
International Journal of Innovative
Computing, Information and Control ICIC International c©2017 ISSN 1349-4198
Volume 13, Number 4, August 2017 pp. 1077–1094

CARDINALITY ESTIMATION APPLYING MICRO
SELF-TUNING HISTOGRAM

Xudong Lin1, Xiaoning Zeng2, Jia Liu1 and Wei Chen1

1Department of Information Engineering
Hebei University of Environmental Engineering

No. 8, Jingang Avenue, Beidaihe Dist., Qinhuangdao 066102, P. R. China
{ fydong xl; ning xz; fyy sun }@126.com

2College of Mathematics and Information Technology
Hebei Normal University of Science and Technology

No. 360, West Hebei Avenue, Qinhuangdao 066004, P. R. China
qhdzxn@126.com

Received December 2016; revised April 2017

Abstract. In the cardinality estimation solutions based on multi-dimensional self-tu-
ning histograms, periodical data scans are avoided and self-tuning histograms are con-
structed according to query feedback records. We call this kind of cardinality estimation
solutions the reactive solutions. The existing reactive solutions are stuck with the issue of
“curse of dimension”. And they are unpredictable and time-consuming. To address these
issues, a new reactive solution is proposed in the paper. A micro self-tuning histogram
only covering the neighborhood of the new predicate is constructed, which is a beneficial
attempt to improve the cardinality estimation efficiency under high dimensions, and no-
tably alleviate the issue of “curse of dimension”. Furthermore, the process of meeting a
space budget is eliminated completely, which makes the whole solution reliable and dex-
terous.
Keywords: Cardinality estimation, Clustering, Ward’s minimum variance method, Self-
tuning, Query feedback record

1. Introduction. In a query optimizer, cardinality estimation plays an important role
in choosing optimal query plans. The first solution which applies the 1-dimensional his-
togram in cardinality estimation is proposed in [1]. And then, the improved solutions
[2-6] are continuously proposed and the cardinality estimation technologies based on 1-
dimensional histograms become relatively mature by degrees. In the mainstream relational
databases, 1-dimensional histograms have been widely used to help estimate cardinality.
The 1-dimensional equi-depth histogram, the 1-dimensional compressed histogram and
the 1-dimensional maxdiff histogram are adopted in Oracle [7,8], DB2 [9,10] and SQL
Server [11] respectively.

However, for a predicate referring to multiple attributes, multi-dimensional data sum-
marization techniques such as multi-dimensional histograms or multi-dimensional wavelet
transforms have important practical significance for cardinality estimations. Traditional
multi-dimensional cardinality estimation solutions rely on data scans to summarize data.
Therefore, these solutions are called the proactive solutions in the paper. The first proac-
tive solution is based on the multi-dimensional equi-depth histogram [2]. And then, the
improved proactive solutions are proposed continuously [12-17]. The proactive solutions
proposed in [18,19] are based on the multi-dimensional wavelet transforms [20,21]. How-
ever, all of the existing proactive solutions are still in the experimental stage and no one

1077

1078 X. LIN, X. ZENG, J. LIU AND W. CHEN

is actually adopted in the mainstream databases. Two serious deficiencies prevent these
solutions being practical.

(1) Lots of system resources are occupied by periodical data scans and the performance
of routine queries is influenced seriously.

(2) The solutions are stuck with the “curse of dimension”.

The cardinality estimation solution in [22] is different from the proactive solutions. It
uses the multi-dimensional self-tuning histogram to replace the proactive data summa-
rization technologies. A multi-dimensional self-tuning histogram is constructed and main-
tained based on query feedback records (QFRs). We call this kind of multi-dimensional
cardinality estimation solutions the reactive solutions in the paper. The succeeding re-
active solution in [23] shows how to build low-dimensional self-tuning histograms from
high-dimensional queries using the delta rule. The reactive solution in [24] improves
the accuracy of a self-tuning histogram by subtilizing the granularity of QFRs. The
information-theoretic principle of maximum entropy is introduced in [25] to construct a
multi-dimensional self-tuning histogram which is consistent with all currently valid QFRs.
[26] tries to improve the efficiency of maintaining self-tuning histograms by combining
proactive histograms with QFRs. [27] uses the equi-width approach and the sparse-vector
recovery based approach to maintain self-tuning histograms in the non-sparse and sparse
cases respectively. [28] initializes a multi-dimensional self-tuning histogram based on sub-
space clustering.

Summing up the existing reactive solutions, periodical data scans are avoided but they
are not yet practical due to the following common issues.

(1) Reactive solutions are still stuck with the “curse of dimension”. In the existing reactive
solutions, self-tuning histograms are constructed and maintained over the entire value
range of the queried attributes (henceforth called global self-tuning histograms). As
dimension increases, the bucket number of a global self-tuning histogram increases
exponentially just as a proactive histogram.

(2) To construct a global self-tuning histogram, a large number of QFRs must be ac-
cumulated at a long time span. As the changes of data and workload distribution,
the accumulated QFRs may become inaccurate and contradictory for each other.
Therefore, the accuracy of the constructed global self-tuning histogram cannot be
guaranteed.

(3) To limit the bucket number of a global self-tuning histogram, the space budgets are
widely adopted in different reactive solutions. However, the limitation to bucket
number leads to accuracy deterioration of cardinality estimation.

To address above issues, a new reactive solution – the Cardinality Estimation solu-

tion applying Ward’s minimum variance Method (CEWM) is proposed in the paper. In
CEWM, the global self-tuning histogram covering the entire value range of the queried
attributes is abandoned. When a new predicate p is executed, the Ward’s minimum

variance method (Ward method for short) is used to find k nearest QFRs with p from
the QFR warehouse. Based on the found k QFRs, a micro self-tuning histogram only
covering the neighborhood of p is constructed to help estimate the cardinality of p. The
main contributions of CEWM can be summarized as follows.

