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Abstract. Reducing salt-and-pepper noise usually employs median filtering, switching

median filtering, the total variation ℓ1 and variants. These approaches, however, often

introduce excessive smoothing and can result in extensive visual feature blurring and thus

are suitable only for images with low noise. A new method to suppress noise is proposed

in this paper that overcomes this limitation that modifies PM method. In contrast to the

original PM method proposed by Perona and Malik, the modified PM method only treats

noisy pixels, and diffuses along eight-neighbors directions, rather than all pixels and along

four-neighbors directions. Therefore, the modified PM method is suitable for images not

only with low noise but also with high noise, and can reconstruct more details from noisy

images. In addition, a selected mean filter is also proposed to obtain an initial estimate

of original noise-free image. The initial estimate is taken as the initialization image for

iteratively diffusion process, rather than original noisy image, and thus the computational

cost is reduced significantly. Experimental results show that the new method has strong

capability to reduce noise in terms of its robustness and very good denoising results.

Keywords: Gray-scale image, Nonlinear diffusion, Noise detection, Noise removal

1. Introduction. Images are often corrupted by salt-and-pepper noise, which may arise
due to malfunctioning camera photo-sensors, optic imperfections, or transmission errors
during the acquisition. Corrupted pixel presents itself as sparsely occurring white and
black points. Noise suppression is of great benefit in many applications such as image
segmentation, object identification and image fusion. Therefore, rounding the problem
of how to yield better images from their noisy versions, a series of various methods have
been presented.

Simple and direct methods are generalized median filtering and related nonlinear fil-
tering techniques [1], such as median (MED) filter [2], weighted median filter (WMF) [3],
center weighted median filter (CWMF) [4], adaptive median filter (AMF) [5] and adap-
tive center-weighted median filter (ACWMF) [6]. These filters show differences between
one another although they output an observed pixel similarly by the median pixel of its
neighborhood, also termed sliding window. The MED filter uses a fixedly sized sliding
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window. WMF and CWMF apply a weight adjustment by duplicating the pixels within a
sliding window. AMF adopts dynamic sliding windows whose sizes depend on local noise
density. ACWMF incorporates the AMF and CWMF techniques. These methods treat
corrupted and uncorrupted pixels uniformly and result in too much smoothing to different
degrees, and fail to process images with high noise.

A family of switching filtering has been presented to overcome these drawbacks that
makes a distinction between noisy and noise-free pixels, and thus usually contains noise
detection module and noise removal module. The former identifies corrupted pixels, and
the latter applies a technique to these corrupted pixels, while uncorrupted pixels are left
unchanged. From the switching filtering structure, noise detection is crucial. If a detection
module fails to identify corrupted pixels, then these noisy pixels will be left unchanged and
result in poor filtered image; if the detection module classifies corrupted pixels correctly,
but also declares the noise-free pixels as noisy, many of the image details will be lost.
Rounding how to devise a good detector, many techniques have been proposed.

To the best of our knowledge, the presented detection techniques are roughly grouped
into three classifications. The first technique compares the noisy image with an estimate
of its noise-free image pixel-by-pixel. If the absolute difference of intensities of paired
pixels is larger than a predefined threshold, the corresponding pixel is declared corrupted;
otherwise, it is declared as noise-free. There are many methods to obtain the estimate.
For example, a median based impulse detector is devised in [7]; a weighted median fil-
ter is employed in [8]; a non-local median filter is used in [9]. By exploiting the local
neighborhood, the second technique devises a metric to judge a pixel is corrupted or not.
For example, the rank-ordered absolute differences (ROAD) is used in [10]; the first eight
minimum aggregated intensities within a sliding window that contains twenty-five pixels
are used as a statistic in [11]. And further, the local neighborhood statistic with directions
is also exploited, such as the four-directions statistic in [12], the twelve-directions statistic
in [13], and the multi-phase statistic in [9, 14]. The third technique employs artificial
intelligence techniques, such as artificial neural network (ANN) [15], neuro-fuzzy network
(NFN) [16], and support vector machine (SVM) [17]. Of course, there are some methods
containing multiple detective techniques such as [18].

