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Abstract. This paper is devoted to investigating the problem of controlling chaos in

a 3D autonomous chaotic dynamical system. Time-delayed feedback control method is

applied to suppressing chaos to unstable equilibria or unstable periodic orbits. By adding

the different feedback control term to the first, second equation of the 3D autonomous

chaotic dynamical system, the stability and the occurrences of Hopf bifurcation of the

controlled dynamical model are discussed and some sufficient conditions which ensure

the stability and the occurrences of Hopf bifurcation are established. Some numerical

simulations are presented to support theoretical predictions. Finally, main conclusions

are given.

Keywords: 3D autonomous system, Chaos, Stability, Hopf bifurcation, Time-delayed
feedback

1. Introduction. Chaos originates from the nonlinear interaction of system and is very
sensitive to the configuration and initial condition of system. Chaotic systems play an
important role in many fields such as secure communications, information processing,
and high-performance circuit design for telecommunications [1]. During the last decade,
many methods have been proposed to control chaos, i.e., to stabilize the chaotic dynamical
systems to period motion, when chaos is not unwanted or undesirable. Recently, many
excellent books were given by Moon [2], Chen and Dong [3], and Kapitaniak [4]. Moreover,
numberous outstanding reports were presented by EI Naschie [5] and Kapitaniak et al.
[6-21,28-31]. In 2013, Wang and Chen [22] have found a new chaotic attractor from the
following 3D autonomous system







ẋ = y,

ẏ = z,

ż = −y + 3y2 − x2 − xz − a,

(1)

where a is real constant. System (1) is chaotic. Figure 1 shows the time history plots of
t − x, t − y and t − z, phase plots x − y, x − z and y − z and space plots of x − y − z.

The aim of this paper is to investigate the dynamics of the 3D autonomous system
(1) by considering the effect of delayed feedbacks. By making a detailed analysis on the
characteristic equation of linearized system of the model, we theoretically prove that the
Hopf bifurcation occurs in this model. Numerical results support the theoretical findings.
The main contributions of this paper lie in four aspects. (i) The chaotic behavior of the
3D autonomous chaotic dynamical system has been controlled by applying three different
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Figure 1. The new chaotic attractor of system (1) with a = 0.05 and the
initial value is (0.5, 0.5, 0.5).

feedback controllers. (ii) We establish some new sufficient conditions which guarantee the
stability and the occurrences of Hopf bifurcation of the 3D system. (iii) The obtained
results of this article complement some previous results of [6,18,19,21,23,28]. (iv) The
control method of this paper can be applied to controlling some other similar chaotic
systems.

2. Controlling Chaos via Feedback Control Methods. In this section, we shall
apply the conventional feedback method to the dynamical system (1). Our aim is to
drag the chaotic trajectories to the equilibrium or periodic orbits. Following the idea of
Pyragas [23], we add two time-delayed forces k1[x(t)−x(t− τ1)] and k2[y(t)−y(t− τ2)] to
the first and the second equations of system (1), respectively, and then system (1) reads
as







ẋ = y + k1(x(t) − x(t − τ1)),
ẏ = z + k2(y(t) − y(t− τ2)),
ż = −y + 3y2 − x2 − xz − a.

(2)

If

(H1) a > 0,

then system (1) has two symmetrical equilibria: (
√

a, 0, 0) and (−√
a, 0, 0). If a = 0,

then system (1) has one equilibrium: (0, 0, 0). a < 0, then system (1) has no equilibrium,
but system (1) still generates a chaotic attractor.

In the following, we only consider the dynamical behavior of the equilibrium (x∗, 0, 0) =
(
√

a, 0, 0) of system (2). As for another equilibrium, similar analysis can be carried out.
Here we omit it. Now we consider three cases.

Case 1. Delayed feedback on the first equation

In this case, we will investigate the system (2) in which the variable x is influenced by
the delayed feedback with k2 = 0, i.e., system (2) takes the form







ẋ = y + k1(x(t) − x(t − τ1)),
ẏ = z,

ż = −y + 3y2 − x2 − xz − a.
(3)

The linearized system of Equation (3) around (x∗, 0, 0) is given by






ẋ = k1x − k1x(t − τ1) + y,

ẏ = z,

ż = −2x∗x − y − x∗z.
(4)
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The characteristic equation of (4) takes the form

λ3 + a2λ
2 + a1λ + a0 + (b2λ

2 + b1λ + b0)e
−λτ1 = 0, (5)

where a0 = −2x∗ − k1, a1 = 1 − k1x
∗, a2 = x∗ − k1, b0 = −k1, b1 = −k1x

∗, b2 = −k1. In
the sequel, we will deal with the distribution of roots of the transcendental equation (5).