(1) The Ward method is introduced firstly to find k nearest QFRs for a new predicate.
The reason that we introduce the Ward method is: for a new predicate p, there exist
the executed predicates which locate in the neighborhood of p and have the relatively
similar cardinalities with p. The Ward method is exactly used to find these predicates
according to its function of clustering similar classes.

CARDINALITY ESTIMATION APPLYING MICRO SELF-TUNING HISTOGRAM 1079

(2) The self-tuning histogram covering the entire value range of the queried attributes
is abandoned. A micro self-tuning histogram is constructed swiftly based on a small
number of QFRs of the similar executed predicates. The micro self-tuning histogram
only covers the neighborhood of the new predicate but not the entire value range,
which is a beneficial attempt to improve the cardinality estimation efficiency under
high dimensions, and notably alleviate the issue of “curse of dimension”.

(3) After the execution of each new predicate, QFR warehouse is updated by the corre-
sponding new QFR, and the data and workload changes can be timely reflected by
the micro self-tuning histogram.

(4) Due to the small scale of a micro self-tuning histogram, space budget is unnecessary to
be used. The process of reducing bucket number, and the complex and cumbersome
operations in the process can be eliminated completely, which make the whole solution
reliable and dexterous.

The rest of the paper is organized as follows. Section 2 describes the details of finding k
nearest QFRs using the Ward method. The micro histogram and its construction process
are analyzed in Section 3. Based on the micro histogram, the processes of cardinality
estimation for different cases are given in Section 4. The new QFR update mechanism is
explained in Section 5. The results of extensive experiments are demonstrated in Section
6. Section 7 summarizes the paper and discusses future directions.

All notations used in the paper are shown in Table 1.

2. Finding k Nearest QFRs Using Ward Method.

2.1. Ward method. Clustering [29,30] is the process of grouping a set of objects in such
a way that objects in the same group (called a cluster) are more similar than those in other
groups (clusters). As a hierarchical clustering method, the Ward method measures the
distance between two classes based on the increment of the sum of squares of deviations
(SSD). Assuming n samples are categorized into k classes G1, G2, . . ., Gk, Xit is the vector
composed of the relevant variables of the i sample in Gt, and nt denotes the number of
samples in Gt. Xt is the center of gravity of Gt. The SSD of Gt can be expressed as:

St =

nt
∑

i=1

(

Xit −Xt

)T (

Xit −Xt

)

(1)

Assuming two classes Gp and Gq are merged into a new class Gr, SSD will increase. Based
on the increment of SSD, the distance between Gp and Gq can be calculated as:

Dpq =
√

Sr − Sp − Sq (2)

This distance is called the Ward distance in the paper.

2.2. Ward distance between predicates. In CEWM, we consider each predicate as a
sample in the Ward method and define the Ward distance between predicates firstly, and
then, the k nearest QFRs with a new predicate can be found using the Ward method. For
a predicate p = (xs ≤ as ≤ ys) ∧ · · · ∧ (xe ≤ ae ≤ ye), the vector composed of its location
variables can be expressed as:

Xp = (xs, ys, · · · , xe, ye)
T (3)

Supposing the classes Gp1
and Gp2

contain the predicate p1 = (xs1 ≤ as ≤ ys1)∧· · ·∧(xe1 ≤
ae ≤ ye1) and the predicate p2 = (xs2 ≤ as ≤ ys2) ∧ · · · ∧ (xe2 ≤ ae ≤ ye2) respectively.

1080 X. LIN, X. ZENG, J. LIU AND W. CHEN

Table 1. Notations

basic notations meanings

min(x), max(x) the minimum and the maximum of the data set x

|x|
the usual Euclidean volume of the area x when the data is real-valued;
for discrete data, |x| denotes the number of discrete points that lie in x.

r and its
subscripted forms

relation

t and its
subscripted forms

tuple

a and its
subscripted forms

attribute

q and its
subscripted forms

query

p and its
subscripted forms

predicate: a predicate p has the form (xs ≤ as ≤ ys)∧· · ·∧(xe ≤ ae ≤ ye)
where as, . . . , ae are the different attributes in one relation. Given a
predicate p, if it is just submitted and will be executed soon, p is called
a new predicate; if p has been executed and the QFR of p has been
collected, p is called an executed predicate.

h and its
subscripted forms

histogram

notations related

to an attribute
meanings

d(a) the value range of a

d(b, a) the value range of a which is covered by b
d(p, a) the value range of a where p is true

notations related

to a bucket
meanings

d(b)
the value range of b: for a bucket b of h over the attributes as+1, . . . , as+k

in the relation r, d(b) = [min(d(b, as+1)), max(d(b, as+1))] ∗ · · · ∗
[min(d(b, as+k)), max(d(b, as+k))]

v(b) the frequency of b, i.e., the number of tuples which fall in b

notations related

to a histogram
meanings

d(h)

the value range of h: a k-dimensional histogram h over the attributes
as+1, . . ., as+k in the relation r is obtained by partitioning the value
space [min(d(as+1)),max(d(as+1))] ∗ · · · ∗ [min(d(as+k)),max(d(as+k))]
into one or more buckets and records the number of tuples falling in
each bucket. d(h) = [min(d(as+1)),max(d(as+1))] ∗ · · · ∗ [min(d(as+k)),
max(d(as+k))]