Apart from median filtering and switching filtering, partial differential equations use
a variational energy minimization of an objective function to obtain restoration images.
The objective function usually consists of a data fidelity term and a regularization term.
The former depends on different noise models; the latter is an image prior. For salt-and-
pepper noise model, the data fidelity term is the ℓ1 norm of residual error, derived from
the maximum a posterior (MAP) probability estimate. Image prior is an assumption
for image characteristics. Therefore, this approach involves what the prior is and how
to optimize an objective function. For example, a sparse representation is taken as the
prior, and a dictionary learning method is employed to optimize the objective function
in [19]; total variation is taken as the prior, and the steepest-descent method is used to
optimize the objective function in [20]; ℓ0 norm is taken as the prior, and the primal-dual
algorithm is utilized to optimize the objective function in [21].

Inspired by switching filtering and variational methods, a modified PM diffusion method
is proposed to reduce salt-and-pepper noise in this paper. Similar to switching filtering,
the proposed method consists of detection and removal modules. In the detection module,
an efficient noise detector identifies noisy pixels. In the removal module, the modified
PM diffusion operations are iteratively implemented on corrupted pixels until a terminal
condition is satisfied, while uncorrupted pixels are left unchanged. Experimental results
show that the proposed method is effective for salt-and-pepper removal in terms of its
robustness and very good denoising results.
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A new method is proposed for salt-and-pepper noise removal in this paper. The four
main contributions are as follows.

• A modified PM diffusion method is proposed for salt-and-pepper noise removal. In
contrast to original PM method, there are two crucial differences. Firstly, the modi-
fied method only treats noisy pixels in an image domain, rather than all pixels, and
thus is suitable for images not only with low noise but also with high noise. Secondly,
the modified PM method implements diffusion operations along eight-neighbors di-
rections, rather than along four-neighbors directions, and thus can reconstruct more
details from noisy images.

• A simple and effective selected mean filter is also proposed in order to obtain an
evolved intermediate image. This filter takes the arithmetical mean of uncorrupted
pixels within a sliding window as a pixel output, based on the fact that in noise-free
images, all the pixels within a sliding window are similar to the current pixel centered
in the sliding window.

• An evolved intermediate image is taken as the initialization image in iterative diffu-
sion process, rather than original noisy image. And thus the computational cost of
the proposed method is decreased significantly. The evolved intermediate image is
obtained by the selected mean filter mentioned above.

• The proposed method has strong capability to remove salt-and-pepper noise in terms
of the robustness to different density noises and the very good denoising results, as
seen in PSNR/SSIM evaluations and visual quality of restored images.

The rest of the paper is organized as follows. In Section 2, a few existing diffusion
methods are introduced. Section 3 describes the details of noise removal. Experimental
results and comparisons are discussed in Section 4, and conclusions are drawn in Section
5.

2. Existing Diffusion Methods. Diffusion is an approach to image denoising. Different
diffusion modes are introduced in this section. Let u be a gray-scale image, and c be a
spatially-varying diffusion coefficient. In addition, t denotes a time step, and div and ∇
denote divergence and gradient operators, respectively. The diffusion framework is

ut = div(c · ∇u). (1)

Linear diffusion [22] is the simplest diffusion mode. Its diffusivity function is a constant,
and is usually set to 1, i.e.,

c(x, y, t) = 1. (2)

The corresponding diffusion equation is

∂

∂t
u(x, y, t) = ∆u(x, y, t) =

∂2u(x, y, t)

∂x2
+

∂2u(x, y, t)

∂y2
, (3)

where ∆ is a Laplacian operator. Solving the linear diffusion equation is equivalent to a
linear filtering of signal u by convolution, i.e., u(x, y, t) = u(x, y, 0)∗G√

2t, where ∗ denotes
convolution operator and G√

2t denotes a Gaussian skeleton with zero mean and variance

of
√

2t. Linear diffusion has the drawback similar to Gaussian filtering. It introduces too
much smoothing and results in blurred sharp features in filtered images.

PM diffusion proposed by Perona & Malik is a nonlinear diffusion [23]. The authors
proposed two diffusivity functions as follows,

c1(x, y, t) = exp

(

−
( |∇u(x, y, t)|

λ

)2
)

(4)
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and

c2(x, y, t) =

(

1 +

( |∇u(x, y, t)|
λ

)2
)−1

, (5)

where λ is referred to as the diffusion constant. They are the functions of signal gra-
dients, and decrease monotonously. Since the conduction is only along edges, the PM
diffusion method preserves edges and controls smoothing. However, PM diffusion method
is sensitive to noise, and the corresponding diffusion equation is ill-posed [24].