Lemma 2.1. [24] For the transcendental equation

P (λ, e−λτ1, . . . , e−λτm) = λn + p
(0)
1 λn−1 + · · ·+ p

(0)
n−1λ + p(0)

n

+
[

p
(1)
1 λn−1 + · · · + p

(1)
n−1λ + p(1)

n

]

e−λτ1 + · · ·

+
[

p
(m)
1 λn−1 + · · ·+ p

(m)
n−1λ + p(m)

n

]

e−λτm = 0,

as (τ1, τ2, τ3, . . . , τm) vary, the sum of orders of the zeros of P
(

λ, e−λτ1 , . . . , e−λτm
)

in the
open right half plane can change, and only a zero appears on or crosses the imaginary
axis.

When τ1 = 0, (5) has the form

λ3 + (a2 + b2)λ
2 + (a1 + b1)λ + a0 + b0 = 0. (6)

It is easy to see that all roots of (6) have a negative real part if the following condition

(H2) a2 + b2 > 0, a0 + b0 > 0, (a2 + b2)(a1 + b1) > a0 + b0

holds. Then the equilibrium point (x∗, 0, 0) is locally asymptotically stable when the
conditions (H1) and (H2) hold.

For ω > 0, iω is a root of (5) if and only if

−ω3i − a2ω
2 + a1ωi + a0 +

(

−b2ω
2 + b1ωi + b0

)

e−ωτi = 0.

Separating the real and imaginary parts gives
{

(b0 − b2ω
2) cos ωτ1 + b1ω sin ωτ1 = a2ω

2 − a0,

b1ω cos ωτ1 +
(

b0 − b2ω
2
)

sin ωτ1 = ω3 − a1ω.
(7)

It follows from (7) that
(

b0 − b2ω
2
)2

+ (b1ω)2 =
(

a2ω
2 − a0

)2
+
(

ω3 − a1ω
)2

,

which is equivalent to

ω6 + p1ω
4 + q1ω

2 + r1 = 0, (8)

where p1 = a2
2 − b2

2 − 2a1, q1 = a2
1 − 2a0a2 − b2

1 + 2b0b2, r1 = a2
0 − b2

0.

Denote z = ω2, and then (8) takes the following form

z3 + p1z
2 + q1z + r1 = 0. (9)

Let

h(z) = z3 + p1z
2 + q1z + r1. (10)

Song et al. [25] obtained the following results on the distribution of roots of Equations
(5) and (9).

Lemma 2.2. For the polynomial equation (9),
(i) If r1 < 0, then Equation (9) has at least one positive root;
(ii) If r1 ≥ 0 and ∆1 = p2

1 − 3q1 ≤ 0, then Equation (9) has no positive roots;
(iii) If r1 ≥ 0 and ∆1 = p2

1 − 3q1 > 0, then Equation (9) has positive roots if and only

if z∗1 = −p1+
√

∆1

3
and h(z∗1) ≤ 0.
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Suppose that Equation (10) has positive roots. Without loss of generality, we assume
that it has three positive roots, denoted by z1, z2 and z3, respectively. Then Equation (8)
has three positive roots

ω1 =
√

z1, ω2 =
√

z2, ω3 =
√

z3.

By (7), we derive

cos ωkτ1 =
(a2ω

2
k − a0)(b0 − b2ω

2
k) − (ω3

k − a1ωk) b1ωk

(b0 − b2ω
2
k)

2 − (b1ωk)2
.

Thus, if we denote

τ
(j)
1k =

1

ωk

{

arccos

(

(a2ω
2
k − a0)(b0 − b2ω

2
k) − (ω3

k − a1ωk)b1ωk

(b0 − b2ω
2
k)

2 − (b1ωk)2

)

+ 2jπ

}

, (11)

where k = 1, 2, 3; j = 0, 1, 2, . . . , then ±iωk are a pair of imaginary roots of Equation (5)

with τ
(j)
1k . Define

τ10 = τ
(0)
1k0 = min

k∈{1,2,3}

{

τ
(0)
1k

}

, ω0 = ωk0. (12)

The following Lemma 2.3 is taken from Song et al. [25].