B(h) the bucket set composed of all buckets of h

notations related

to a predicate
meanings

d(p)
the value range of p: for a p = (xs ≤ as ≤ ys) ∧ · · · ∧ (xe ≤ ae ≤ ye),
d(p) = [min(d(p, as)),max(d(p, as))] ∗ · · · ∗ [min(d(p, ae)),max(d(p, ae))]

s(p)
The dimension of p: for a p = (xs ≤ as ≤ ys)∧ · · · ∧ (xe ≤ ae ≤ ye), s(p)
denotes the number of attributes as, · · · , ae

qfr(p)
the QFR of p: qfr(p) = (p, np,mp) where np is the real number of tuples
satisfying p, and mp is the executing moment of p

CARDINALITY ESTIMATION APPLYING MICRO SELF-TUNING HISTOGRAM 1081

Simultaneously, the class Gp1p2
contains both p1 and p2. Based on (1), (2) and (3), the

Ward distance between p1 and p2 can be defined as:

Dp1p2
=

√

Sp1p2
− Sp1

− Sp2
=

√

√

√

√

2
∑

i=1

(

Xpi
−Xp1p2

)T (

Xpi
−Xp1p2

)

(4)

2.3. Algorithm of finding k nearest QFRs. Given a new predicate pn1 and the QFRs
qfr(p1), . . . , qfr(pn) corresponding to the executed predicates p1, . . . , pn, the algorithm of
finding k (1 ≤ k ≤ n) nearest QFRs is composed of the following four steps:

Step 1: Categorize pn1 and p1, . . . , pn into n+1 classes Gpn1
, Gp1

, . . ., Gpn
and each class

only contains one predicate;
Step 2: Merge Gpn1

with every one of Gp1
, . . ., Gpn

respectively and calculate the Ward
distances Dpn1px

for x = 1, . . . , n according to (4).
Step 3: Sort Dpn1px

for x = 1, . . . , n to get the ascending QFR sequence.
Step 4: Configure k value. The detail can be found in Section 3.4. The top k QFRs in

the ascending QFR sequence are the k nearest QFRs with pn1.
The pseudo-codes of above steps are shown as Algorithm 1.

Algorithm 1: finding k nearest QFRs with the new predicate pn1

fkqfr(pn1, p[1 · · ·n])
1 Gpn1 ← pn1

2 for (each i ∈ [1 · · ·n]) do
3 Gp[i] ← p[i]
4 wd[i]← calWardDis(Gpn1, Gp[i]) //calculating Ward distances
5 loc← sort(wd[1], . . . , wd[n]) //sorting Ward distances
6 k ← configK(pn1, p[1 · · ·n], loc[1 · · ·n]) //configuring k, elaborated in Algorithm 2
7 return loc[1 · · ·k]

For example, a 2-dimensional new predicate pn1 and ten executed predicates p1, . . . , p10

are shown in Figure 1. The new predicate is shown as a grey rectangle and the rectangles

Figure 1. A new predicate and ten executed predicates

1082 X. LIN, X. ZENG, J. LIU AND W. CHEN

with dashed borders denote the executed predicates. Configure k = 3, the executed pred-
icates corresponding to the k nearest QFRs with pn1 are shown as the rectangles with
bold solid borders. They can be efficiently obtained by Algorithm 1.

2.4. The choice of k value. Using Algorithm 1, the k nearest QFRs with a new pred-
icate can be found. However, k value must be chosen carefully. For an actual database,
especially an OLTP system, the query workload often shows a certain skewed distribution
feature where some tuples are frequently queried but many tuples are not [3,31]. Figure
2 shows a skewed query workload example in a 2-dimensional space. Each predicate is
denoted by a rectangle. The area surrounded by a rectangle with bold solid borders is
more frequently queried than the other areas.

Figure 2. A skewed query workload example

For a new predicate locating in the frequently queried areas, it is common that some
executed predicates can be found whose value range union can cover the value range of
the new predicate. In this case, the choice of k value should correspond to a minimum
necessary predicate set. For the new predicates locating in the infrequently queried areas,
we configure an upper limit of k value to avoid appearing a micro histogram with large
scale. In summary, for a new predicate p, the k value can be chosen as follows:

k = min (Cp, UL) (5)

In (5), Cp is a positive integer and can be various for different predicates. And UL is
the upper limit of k value which can be adjusted in the running time according to the
real-time query workload. Cp and UL fulfill Cp < UL.

When k = min(Cp, UL) = Cp, the top Cp QFRs in the ascending QFR sequence
obtained in Algorithm 1 fulfill: (1) the value range union of the corresponding Cp executed
predicates can cover d(p); (2) the value range union of the corresponding Cp− 1 executed
predicates cannot cover d(p). When k = min(Cp, UL) = UL, the value range union of
the UL− 1 executed predicates corresponding to the top UL− 1 QFRs in the ascending
QFR sequence obtained in Algorithm 1 cannot cover d(p).

For a new predicate pn1, the drilling hole operation [25] will be executed to calculate k
value. The pseudo-codes of configuring k value are shown as Algorithm 2.

CARDINALITY ESTIMATION APPLYING MICRO SELF-TUNING HISTOGRAM 1083

Algorithm 2: configuring k value for the new predicate pn1

configK(pn1, p[1 · · ·n], loc[1 · · ·n])
1 k ← UL // UL is the upper limit of k
2 ucas ← ucas ∪ ucan1 //the array ucas stores all uncovered areas inside d(pn1) accor-

ding to the k executed predicates. It is initialized with the area ucan1 covering the
whole d(pn1).