The following diffusion equation [24] can effectively tackle the ill-posed problem of PM
diffusion equation, given by

∂

∂t
u(x, y, t) = div (c (|∇Gσ ∗ u|)∇u) , (6)

where Gσ denotes a Gaussian smoothing kernel and σ is a given variance of the Gaussian
smoothing kernel.

A Laplacian-based diffusivity function has been proposed by You and Kaveh [25], given
by

c (|∆u|) =

(

1 +

( |∆u(x, y, t)|
λ

)2
)−1

. (7)

In contrast to PM diffusivity function, the gradient magnitude is replaced by Laplacian
magnitude, and thus the corresponding diffusion equation turns from the second-order to
the fourth-order.

The diffusion equation proposed by Yu et al. [26] contains an edge detector, as follows

∂

∂t
u(x, y, t) = div (SUSAN (c (|∇Gσ ∗ u|))∇u) . (8)

The SUSAN detector guides the diffusion process in an effective manner.
The diffusion equation in [27] is with weighted diffusivity function, given by

∂

∂t
u(x, y, t) = div (w(x, y, t)c(x, y, t)∇u) , (9)

where w(x, y, t) is a pixel-wise weight function.
In addition, nonlinear diffusion is employed in some transform domains in recent years,

such as discrete wavelet domain [28] and shearlet domain [29]. Such work opens up a new
way to utilize diffusion to remove impulsive noise.

3. The Proposed Method. In this section, the details of the proposed method are
introduced. In Section 3.1, the noise model and the denoising structure are described.
Section 3.2 and 3.3 formulate the noise detection and diffusion details, respectively, and
the description of acceleration is shown in Section 3.4.

3.1. Noise model and denoising structure. Gray-scale images with salt-and-pepper
noise are only considered in this paper. Let ui,j be a pixel at position (i, j), and a
contamination image can be modeled as

ui,j =

{

vi,j with probability π

oi,j with probability 1 − π
, (10)

where oi,j denotes the noise-free pixel, and the corrupted pixel vi,j is a random variable
which takes on the values 0 or 255, assuming 8-bit single channel image representation.

The denoising structure is shown in Figure 1. As seen in Figure 1, the denoising
structure consists of a detection module and a removal module. The denoising module
divides pixels into noisy and the noise-free pixels. Based on detection results, a mask
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Figure 1. The noise reduction structure

matrix is built, in which each entry is a binary label indicating the corresponding pixel
is corrupted or not. The removal module implements diffusion operations iteratively
following the mask matrix instructions; as in Figure 1, the operations surrounded by the
rectangle with dashed lines are repeated.

3.2. Noise detection. The devised detector is introduced in this subsection. Let ux,y be
a current pixel, centered in the corresponding sliding window. The sliding window, also
termed the neighborhood of the current pixel ux,y, is defined by

Nx,y(R) = {ui,j : |x − i| ≤ R, |y − j| ≤ R} for (x, y) ∈ Ω, (11)

where the positive integer R and Ω denote neighborhood radius and image domain, re-
spectively. Obviously, a neighborhood contains (2R + 1) ∗ (2R + 1) pixels.

From the noise model (10), only the pixels with intensity 0 or 255 are the noisy pixel
candidates. Assuming the current pixel ux,y is a candidate, the absolute differences of
intensities between it and every pixel within the neighborhood are calculated, and then
the number of pixels is whose absolute difference is larger than a predefined threshold
value determined, expressed as

mx,y = # {ui,j ∈ Nx,y(R) : |ux,y − ui,j| > T} , (12)

where # denotes the cardinality of the set, T is the predefined threshold value, and mx,y

denotes the number of the pixels that satisfy the threshold condition.
The number mx,y is used to determine if candidate ux,y is corrupted, based on the

following twofold, as a noise-free image usually consists of local smoothly varying areas
separated by edges, while a salt-and-pepper noise takes a value substantially larger or
smaller than its neighbors.

• If ux,y is a noisy pixel surrounded by a flat region, mx,y is very large with high prob-
ability; whereas, if ux,y is a noise-free pixel, mx,y is very small with high probability.

• If ux,y is a noisy pixel riding on edges, mx,y is large with high probability; whereas,
if ux,y is a noise-free pixel, mx,y is small with high probability.