Lemma 2.3. For the third degree exponential polynomial equation (5), we have
(i) if r1 ≥ 0 and ∆1 = p2

1 − 3q1 ≤ 0, then all roots with positive real parts of Equation
(5) have the same sum as those of the polynomial Equation (6) for all τ1 ≥ 0;

(ii) if either r1 < 0 or r ≥ 0, ∆1 = p2
1 − 3q1 > 0, z∗1 = −p1+

√
∆1

3
> 0 and h(z∗1) ≤ 0,

then all roots with positive real parts of Equation (5) have the same sum as those of the
polynomial equation (6) for all τ1 ∈ [0, τ10).

Let λ(τ1) = α(τ1) + iω(τ1) be a root of (5) around τ1 = τ
(j)
10

, and α
(

τ
(j)
10

)

= 0 and

ω
(

τ
(j)
10

)

= ωk. Differentiating both sides of (5) with respect to τ1 yields

[

3λ2 + 2a2λ + a1 +
(

2b2λ + b1 − τ1

(

b2λ
λ2 + b1λ + b0

))

e−λτ1

] dλ

dτ1

= λe−λτ1
(

b2λ
2 + b1λ + b0

)

,

which gives
[

dλ

dτ1

]−1

= − 2λ3 + a2λ
2 − a0

λ2 (λ3 + a2λ2 + a1λ + a0)
+

b2λ − b0

λ2(b2λ2 + b1λ + b0)
− τ1

λ
.

Let λ = iωk, τ1 = τ
(j)
1k , and then we have

[

dλ

dτ1

]−1
∣

∣

∣

∣

∣

λ=iωk,τ1=τ
(j)
1k

=
−2ω3

ki − a2ω
2
k − a0

ω2
k (a0 − a2ω

2
k − i (ω3

k − a1ωk))
+

b2ω
2
k + b0

ω2
k (b0 − b2ω

2
k + b1ωki)

− τ
(j)
1k

iωk

.

Then

Re

{

[

dλ

dτ1

]−1
∣

∣

∣

∣

∣

λ=iωk,τ1=τ
(j)
1k

}

= − 1

ω2
k

[

a2
0 − (a2

2 − 2a1)ω
4
k − 2ω6

k

(a0 − a2ω
2
k)

2 + (ω3
k − a1ωk)2

− b2
0 − b2

2ω
4
k

b2
1ω

2
k + (b0 − b2ω

2
k)

2

]

=
2ω6

k + pω4
k − r

ω2
k(b0 − b2ω

2
k)

2 + b2
1ω

2
k

=
3ω4

k + 2pω2
k + q

(b0 − b2ω
2
k)

2 + b2
1ω

2
k

,
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where Re{.} is the real part of ·. We assume that the following condition holds.

(H3) 3ω4
k + 2p1ω

2
k + q1 6= 0.

According to above analysis and the results of Yang [26] and Kuang [27], we have

Theorem 2.1. If (H1) and (H2) hold, then the equilibrium (x∗, 0, 0) of system (3) is
asymptotically stable for τ ∈ [0, τ0). Under the conditions (H1) and (H2), if the condition
(H3) holds, then system (3) undergoes a Hopf bifurcation at the equilibrium (x∗, 0, 0) when

τ1 = τ
(j)
10

, j = 0, 1, 2, . . ..

Case 2. Delayed feedback on the second equation

In this case, we will investigate system (2) in which the variable y is influenced by the
delayed feedback with k1 = 0, i.e., system (2) takes the form







ẋ = y,

ẏ = z + k2(y(t) − y(t− τ2)),
ż = −y + 3y2 − x2 − xz − a.

(13)

The linearized system of Equation (13) around (x∗, 0, 0) is given by






ẋ = y,

ẏ = k2y + z − k2y(t − τ2),
ż = −2x∗x − y − x∗z.