3 for (each i ∈ [1 · · ·UL− 1]) do
4 if (|ucas| == 0)
5 k ← i
6 break
7 else
8 tempUcas ← Ø
9 for (each uca ∈ ucas) do
10 if (duca ⊆ dp[loc[i]])
11 ucas ← ucas – uca

12 else if (duca ∩ dp[loc[i]] 6= Ø)
13 tempUcas ← tempUcas ∪ holeDrilling (p[loc[i]], uca)
14 ucas ← ucas – uca

15 ucas ← ucas ∪ tempUcas

16 return k

Figure 3. Process of configuring k value

For the new predicate shown in Figure 1, the process of configuring k value is shown
in Figure 3. The uncovered areas inside the value range of the new predicate are filled
with grey. After the drilling hole operations according to 3 executed predicates, no any
uncovered areas can be found. Therefore, the k value can be configured as 3.

3. Constructing Micro Histogram. A micro histogram is constructed for the predi-
cate p based on its k nearest QFRs to estimate its cardinality.

3.1. Micro histogram and global histogram. A micro histogram is a histogram only
covering a local of the value ranges of the queried attributes. In contrast, a histogram
covering the entire value ranges of the queried attributes is called a global histogram.

1084 X. LIN, X. ZENG, J. LIU AND W. CHEN

The reason that we adopt the micro histogram but not the global histogram in CEWM
is: 1) the cardinality of a predicate is only decided by the data distribution of its neigh-
borhood but not the entire value ranges of the queried attributes; 2) it is more efficient to
construct and maintain a micro histogram because the number of QFRs participating in
the construction is very limited; 3) the changes of the underlying data can be embedded
into a micro histogram in a more timely manner.

3.2. Constructing micro histogram. For a multi-dimensional micro histogram h con-
structed over a certain local of the value ranges of the attributes as+1, . . . , as+k in the
relation r, each bucket bi ∈ B(h) covers a hyper rectangle with two constant boundaries
in each dimension. Inside each hyper rectangle, there may be some mutually disjoint sub
hyper rectangles which are covered by the other buckets bi1, . . . , bij . We say bi1, . . . , bij

are the children of bi and all buckets in the histogram h compose a tree structure. The
value range of bi can be calculated as follows:

d(bi) = d (Rbi
)− ∪j

x=1d(bix) (6)

Here d(Rbi
) denotes the entire value range of the hyper rectangle covered by bi. An

example of the buckets in a multi-dimensional micro histogram and the corresponding
bucket tree are shown in Figure 4.

Figure 4. A micro histogram and the corresponding bucket tree

Figure 5. Process of generating all buckets in a micro histogram

CARDINALITY ESTIMATION APPLYING MICRO SELF-TUNING HISTOGRAM 1085

For each new predicate pn1 and its k nearest QFRs qfr(p1), . . ., qfr(pk), a micro his-
togram h is initialized with one bucket covering d(p1). And then, for each executed pred-
icate pi (i = 2, . . ., k), CEWM tries to find a bucket b ∈ B(h) which satisfies d(b) = d(pi).
If there is no such bucket, the drilling hole operation will be executed to generate the new
buckets. For the new predicate shown in Figure 1, the process of generating all buckets
in the micro histogram is shown in Figure 5, where the new predicate is shown as a grey
rectangle.

Once the k executed predicates pi (i = 1, . . ., k) are processed and all buckets of h
are generated, the iterative scaling (IS) algorithm [32] will be loaded to calculate the
frequencies of all buckets. The pseudo-codes of constructing a micro histogram are shown
as Algorithm 3.

Algorithm 3: constructing the micro histogram h for the new predicate pn1

constLh(pn1, p[1 · · ·n], loc[1 · · ·k])
1 TBh ← TBh ∪ b0 //The bucket tree TBh is initialized with the bucket b0 covering
the whole d(ploc[1]).
2 for (each i ∈ loc[2 · · ·k]) do
3 if (!srhEqu(TBh, p[i])) //searching the bucket b′ satisfying d(b′) = d(pi)
4 Ttemp ← Ø
5 for (each (b ∈ TBh)&&(db ∩ dp[i] 6= Ø)) do
6 Ttemp ← Ttemp ∪ holeDrilling (p[i], b)
7 TBh ← TBh − b
8 TBh ← TBh ∪ Ttemp

9 h← is (TBh, n(p[loc[1]]) · · ·n(p[loc[k]]) //executing the IS algorithm

4. Cardinality Estimation. Assuming the micro histogram h is constructed to estimate
the cardinality of a new predicate p. For a bucket bi ∈ B(h) satisfying d(p) ∩ d(bi) 6= Ø,
the number of tuples which fall in bi and satisfy p can be estimated as:

estbi
(p) = v(bi) ∗ |d(bi) ∩ d(p)|/|d(bi)| (7)

Based on (7), the cardinality of p can be estimated in three different cases:
Case 1: If there exists the bucket set B′(h) ⊆ B(h) satisfying d(p) ⊆ ∪bi∈B′(h)d(bi), and

for each bi ∈ B′(h), d(p) ∩ d(bi) 6= Ø, the cardinality of p is:

est(p) =
∑

bi∈B′(h)
estbi

(p) (8)

Case 2: If no bucket set B′(h) ⊆ B(h) satisfying d(p) ⊆ ∪bi∈B′(h)d(bi) can be found, but
there exists a bucket set B′′(h) ⊆ B(h) satisfying d(p) ∩ d(bi) 6= Ø for each bi ∈ B′′(h),
the cardinality of p is:

est(p) =
∑

bi∈B′′(h)
estbi

(p) ∗ |d(p)|
/

∑

bi∈B′′(h)
|d(bi) ∩ d(p)| (9)

Case 3: If no any bucket bi ∈ B(h) satisfies d(p) ∩ d(bi) 6= Ø, the cardinality of p is:

est(p) =
∑

bi∈B(h)
v(bi) ∗ |d(p)|

/

∑

bi∈B(h)
|d(bi)| (10)

For example, the cardinalities of the new predicates pn1, pn2 and pn3 in Figure 6 can be
calculated using (8), (9) and (10) respectively.