Therefore, mx,y can be used to determine ux,y is a noisy pixel or not by a given threshold,
denoted by thr. The determining function is

f(x, y) =

{

1, if mx,y > thr

0, otherwise
. (13)

In this equation, f(x, y) = 1, then candidate ux,y is corrupted; otherwise, it is uncorrupted.
When all candidates are complete, a binary mask matrix can be built indicating the
corresponding pixel is corrupted or not.
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3.3. Diffusion details. If noise detection is complete, and corresponding mask matrix
has been built, then modified PM diffusion operations are iteratively implemented on
the corrupted pixels while the uncorrupted pixels are left unchanged. The modified PM
diffusion is detailed in this subsection. Letting u0 be a noisy image, and Θ ⊂ Ω be the
corrupted pixel domain, the modified PM diffusion is as follows











∂

∂t
u(x, y, t) = div

(

1

1 + (|∇u| /λ)2
· ∇u

)

, for (x, y) ∈ Θ

u(x, y, 0) = u0

. (14)

In this formula, the parameter λ is referred to as the diffusion constant. In contrast to the
original PM diffusion, the modified PM diffusion only treats the corrupted pixel domain
Θ, rather than the image domain Ω.

The explicit discrete scheme for (14) must be discussed. Let D denote the first-order
forward finite-difference operator. Based on the theory, ∇u ≃ Du, for any pixel ui,j the
eight formulas hold, as follows

DNui,j = ui−1,j − ui,j, DEui,j = ui,j+1 − ui,j, DNEui,j = ui−1,j+1 − ui,j,

DSEui,j = ui+1,j+1 − ui,j, DSui,j = ui+1,j − ui,j, DW ui,j = ui,j−1 − ui,j,

DSWui,j = ui+1,j−1 − ui,j, DNW ui,j = ui−1,j−1 − ui,j.

In these eight equations, these subscripting symbols {N, E, S, W, NE, SE, SW, NW}
denote the eight diffusion directions, as seen in Figure 2. And assuming grid unit distances
dx = dy = 1, thus the diagonal grid unit distance is

√
2. Then, the explicit discrete scheme

for (14) can be written as

un+1

i,j = un
i,j + (∆t)



















cN

(

DNun
i,j

)

· DNun
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(

DEun
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)
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)
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(
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i,j

)
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, (15)

where ∆t is the time step-size, the superscript n denotes the n-th iteration, and c with
subscript denotes the diffusivity function along the subscript direction.
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Figure 2. The current pixel and the eight diffusion directions
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3.4. Acceleration. To decrease the number of iterations, the noisy image u0 in (14) is
replaced with an evolved intermediate image, denoted by û0. The evolved intermediate
image can be obtained by a filter termed selected mean filter. The selected mean filter
consists of noise detection and noise removal. The detector is the same as the devised in
Section 3.2, and the removal module takes the arithmetical mean value of uncorrupted
noise within the corresponding sliding window as the current output.

Assuming the noise detection is complete, thus the noise-free pixel set can be obtained,
denoted by Θc, where the superscript c denotes complement operator. The noise-free
neighborhood is defined by

N0
x,y(x) = {ui,j : ui,j ∈ Nx,y(r) and (i, j) ∈ Θc} , (16)

where Nx,y(r) is the neighborhood of pixel ux,y, with neighborhood radius r. Let symbol
mean denote arithmetical mean operator, and the selected mean filter is expressed as

û(x, y) = mean
{

N0

x,y(r)
}

, if (x, y) ∈ Θ. (17)

When all noisy pixels are processed, the evolved intermediate image û0 can be obtained.
Thus, the accelerated diffusion equation can be written as











∂

∂t
u(x, y, t) = div

(

1

1 + (|∇u| /λ)2
· ∇u

)

, for (x, y) ∈ Θ

u(x, y, 0) = û0

. (18)

Next, the acceleration performance is validated. For ease of description, Equation (14)
is called the non-accelerated, and Equation (18) is termed the accelerated. The two
methods were applied to the same test image Barbara, sized 512 × 512 and with ten
different levels noise. The parameter values {R = 2, T = 50, thr = 3, λ = 180, ∆t = 1/7}
were used, and the parameter r = 5 was only used in the accelerated. The number of
iterations was noted when PSNR reached the peak value during iterative processing, and
the same action was made for SSIM measurements. The notions about PSNR and SSIM
are introduced in Section 4.1. So, the number of iterations before and after acceleration
was obtained, and reported in Table 1. To exhibit the acceleration process clearly, the