(14)

The characteristic equation of (14) takes the form

λ3 + c2λ
2 + c1λ + c0 +

(

d2λ
2 + d1λ

)

e−λτ2 = 0, (15)

where c0 = −2x∗, c1 = 1 − k2x
∗, c2 = x∗ − k2, d1 = −k2x

∗, d2 = −k2. Next, we will
analyze the distribution of roots of the transcendental equation (15).

When τ2 = 0, (15) reads as

λ3 + (c2 + d2)λ
2 + (c1 + d1)λ + c0 = 0. (16)

All roots of (16) have a negative real part if the following condition

(H4) c2 + d2 > 0, c0 > 0, (c2 + d2)(c1 + d1) > c0

holds. Then the equilibrium point (x∗, 0, 0) is locally asymptotically stable when the
conditions (H1) and (H2) are satisfied.

For ω̃ > 0, iω̃ is a root of (15) if and only if

−ω̃3i − c2ω̃
2 + c1ω̃i + c0 +

(

−d2ω̃
2 + d1ω̃i

)

e−ω̃τ2i = 0.

Separating the real and imaginary parts gives
{

d2ω̃
2 cos ω̃τ2 + d1ω̃ sin ω̃τ2 = c2ω̃

2 − c0,

d1ω̃ cos ω̃τ2 + d2ω̃
2 sin ω̃τ2 = ω̃3 − c1ω̃.

(17)

It follows from (17) that
(

d2ω̃
2
)2

+ (d1ω̃)2 =
(

c2ω̃
2 − c0

)2
+
(

ω̃3 − c1ω̃
)2

,

which is equivalent to
ω̃6 + p2ω̃

4 + q2ω̃
2 + r2 = 0, (18)

where
p2 = c2

2 − d2
2 − 2c1, q2 = c2

1 − 2c0c2 − d2
1, r2 = c2

0.

Denote z̃ = ω̃2, and then (18) takes the following form

z̃3 + p2z̃
2 + q2z̃ + r2 = 0. (19)
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Let

h̃(z̃) = z̃3 + p2z̃
2 + q2z̃ + r2. (20)

Obviously, r2 ≥ 0. Thus it follows from Song et al. [25] that we have the results on the
distribution of roots of Equations (15) and (19) as follows.

Lemma 2.4. For the polynomial equation (19),
(ii) If ∆2 = p2

2 − 3q2 ≤ 0, then Equation (19) has no positive roots;
(iii) If ∆2 = p2

2 − 3q2 > 0, then Equation (19) has positive roots if and only if z̃∗1 =
−p2+

√
∆2

3
and h̃(z̃∗1) ≤ 0.

Suppose that Equation (20) has positive roots. Without loss of generality, we assume
that it has three positive roots, denoted by z̃1, z̃2 and z̃3, respectively. Then Equation
(18) has three positive roots

ω̃1 =
√

z̃1, ω̃2 =
√

z̃2, ω̃3 =
√

z̃3.

By (17), we derive

cos ω̃kτ2 =
d2ω̃

2
k (c0 − c2ω̃

2
k) − (ω3

k − c1ω̃k) d1ω̃k

(−d2ω̃
2
k)

2 − (d1ω̃k)
2

.

Thus, if we denote

τ
(j)
2k =

1

ω̃k

{

arccos

(

d2ω̃
2
k (c0 − c2ω̃

2
k − c0) − (ω̃3

k − c1ω̃k) d1ω̃k

(−d2ω̃
2
k)

2 − (b1ω̃k)
2

)

+ 2jπ

}

, (21)

where k = 1, 2, 3; j = 0, 1, 2, . . . , then ±iω̃k are a pair of imaginary roots of Equation (15)

with τ
(j)
2k . Define

τ20 = τ
(0)
2k0 = min

k∈{1,2,3}

{

τ
(0)
2k

}

, ω̃0 = ω̃k0. (22)

The following Lemma 2.5 is taken from Song et al. [25].

Lemma 2.5. For the third degree exponential polynomial equation (15), we have (i) if
∆2 = p2 − 3q ≤ 0, then all roots with positive real parts of Equation (15) have the same
sum as those of the polynomial equation (16) for all τ2 ≥ 0;

(ii) if ∆2 = p2
2 − 3q2 > 0, z̃∗1 = −p2+

√
∆2

3
> 0 and h̃(z̃∗1) ≤ 0, then all roots with positive

real parts of Equation (15) have the same sum as those of the polynomial equation (16)
for all τ2 ∈ [0, τ20).