1086 X. LIN, X. ZENG, J. LIU AND W. CHEN

Figure 6. Cardinality estimations in different cases

Figure 7. QFR updates without query workload changes

5. QFR Update Mechanism. We adopt the following QFR update mechanism in
CEWM: for a new predicate p and its k nearest QFRs, qfr(p) will replace the oldest

one of the k nearest QFRs after p is executed.

Assuming the value ranges of ten successively executed predicates p1 to p10 are shown
in Figure 7(a). We can observe the skewed distribution feature of p1 to p10 and most of
them locate in A1 area. The QFRs qfr(p1) to qfr(p10) are stored into a QFR warehouse
after the executions of p1 to p10.

Subsequently, ten new predicates pn1 to pn10 which have the same distribution feature
with p1 to p10 are executed successively. Based on the QFR update mechanism in CEWM,
the changes of the QFR warehouse are shown in Figure 7(b) to Figure 7(d) respectively
(Some medium statuses are omitted).

We also assume the other ten successively executed new predicates pn11 to pn20 have
the different distribution features with p1 to p10. Based on the QFR update mechanism
in CEWM, the changes of the QFR warehouse are shown in Figure 7(e) to Figure 7(h)
respectively (Some medium statuses are omitted).

CARDINALITY ESTIMATION APPLYING MICRO SELF-TUNING HISTOGRAM 1087

The QFR update mechanism in CEWM can make a micro histogram match not only
the changes of underlying data but also the changes of query workload distribution.

6. Experiments. The experiments are performed on a 3.2GHz Intel CPU machine run-
ning Windows 7 sp1, with 4GB memory and 1TB hard disk. Before analyzing the exper-
imental results, we describe the experimental settings firstly.

6.1. Experimental settings.

6.1.1. Data sets. To test CEWM comprehensively, a real data set [33] and the TPC-H
benchmark [34] with scale factor of 1 are used for the experiments. The distribution of
the former shows skewed feature and the latter is a uniform data set. The details of the
two data sets are described as follows.

Real data set (denoted by ds1): The real data set contains the census data of U.S.
in 1990 which come from the UCI Machine Learning Repository. A relation census 1990
is created in the commercial relation database Oracle 12c to store the data set which
contains 2,458,285 tuples. All experiments are carried out over the attributes income1

and income2.
TPC-H benchmark (denoted by ds2): A relation order is created in the commercial

relation database Oracle 12c to store 1,500,000 tuples which are generated by the DBGEN
program. All experiments are carried out over the attributes o orderdate and o orderId.

6.1.2. Query workloads. In our experiments, two query workload models qw1 and qw2

which follow the Zipfian distribution and the Gaussian distribution are adopted. Based
on the feature of the two distributions, they can be considered as the approximate de-
scriptions of the skewed query workload in a practical database.

6.1.3. Metrics. Firstly, we can define re(p), the relative error of a predicate p using (11):

re(p) =
abs(n(p)− est(p))

n(p)
(11)

Based on relative errors, we define the relative accuracy rate, rar(ce), of a cardinality
estimation solution ce as the criterion to measure the accuracy of a cardinality estimation
solution:

rar(ce) =
cns(ce)

tn(ce)
(12)

where ce denotes a cardinality estimation solution, cns(ce) denotes the number of pred-
icates whose relative errors are lower than s, and tn(ce) denotes the total number of
predicates. In our experiments, we configure s = 0.2 and consider a predicate whose
relative error is lower than 0.2 as a correctly estimated predicate.

6.1.4. Programs. In our experiments, the comparison solutions include CEWM proposed
in the paper and the representative reactive solution ISOMER.

CEWM and ISOMER are realized under JDK 1.6.0 10. For CEWM, the initial capacity
of QFR warehouse and the upper limit of k value are configured as 300 and 10 respectively.
For ISOMER, the space budget of histogram affects the experimental results remarkably.
Therefore, we compare two kinds of ISOMER solutions – the ISO2 solution with 200 space
budgets of histogram, and the ISO3 solution with 300 space budgets of histogram.

1088 X. LIN, X. ZENG, J. LIU AND W. CHEN

6.2. Static experiments. At the preparation stage of each static experiment based on
one data set and one query workload, 300 training predicates will be executed and the
corresponding QFRs will be stored into the QFR warehouse for CEWM. And for ISO2
and ISO3, the initial histograms with about 200 and 300 buckets will be constructed using
150 and 200 training predicates.

And then, in the formal experimental stage, 1,000 validation predicates with the same
distribution feature as the training predicates will be executed using different solutions.
During the execution of the 1,000 validation predicates, for each 100 ones, the relative
accuracy rate and the overall execution time will be recorded for each solution.

The results of the static experiments based on ds1 and qw1 are shown in Figures 8(a) and
8(b). From Figure 8(a), we can see that CEWM shows excellent accuracy of cardinality
estimation and the relative accuracy rates of CEWM are always higher than 80 percent.

For ISOMER, the accuracy of ISO3 is better than the one of ISO2 due to the improved
space budget of histogram, but the overall accuracy level of ISOMER is about 20 to 30
percent lower than CEWM.

From Figure 8(b), we can also see the superiority of CEWM in efficiency. CEWM can
finish the cardinality estimations of each 100 predicates within 10 seconds in general.