Table 1. The number of iterations before and after acceleration

π 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Before 5 6 8 10 12 18 20 27 48 50
After 1 2 3 3 4 4 6 9 10 11

Figure 3. Comparison of iteration progress between before and after acceleration
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image Straw, sized 1024 × 1024 and with 70% density noise, was also tested. With the
increasing of iterative times, the PSNR and SSIM values are plotted in Figure 3. From
these test results, the accelerated significantly decreases the number of iterations, and
the iteration number of the accelerated is about a fifth of the non-acceleration when time
step-size is set to 1/7.

4. Experiments and Comparisons. In this section, two metrics used in performance
evaluation are first introduced, then the experimental results are exhibited, and compar-
isons are finally discussed.

4.1. Two metrics. Peak signal-to-noise-ratio (PSNR) measurement is based on pixel
intensity errors between noise-free and restored images. The calculation of PSNR is as
follows

PSNR = 10 log10

(

2552

|u|−1 ‖u − û‖2
F

)

, (19)

where |•| is the cardinality of an image, ‖•‖F denotes Frobenius norm, and u and û are
the noise-free and the restored images, respectively.

Structural similarity index measure (SSIM) measurement is based on structural simi-
larity. Its computation involves two blocks, denoted by y1 and y2. Let µy1

, µy2
be the

mean values of y1 and y2, respectively, σy1
and σy2

be the variances, and σy1y2
be the

covariance; thus the calculation of SSIM is as follows

SSIM(y1, y2) =
(2µy1

µy2
+ c1) (2σy1y2

+ c2)
(

µ2
y1

+ µ2
y2

+ c1

) (

σ2
y1

+ σ2
y2

+ c2

) , (20)

where c1 and c2 denote two stabilization variables. Actually, this metric is the mean
SSIM that gives the mean value of the structural similarity between the blocks of noise-
free image and restored image. In this paper the SSIM is referred to as the mean SSIM.

4.2. Setting parameters. A total of seven parameters are set in the accelerated method,
shown in Table 2. R, T and thr are used in the detection module; λ, ∆t and N are used
in the removal module; r is used in the selected mean filter. The parameter R is set to
2 when noise density π < 40%; otherwise, it is set to 3. For all noise levels, T , thr and
λ are set to 55, 3 and 180, respectively. The time step-size ∆t is set to 1/7 that satisfies
the CFL criteria. The parameter N depends on noise density π and time step-size ∆t.
The value of N is shown in Table 1 when ∆t = 1/7. The parameter r depends on noise
density. The value of it must be greater than or equal to the number of noisy pixels within
a sliding window. The parameter value of r used in our experiments is shown in Table 3.

Table 2. The seven parameters used to the accelerated method

Para. Comments

R Neighborhood radius used in noise detection.
T Threshold for judging the relationship between a candidate and its neighbors.

thr Threshold that decides whether a candidate is corrupted or not.
λ Diffusion constant.
∆t Time step-size.
N Desirable number of iterations.
r Filtering radius used in the selected mean filter.
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Table 3. The setting of parameter r on different density noise

π 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

r 1 1 2 3 4 4 5 5 6 6

4.3. Experimental results. A test set was built to evaluate the accelerated method,
which was a combination of two groups, denoted by Γ = {Γ1, Γ2}. Every group contained
noisy versions of seven images with different density salt-and-pepper noise. The original
noise-free images are shown in Figure 4. They include miscellaneous images associated
with Γ1 and texture images associated with Γ2.

Figure 4. The noise-free images associated with the test set Γ = {Γ1, Γ2}

The accelerated method was applied to the test set Γ. All the parameter values used in
the experiments are those recommended in Section 4.2. The PSNR and SSIM results are
reported in Table 4 and Table 5, respectively. Moreover, the visual results and zoom-in
for two images, House and Roof-tiles, are shown in Figure 5 and Figure 6, respectively.