Let λ(τ2) = α̃(τ2) + iω̃(τ2) be a root of (15) around τ2 = τ
(j)
20

, and α̃
(

τ
(j)
20

)

= 0 and

ω̃
(

τ
(j)
20

)

= ω̃k. Differentiating both sides of (15) with respect to τ2 yields

[

3λ2 + 2c2λ + c1 +
(

2d2λ + d1 − τ2(d2λ
2 + d1λ)

)

e−λτ2

] dλ

dτ2
= λe−λτ2

(

d2λ
2 + d1λ

)

,

which gives
[

dλ

dτ2

]−1

= − 2λ3 + c2λ
2 − c0

λ2(λ3 + c2λ2 + c1λ + c0)
+

d2λ

λ2(d2λ2 + d1λ)
− τ2

λ
.

Let λ = iω̃k, τ2 = τ
(j)
2k , and then we have

[

dλ

dτ2

]−1
∣

∣

∣

∣

∣

λ=iω̃k,τ2=τ
(j)
2k

=
−2ω̃3

ki − c2ω̃
2
k − c0

ω̃2
k (c0 − c2ω̃

2
k − i (ω̃3

k − c1ω̃k))
+

d2ω̃
2
k

ω̃2
k (−d2ω̃

2
k + d1ω̃ki)

− τ
(j)
2k

iω̃k

.
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Then

Re

{

[

dλ

dτ2

]−1
∣

∣

∣

∣

∣

λ=iω̃k,τ2=τ
(j)
2k

}

= − 1

ω̃2
k

[

c2
0 − (c2

2 − 2c1)ω̃
4
k − 2ω̃6

k

(c0 − c2ω̃
2
k)

2 + (ω̃3
k − c1ω̃k)2

− −d2
2ω̃

4
k

d2
1ω̃

2
k + (−d2ω̃

2
k)

2

]

=
2ω̃6

k + p2ω̃
4
k − r2

ω̃2
k (−d2ω̃

2
k)

2
+ d2

1ω̃
2
k

=
3ω̃4

k + 2p2ω̃
2
k + q2

(−d2ω̃
2
k)

2 + d2
1ω̃

2
k

,

where Re{.} is the real part of ·. We assume that the following condition holds.

(H5) 3ω̃4
k + 2p2ω̃

2
k + q2 6= 0.

In view of above analysis and the results of Yang [26] and Kuang [27], we get

Theorem 2.2. If (H1) and (H4) hold, then the equilibrium (x∗, 0, 0) of system (13) is
asymptotically stable for τ2 ∈ [0, τ20). Under the conditions (H1) and (H4), if the condition
(H5) holds, then system (13) undergoes a Hopf bifurcation at the equilibrium (x∗, 0, 0) when

τ2 = τ
(j)
20

, j = 0, 1, 2, . . ..

Case 3. Delayed feedback on the first and second equations

In this case, we will investigate the system (2) in which the variable x and y are
influenced by the delayed feedback with k1 6= 0, k2 6= 0. For simplicity, we assume that
ki = k (i = 1, 2) and τ = τi (i = 1, 2), then system (2) takes the form







ẋ = y + k(x(t) − x(t − τ)),
ẏ = z + k(y(t) − y(t− τ)),
ż = −y + 3y2 − x2 − xz − a.

(23)

The linearized system of Equation (23) around (x∗, 0, 0) is given by






ẋ = k1x − kx(t − τ) + y,

ẏ = k1x + z − kx(t − τ),
ż = −2x∗x − y − x∗z,

(24)

The characteristic equation of (24) takes the form

λ3 + m2λ
2 + m1λ + m0 + (n2λ

2 + n1λ + n0)e
−λτ + (s1λ + s0)e

−2λτ = 0, (25)

where m0 = −2x∗ − k + k2x∗, m1 = k2 + 1 − 2kx∗, m2 = x∗ − k, n0 = k, n1 = 2kx∗,
n2 = 2k, s0 = −k2x∗, s1 = −k2.