However, for ISOMER, the time costs are 10 to 50 multiples of CEWM due to the
periodical reconstructions of global histograms. Furthermore, as the space budgets of
histograms increase, the efficiency of ISOMER deteriorates rapidly. Although the relative
accuracy rates of the ISO3 solution show about 10 percent improvements compared with
the ISO2 solution, the efficiencies drop 70 percent averagely.

Figure 8. Static experiments

CARDINALITY ESTIMATION APPLYING MICRO SELF-TUNING HISTOGRAM 1089

Figure 8(c) and Figure 8(d) show the results of the static experiments based on ds1

and qw2. Using a query workload following the 2-dimensional Gaussian distributions, the
changing tendencies of the relative accuracy rate and the execution time are similar to
the ones in Figure 8(a) and Figure 8(b). CEWM is still accurate, stable and efficient.
And the fluctuation of ISOMER is still obvious.

Figure 8(e) and Figure 8(f) show the results of the static experiments based on ds2 and
qw1. When the experiments are carried out over a uniform data set, the relative accuracy
rates of all solutions improve to different degrees. The overall accuracy level of CEWM
is still higher than ISOMER. Most of the relative accuracy rates of CEWM exceed 95
percent. And the relative accuracy rates of the ISO3 solution are between 90 percent and
95 percent.

Over the uniform underlying data, CEWM can always provide the accurate cardinality
estimations with only 5 percent to 10 percent time costs of the ISO2 solution.

The results of the static experiments based on ds2 and qw2 are shown in Figure 8(g)
and Figure 8(h). The tiny difference of skewness between ds1 and ds2 is the main reason
leading to the slight deterioration of CEWM in accuracy and stability over ds2.

Compared with ISOMER, CEWM can finish cardinality estimations more accurately
in much shorter time. However, the practicability of a solution must be further tested
based on the dynamic experiments.

6.3. Dynamic experiments. The preparation stage and the formal stage of each dy-
namic experiment are similar to the static experiment, and 300 training predicates and
1,000 validation predicates will be executed in the two stages respectively. The differences
between the static experiment and the dynamic experiment are the changes of underlying
data and query workloads.

In each dynamic experiment, as the main process of each cardinality estimation solution
is being executed, another data updating process is running simultaneously. For the data
set ds1, the data updating process contains two refresh functions INS and DEL, which
can insert 10 percent new tuples into the relation census 1990 and delete 10 percent old
tuples from the relation census 1990 respectively. Both INS and DEL will be executed
once before each 100 of the 1,000 validation predicates are executed, which can ensure
at least 20 percent of the data in ds1 can be updated. For the data set ds2, the refresh
functions RF1 and RF2 which are defined in the TPC-H benchmark will be used to finish
the update of the underlying data. Before each 100 of the 1,000 validation predicates are
executed, RF1 and RF2 will be executed 100 times continuously to ensure at least 20
percent of the data in ds2 can be updated.

As the underlying data are updated by the refresh functions, the query workloads are
also changed. For the data set ds1, each 100 of the 1,000 validation predicates will satisfy
the 2-dimensional Zipfian distribution with the new centers for the 5 mutually disjoint
parts. And for the data set ds2, each 100 of the 1,000 validation predicates will satisfy
the superposition of 2-dimensional Gaussian distributions with 3 new median pairs.

The results of the dynamic experiments based on ds1 and qw1 are shown in Figure 9(a)
and Figure 9(b). Compared with the results of the corresponding static experiments in
Figure 8(a) and Figure 8(b), we can observe the relative accuracy rates of all solutions
decline due to the changes of underlying data and query workloads. For CEWM, the
average of the relative accuracy rates declines from 85.8 percent to 75.9 percent. And
the ones of the ISO2 solution and the ISO3 solution also decline from 55.4 percent and
63.1 percent to 43.3 percent and 46.6 percent respectively. The difference between the
accuracies of CEWM and ISOMER becomes much larger. Although the high time cost

1090 X. LIN, X. ZENG, J. LIU AND W. CHEN

Figure 9. Dynamic experiments

is paid out, the ISO3 solution can only provide accurate cardinality estimations for fewer
than half of the validation predicates under the changing data and query workloads.

The difference between the maximum and the minimum of the relative accuracy rates
of CEWM increases from 5.9 percent to 11.3 percent, which show that the changing
underlying data and query workloads bring larger fluctuations. However, compared with
ISOMER, CEWM is still a much more stable solution. Furthermore, CEWM can always
provide accurate cardinality estimations for more than 70 percent validation predicates
under the changing data and query workloads.

Besides accuracy, the efficiency superiority of CEWM can still be observed from Figure
9(b). The changes of underlying data and query workloads have little effect on the effi-
ciency of CEWM and ISOMER. CEWM can always provide relatively accurate cardinality
estimations with only 5 percent to 10 percent time costs of the ISO2 solution.

Apparently, CEWM is more adaptive to the changes than ISOMER, which owe to the
micro histogram and the QFR update mechanism adopted in CEWM.

Figure 9(c) and Figure 9(d) show the results of the dynamic experiments based on ds1

and qw2. Using a query workload following the 2-dimensional Gaussian distribution, the
experimental results are similar with the ones in Figure 9(a) and Figure 9(b).

Figure 9(e) and Figure 9(f) show the results of the dynamic experiments based on
ds2 and qw1. Most relative accuracy rates of CEWM are higher than 90 percent. The
instability is always a serious deficiency of ISOMER. For the 600th to the 700th predicates,
the relative accuracy rate of the ISO3 solution is only 69 percent, but for the 400th to
the 500th predicates, the value is 86 percent. ISOMER cannot stably provide accurate

CARDINALITY ESTIMATION APPLYING MICRO SELF-TUNING HISTOGRAM 1091

cardinality estimation even for the uniform underlying data. From Figure 9(f), we can
still observe the superiority of CEWM in efficiency.