4.4. Comparisons. To augment the performance evaluations, the accelerated method
was compared with the MED filter, SMF and SGM. The MED filter uses the sliding
window of size 3× 3. SMF employs the adapted sliding window and selects 70 as judging
threshold and output threshold. The source codes of SGM were taken from the original
authors, and the parameters used in the experiments were those recommended by the

Table 4. PSNR/SSIM results for miscellaneous images

π
The miscellaneous images in the group Γ1

Monarch Lena House Couple Cameraman Boat Barbara

5% 40.72/1.00 46.25/1.00 45.25/0.99 42.06/0.99 38.81/0.99 42.11/0.99 37.79/0.99
10% 37.72/0.99 43.01/0.99 42.22/0.99 38.83/0.99 35.82/0.99 38.97/0.98 34.49/0.98
20% 34.15/0.98 39.66/0.98 38.66/0.98 35.56/0.97 32.25/0.97 35.71/0.97 31.23/0.96
30% 31.81/0.97 37.47/0.97 36.56/0.96 33.45/0.95 30.16/0.96 33.59/0.95 29.32/0.94
40% 29.85/0.96 35.68/0.96 34.71/0.95 31.76/0.93 28.38/0.93 31.97/0.92 27.88/0.91
50% 28.22/0.94 34.06/0.94 33.16/0.93 30.24/0.90 26.94/0.91 30.51/0.90 26.70/0.88
60% 26.50/0.91 32.51/0.92 31.55/0.91 28.85/0.86 25.74/0.88 29.10/0.86 25.69/0.84
70% 24.78/0.87 30.92/0.89 29.89/0.88 27.50/0.81 24.37/0.84 27.73/0.82 24.76/0.80
80% 22.95/0.81 29.04/0.85 27.99/0.83 25.96/0.75 22.99/0.78 26.11/0.76 23.79/0.74
90% 20.37/0.70 20.37/0.70 25.58/0.77 24.02/0.64 21.22/0.70 24.13/0.67 22.64/0.65
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Table 5. PSNR/SSIM results for texture images

π
The texture images in the group Γ2

Roof Rooftiles Fence Brickwall Fingerprint Straw Brick

5% 41.91/0.99 42.34/0.99 45.26/0.99 42.84/0.99 42.21/1.00 43.62/1.00 42.75/0.99
10% 38.69/0.98 39.01/0.99 42.06/0.98 39.67/0.98 38.86/0.99 40.42/0.99 39.64/0.98
20% 35.38/0.96 35.60/0.97 38.92/0.96 36.41/0.96 35.21/0.99 37.07/0.98 36.37/0.96
30% 33.21/0.93 33.31/0.96 36.95/0.94 34.27/0.94 32.67/0.98 34.90/0.97 34.33/0.94
40% 31.49/0.9 31.46/0.94 35.46/0.92 32.58/0.91 30.54/0.96 33.11/0.95 32.73/0.91
50% 30.01/0.87 29.78/0.91 34.18/0.90 31.17/0.88 28.56/0.94 31.47/0.93 31.36/0.87
60% 28.53/0.83 28.03/0.88 32.94/0.86 29.77/0.84 26.51/0.91 29.77/0.90 30.04/0.83
70% 27.04/0.78 26.20/0.83 31.62/0.82 28.27/0.79 24.40/0.86 27.96/0.85 28.73/0.77
80% 25.38/0.71 23.92/0.76 30.04/0.76 26.56/0.72 21.92/0.76 25.70/0.78 27.28/0.70
90% 23.36/0.61 20.99/0.63 27.85/0.66 24.33/0.60 19.05/0.57 22.80/0.63 25.42/0.58
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Figure 5. Visual results for the House image on five different noise levels

authors. The three methods were also applied to the same test set Γ. Along with the
accelerated method and the noisy method, the PSNR/SSIM results from the five methods
on the Monarch image are reported in Table 6. The noisy method means the metrics in
(19) and (20) use noisy images u0 rather than restored images û. Moreover, visual results
from the five methods on the Monarch image are shown in Figure 7, and the information
about these images is labeled sideways.
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Figure 6. Visual results for image Roof-tiles on five different noise levels

