenvalues of the scaled close loop
system strictly less than one. Now according to the standard Schur’s complement, (8)
can be transformed into the following LMI form:[

−P βA′
dP

βPAd −P

]
< 0. (9)

Consider there is a delay, d, between sensors and controllers. Now expand x(t − d)
using the Taylor series as:

x(t − d) ≈ x(t) − dẋ(t) ≈ [I − d(A + BFC)]x(t). (10)

The control effort with delay can be written as follows:

u(t) = Fy(t − d) = FC[I − d(A + BFC)]x(t). (11)

Now the state-space model (1) with delay can be written as follows:

ẋ(t) = Ax(t) + BFC[I − d(A + BFC)]x(t)

= (A + BFC)(I − dBFC)x(t). (12)

For a real-time implementation, transform (12) into a discrete-time form:

x(k + 1) =
(
Ãd + G

)
x(k). (13)

Here, Ãd = Ad + BdFC, Ad = I + A∆t, I is the identity matrix, Bd = B∆t and
G = −d(A + BFC)BdFC. Due to the complexity of G, we treat it as uncertainty in the
following analysis. It is easy to verify that

G′G ≤ α2I, (14)
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where α is given by:

α = d
(
||A||2 + ||B||2f̄ ||C||2

)
||Bd||2f̄ ||C||2. (15)

Here, || • ||2 denotes the induced l2 norm and f̄ is given an upper bound of ||F||2 for
preventing F being excessively large. To enforce the upper bound f̄ of F, i.e., ||F||2 < f̄ ,
the following LMI is needed:

||F||2 < f̄ ⇒
[
−f̄ 2I F′

F −I

]
< 0. (16)

In order to design F, consider the following Lyapunov function:

V (k + 1) = x′(k + 1)Px(k + 1) = x′(k)
(
Ãd + G

)′
P

(
Ãd + G

)
x(k). (17)

The Lyapunov function increment ∆V (k + 1) = V (k + 1) − V (k) is:

∆V (k + 1) =x′(k)

[(
Ãd + G

)′
P

(
Ãd + G

)
− P

]
x(k). (18)

The system is stable if ∆V (k + 1) < 0. This is achievable if:

(Ad + BdFC + G)′P(Ad + BdFC + G) − P < 0, P > 0. (19)

Given P in (9), the inequality (19) can be transformed into the following form:[
−P (Ad + BdFC)′P

P(Ad + BdFC) −P

]
+

[
0 G′P

PG 0

]
< 0. (20)

The second term in (20) can be written as follows:[
0 G′P

PG 0

]
=

[
0
P

]
G[I 0] +

[
I
0

]
G′[0 P]. (21)

The following lemma is used to simplify the equality (21).

Lemma 3.1. Let E, M(k), and H be real matrices of appropriate dimensions with
M′(k)M(k) ≤ I, ∀k ≥ 0, then for any scalar number ϵ > 0, the following inequality
holds:

EM(k)H + H′M′(k)E′ ≤ ϵ−1EE′ + ϵH′H. (22)

Using (22), the inequality (21) becomes:[
0 G′P

PG 0

]
≤

[
0 0
0 ϵ−1P2

]
+ α2

[
ϵI 0
0 0

]
. (23)

Using (23), the inequality (20) becomes: −P + α2ϵI (Ad + BdFC)′P 0
P(Ad + BdFC) −P P

0 P −ϵI

 ≤ 0. (24)

In summary, the proposed sparse distributed feedback gain is designed by solving (9) for
P and (16), (24) for gain F.
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4. Numerical Results and Discussion. The system parameters are specified in Table
1. In this table, the process and measurement noise covariance matrices are denoted by
Qn and Rw. The considered measurement noise covariance is a diagonal matrix [11, 12].
The sampling period for discretization is 0.1 ms.

It is assumed that the delay is uniformly distributed between 0.2 ms to 1 ms, and there
are process and measurement noises in the system. It is assumed that the sensing mea-
surement delay is fixed in the range of 2-4 samples period [13]. To begin with, considering
the measurement delay is 2 samples, the simulation result is presented in Figure 2. It can
be observed that the proposed algorithm can stabilize the system within a short time.
This stabilization is due to the fact that the proposed controller properly calculates the

Table 1. Parameter values for delay-dependent controller design.

Parameters Values Parameters Values

Qn 0.001 ∗ I4 Rw 0.01 ∗ I4

γ 2 Delay Uniform distribution
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Figure 2. System states response with 2 delay samples
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Figure 3. System states response with 4 delay samples
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controller gain such that the system states will be stable in a fairly short time even if
certain amount of delay exist. On the other hand, when the sample delay is increased to
4, then the simulation result is presented in Figure 3. It is expected that it suffers more
damping and requires more time for stabilizing the system compared with the 2 samples
delay in Figure 2. In other words, the system performance is deteriorated if the network
induced more delays.

5. Conclusions. This study presents the discrete-time distributed output feedback con-
trol strategy under the condition of network induced delays. Based on the linear matrix
inequality and semidefinite programming approaches, the proposed algorithm and control
synthesis of the power network is derived. The proposed control framework could properly
determine the output feedback gain such that the system states will be stable in a fairly
short time. Simulations are carried out to verify the effectiveness and feasibility of the
proposed methods. Future study includes design of the distributed controller considering
both communication delays and packet losses.
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