The results of the dynamic experiments based on ds2 and qw2 in Figure 9(g) and Figure
9(h) show more fluctuations than the ones shown in Figure 9(e) and Figure 9(f).

In summary, CEWM can adapt to the changes of the underlying data and the query
workloads much better than ISOMER.

6.4. Parameter influence experiments. During the execution of CEWM, two param-
eters can be configured freely, i.e., the initial capacity of the QFR warehouse and the
upper limit of k value. Whether the configurations of the two parameters influence the
performance of CEWM should be tested by the corresponding experiments.

To test the influence of the initial capacity of the QFR warehouse, we configure it as
100, 300, 500, 700 and 900 (QFRs) respectively. And then the results of the dynamic
experiments based on ds1 and qw1 are shown in Figure 10(a) and Figure 10(b), where ic

denotes the initial capacity of the QFR warehouse. When the initial capacity of the QFR
warehouse equals 100, the relative accuracy rate of CEWM is a little lower. When the
initial capacity of the QFR warehouse increases to 300 or more, we cannot observe the
apparent differences between the relative accuracy rates corresponding to the different
initial capacities of the QFR warehouse. By analyzing the detailed cardinality estimation
result of each validation predicate, we conclude that 100 is not an enough initial capacity of
the QFR warehouse for CEWM. However, when the initial capacity of the QFR warehouse
increases to 300, the accuracy of cardinality estimation can be fully guaranteed.

From Figure 10(b), we know the efficiency of CEWM cannot be influenced by the initial
capacity of the QFR warehouse remarkably.

Figure 10(c) and Figure 10(d) show the experimental results of the initial capacity of
the QFR warehouse based on ds1 and qw2. No remarkable difference can be observed from
the results with the ones in Figure 10(a) and Figure 10(b).

We also carry out the experiments aiming at the influence of the upper limit of k value
on CEWM. The results of the dynamic experiments based on ds1 and qw1 are shown in
Figure 11(a) and Figure 11(b). And Figure 11(c) and Figure 11(d) show the results of
the dynamic experiments based on ds1 and qw2. In Figure 11, the upper limit of k value
is configured as 10, 20, 30, 40 and 50 respectively. We cannot see obvious difference from
the relative accuracy rates under different upper limits of k value.

However, from Figure 11(b) and Figure 11(d), we can see the configuration of different
upper limits of k value mainly influence CEWM on efficiency. As the increase of the upper

Figure 10. Experiments for initial capacity

1092 X. LIN, X. ZENG, J. LIU AND W. CHEN

Figure 11. Experiments for different k

limit of k value, the average time of cardinality estimation of each predicate increases from
90ms to 650ms. Apparently, the increments of time cost originate from the cardinality
estimations of the predicates locating in the infrequently queried areas. However, as we
know, the overall accuracy of CEWM is much more decided by the cardinality estima-
tions for the predicates locating in the frequently queried areas but not the ones in the
infrequently queried areas. Therefore, it is unnecessary to adopt an upper limit of k value
more than 10.

In summary, the performance of CEWM is not seriously influenced by the initial capac-
ity of the QFR warehouse and the upper limit of k value. In general, CEWM can work
well under the initial capacity of the QFR warehouse 300, and the upper limit of k value
10.

7. Conclusion. In the paper, a new cardinality estimation solution using micro self-
tuning histograms is proposed. The Ward method is introduced to find k nearest QFRs
for a new predicate, and the micro self-tuning histogram is constructed based on the k
nearest QFRs to alleviate the issue of “curse of dimension” and improve the efficiency of
the solution. The data and workload changes can be timely reflected by the micro self-
tuning histogram. The complex and cumbersome operations in the process of meeting
a space budget are eliminated completely, which make the whole solution reliable and
dexterous. Extensive comparison experiments have shown the outstanding performance
of our solution.

In the future, we will use the application framework in the paper to improve the car-
dinality estimation of join predicates which are related to multiple attributes in different
relations.

Acknowledgment. This work is supported in part by the Research Funds from the Sci-
ence and Technology Plan of Hebei Province under Grant No. 15210334, No. 16210348,
and the Young Science and Technology Research Foundation for the Colleges and Uni-
versities of Hebei Province under Grant No. QN2015133. We would like to thank the
anonymous reviewers for their constructive suggestions.

REFERENCES

[1] R. P. Kooi, The Optimization of Queries in Relational Databases, 1980.

CARDINALITY ESTIMATION APPLYING MICRO SELF-TUNING HISTOGRAM 1093

[2] M. Muralikrishna and D. J. Dewitt, Equi-depth histograms for estimating selectivity factors for multi-
dimensional queries, ACM SIGMOD International Conference on Management of Data, Chicago, IL,
pp.28-36, 1988.

[3] Y. E. Ioannidis and V. Poosala, Balancing histogram optimality and practicality for query result
size estimation, Acm Sigmod Record, vol.24, no.2, pp.233-244, 1995.

[4] G. Piatetskyshapiro and C. Connell, Accurate estimation of the number of tuples satisfying a con-
dition, Sigmod’84, Proc. of Meeting, Boston, MA, pp.256-276, 1984.

[5] V. Poosala, P. J. Haas, Y. E. Ioannidis et al., Improved histograms for selectivity estimation of range
predicates, Acm Sigmod Record, vol.25, no.2, pp.294-305, 1999.

[6] H. To, K. Chiang and C. Shahabi, Entropy-based histograms for selectivity estimation, International
Conference on Information and Knowledge Management, pp.1939-1948, 2013.