Table 6. PSNR/SSIM results from different methods for the Monarch image

π
Different methods

noisy MED SMF SGM ours

5% 18.41/0.48 29.79/0.95 19.96/0.82 40.45/1.00 40.72/1.00
10% 15.32/0.31 28.39/0.94 19.64/0.77 37.16/0.99 37.72/0.99
20% 12.26/0.19 25.20/0.89 19.01/0.71 34.11/0.98 34.15/0.98
30% 10.51/0.13 21.51/0.76 18.42/0.66 31.07/0.97 31.81/0.97
40% 9.26/0.09 17.90/0.54 17.85/0.62 29.78/0.96 29.85/0.96
50% 8.27/0.07 14.76/0.35 17.19/0.58 28.14/0.94 28.22/0.94
60% 7.50/0.05 12.03/0.20 16.49/0.53 26.31/0.91 26.50/0.91
70% 6.82/0.03 9.76/0.11 15.52/0.47 24.28/0.86 24.78/0.87
80% 6.23/0.02 7.97/0.06 13.90/0.38 21.64/0.78 22.95/0.81
90% 5.73/0.01 6.48/0.03 9.93/0.13 17.63/0.58 20.37/0.70

In addition, the mean PSNR and mean SSIM results for fixed noise are calculated for
noisy method, the MED filter, SMF, SGM and the accelerated method, respectively. The
calculation is as follows

PSNRπ =
1

|Γπ|
∑

k∈Γπ

PSNR(k|π) (21)
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Figure 7. Visual results from five methods on image Monarch
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and

SSIM π =
1

|Γπ|
∑

k∈Γπ

SSIM (k|π), (22)

where Γπ denotes all the noisy images with the same density noise π in Γ, and PSNRπ(k)
and SSIM π(k) denote the PSNR and SSIM values of the k-th image with the density
noise π, respectively. For example, if the method is the accelerated, PSNR0.05 denotes
the mean PSNR for the seven images with the density noise 0.05, corresponding to the
accelerated method. The mean PSNR and SSIM values from different methods and on
different density noise are plotted in Figure 8.

Figure 8. The mean PSNR and SSIM results from different methods and
on different density noise

The following observations and conclusions from the quantitative measurements and
visual results can be drawn. Firstly, the accelerated method achieved the best results in
every case tested, as seen in Table 6 or Figure 8. It achieved 0.48dB improvement over
the SGM method on average, and significantly outperformed the SMF and the MED filter
by 10.86dB and 14.11dB, respectively, in the PSNR results and on the test set Γ. The
accelerated method achieved 0.02 improvement over the SGM method on average, and
significantly outperformed the SMF and the MED filter by 0.29 and 0.46, respectively,
in the SSIM results and also on the test set Γ. Secondly, the accelerated method has a
strong capability to preserve details. The accelerated method reconstructed more image
details from noisy images than the MED filter, SMF and SGM. The MED filter failed to
reconstruct images when the noise density was larger than 50; the SMF introduced too
much smoothing and resulted in blurred visual features, as seen in Figure 7. The SGM
blurred more visual features than the accelerated method when the noise density was
90%, as seen in Figure 7. Thirdly, the proposed method is more robust to different noise
strengths than the MED filter, SMF and SGM. In summary, our method shows strong
capability to reduce noise in terms of the PSNR/SSIM results and visual perception
quality in restored images.

5. Conclusions and Future Directions. In this paper, a modified PM diffusion meth-
od is proposed to reduce salt-and-pepper noise for gray scale images. The proposed
method belongs to switching filtering, containing noise detection module and noise removal
module. The former identifies corrupted pixels, and the latter applies the modified PM
diffusion method to these corrupted pixels. In contrast to original PM diffusion method,
the modified PM diffusion only treats corrupted pixels rather than all pixels in an image
domain, and conducts along eight-neighbors directions rather than along four-neighbors
directions. Since the first modification, the modified PM method is suitable for images
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not only with low noise but also with high noise; since the second modification, the
modified PM method can reconstruct more details from noisy images. To reduce the
number of iterations during processing, the original initialization image (the noisy image)
is replaced by an evolved intermediate image. In our experiments, different images were
tested, containing 70 miscellaneous and 70 texture images with different density noise.
Experimental results show that the method has a very strong capability to suppress
noise in terms of both quantitative measurement and visual perception quality of restored
images.

Although the modified PM diffusion method can achieve good denoising results for
gray-scale images with salt-and-pepper noise, it does not work well on random valued
impulses. A main reason is that the devised detector is suitable for salt-and-pepper noise;
however, it must be improved for random valued impulses. In addition, the modified PM
diffusion method is applied in two-dimensions; how can we apply this technique in three-
dimensions, and serve for multi-channels color images? All these issues are the future
directions to our striving.
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