[7] L. Ashdown, M. Colgan and T. Kyte, Oracle Database SQL Tuning Guide 12c Release 1 (12.1),
E49106-05, http://docs.oracle.com/database/121/TGSQL/E49106-05.pdf, 2014.

[8] D. R. Augustyn, Applying Advanced Methods of Query Selectivity Estimation in Oracle DBMS,
Man-Machine Interactions, Springer Berlin Heidelberg, pp.585-593, 2009.

[9] IBM Corp., DB2 Version 10.5 for Linux, UNIX and Windows English manuals, http://public.dhe.
ibm.com/ps/products db2/info/vr105/pdf/en US/db2 v105 books en US.zip, 2014.

[10] M. Stillger, G. M. Lohman, V. Markl et al., LEO – DB2’s LEarning optimizer, International Con-
ference on Very Large Data Bases, pp.19-28, 2001.

[11] S. Agrawal, S. Chaudhuri, L. Kollar et al., Database tuning advisor for Microsoft SQL Server 2005,
ACM SIGMOD International Conference on Management of Data, Baltimore, MO, USA, pp.1110-
1121, 2004.

[12] V. Poosala and Y. E. Ioannidis, Selectivity estimation without the attribute value independence
assumption, VLDB, pp.486-495, 1997.

[13] D. Gunopulos, G. Kollios, V. J. Tsotras et al., Approximating multi-dimensional aggregate range
queries over real attributes, Acm Sigmod Record, vol.29, no.2, pp.463-474, 2001.

[14] A. Deshpande, M. Garofalakis and R. Rastogi, Independence is good: Dependency-based histogram
synopses for high-dimensional data, ACM SIGMOD International Conference on Management of
Data, pp.199-210, 2001.

[15] N. Thaper, S. Guha, P. Indyk et al., Dynamic multidimensional histograms, ACM SIGMOD Inter-
national Conference on Management of Data, Madison, WI, pp.428-439, 2002.

[16] H. Wang and K. C. Sevcik, A multi-dimensional histogram for selectivity estimation and fast approx-
imate query answering, Conference of the Centre for Advanced Studies on Collaborative Research,
Toronto, Ontario, Canada, pp.328-342, 2003.

[17] L. Baltrunas, A. Mazeika and M. Bohlen, Multi-dimensional histograms with tight bounds for the
error, The 10th International Database Engineering and Applications Symposium, pp.105-112, 2007.

[18] J. S. Vitter and M. Wang, Approximate computation of multidimensional aggregates of sparse data
using wavelets, Acm Sigmod Record, vol.28, no.2, pp.193-204, 1999.

[19] K. Chakrabarti, M. N. Garofalakis, R. Rastogi et al., Approximate query processing using wavelets,
International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc., 2000.

[20] E. J. Stollnitz, T. D. Derose and D. H. Salesin, Wavelets for Computer Graphics: Theory and
Applications, 1996.

[21] F. Dubeau, S. Elmejdani and R. Ksantini, Non-uniform Haar wavelets, Applied Mathematics &
Computation, vol.159, no.3, pp.675-693, 2004.

[22] A. Aboulnaga and S. Chaudhuri, Self-tuning histograms: Building histograms without looking at
data, ACM SIGMOD International Conference on Management of Data, pp.181-192, 2001.

[23] L. Lim, M. Wang and J. S. Vitter, SASH: A self-adaptive histogram set for dynamically changing
workloads, International Conference on Very Large Data Bases, pp.369-380, 2003.

[24] N. Bruno, S. Chaudhuri and L. Gravano, STHoles: A multidimensional workload-aware histogram,
Acm Sigmod Record, vol.30, no.2, pp.211-222, 2001.

[25] U. Srivastava, P. J. Haas, V. Markl et al., ISOMER: Consistent histogram construction using query
feedback, International Conference on Data Engineering, p.39, 2006.

[26] X. Lin, X. Zeng and X. Pu, CETLH: A new histogram-based cardinality estimate approach, Inter-
national Journal of Innovative Computing Information and Control, vol.11, no.1, pp.123-135, 2015.

[27] R. Viswanathan, P. Jain, S. Laxman et al., A learning framework for self-tuning histograms, Com-
puter Science, 2011.

1094 X. LIN, X. ZENG, J. LIU AND W. CHEN

[28] A. Khachatryan, E. Muller, C. Stier et al., Improving accuracy and robustness of self-tuning his-
tograms by subspace clustering, IEEE Trans. Knowledge & Data Engineering, vol.27, no.9, p.1,
2015.

[29] J. A. Hartigan, Clustering algorithms, Applied Statistics, vol.23, no.6, pp.38-41, 1975.
[30] M. Mittal, R. K. Sharma and V. P. Singh, Modified single pass clustering with variable threshold

approach, International Journal of Innovative Computing Information and Control, vol.11, no.1,
pp.375-386, 2015.

[31] R. Stoica, J. J. Levandoski and P. A. Larson, Identifying hot and cold data in main-memory
databases, International Conference on Data Engineering, pp.26-37, 2013.

[32] J. N. Darroch and D. Ratcliff, Generalized iterative scaling for log-linear models, Annals of Mathe-
matical Statistics, vol.43, no.5, pp.1470-1480, 1972.

[33] D. Aha and P. Murphy, UCI Repository of Machine Learning Databases, http://archive.ics.uci.edu
/ml/index.html, 2013.

[34] Transaction Processing Performance Council, TPC Benchmark H Standard Specification Revision
2.17.0, http://www.tpc.org/tpch/spec/tpch2.17.0.pdf, 2014.