Multiplying eλτ on both sides of (25), it is obvious to obtain

(λ3 + m2λ
2 + m1λ + m0)e

λτ + (n2λ
2 + n1λ + n0) + (s1λ + s0)e

−λτ = 0. (26)

Now we will analyze the distribution of roots of the transcendental equation (26).
When τ = 0, (26) has the form

λ3 + (m2 + n2)λ
2 + (m1 + m1 + s1)λ + m0 + n0 + s0 = 0. (27)

It is easy to see that all roots of (26) have a negative real part if the following condition

(H6) m2 + n2 > 0, m0 + n0 + s0 > 0, (m2 + n2)(m1 + n1) > m0 + n0 + s0

is satisfied. Then the equilibrium point (x∗, 0, 0) is locally asymptotically stable when the
conditions (H1) and (H6) hold.

For ω̄ > 0, iω̄ is a root of (26) if and only if
(

−ω̄3i − m2ω̄
2 + m1ω̄i + m0

)

eω̄τ i +
(

−n2ω̄
2 + n1ω̄i + n0

)

+ (s1ω̄i + s0) e−ω̄τ i = 0.



CHAOS CONTROL IN A 3D AUTONOMOUS SYSTEM 1103

Separating the real and imaginary parts gives
{

(m0 − m2ω̄
2 + s0) cos ω̄τ + (s1ω̄ − m1ω̄ + ω̄3) sin ω̄τ = n2ω̄

2 − n0,

(s1ω̄ + m1ω̄ − ω̄3) cos ω̄τ + (m0 − m2ω̄
2 − s0) sin ω̄τ = −n1ω̄.

(28)

It follows from (28) that

cos ω̄τ =
(n2ω̄ − n0) (m0 − m2ω̄

2 − s0) + n1ω̄(s1ω̄ − m1ω̄ + ω̄3)

(m0 − m2ω̄2)2 − s2
0 − (s1ω̄)2 + (m1ω̄ − ω̄3)2 (29)

and

sin ω̄τ =
(n2ω̄ − n0) (s0ω̄ + m1ω̄ − ω̄3) + n1ω̄ (m0 − m2ω̄

2 + s0)

(m0 − m2ω̄2)2 − s2
0 − (s1ω̄)2 + (m1ω̄ − ω̄3)2 , (30)

which is equivalent to

ω̄12 + θ5ω̄
10 + θ4ω̄

8 + θ3ω̄
6 + θ2ω̄

4 + θ1ω̄
2 + θ0 = 0, (31)

where

θ0 = −n2
0(m0 − s0)

2,

θ1 = 2(m2
1 − 2m0m2 − s2

1)(m
2
0 − s2

0)

−2n0(2m0n0 − n0s0 + n1s1 − m1n1)(m0 − s0),

θ2 = m2
1 − 2m0m2 − s2

1 + 2(m2
2 − 2m1)(m

2
0 − s2

0)

−(2m0n0 − n0s0 + n1s1 − m1n1)
2 − 2n0(n1 − m0n0)(m0 − s0),

θ3 = 2(m2
0 − s2

0) + 2(m2
2 − 2m1)(m

2
1 − 2m0m2 − s2

1)

−(n2s1 + m1n2 − m2n1 − n0)

−2(n1 − m0n0)(2m0n0 − n0s0 + n1s1 − m1n1),

θ4 = [m2
2 − 2m1 + 2(m2

1 − 2m0m2 − s2
1) − (n1 − m0n0)

2

+2n2(n2s1 + m1n2 − m2n1 − n0)]
2,

θ5 = 2(m2
2 − 2m1) − n2

2.

Denote z̄ = ω̄2, and then (28) takes the following form

z̄6 + θ5z̄
5 + θ4z̄

4 + θ3z̄
3 + θ2z̄

2 + θ1z̄ + θ0 = 0. (32)

Let

h̄(z̄) = z̄6 + θ5z̄
5 + θ4z̄

4 + θ3z̄
3 + θ2z̄

2 + θ1z̄ + θ0. (33)

Since θ0 < 0 and limz̄→+∞ h̄(z̄) = +∞, and then (32) has at least one positive root.
Without loss of generality, we assume that (32) has six positive roots, denoted by z̄1, z̄2,
z̄3, z̄4, z̄5, z̄6, respectively. Then Equation (31) has six positive roots

ω̄1 =
√

z̄1, ω̄2 =
√

z̄2, ω̄3 =
√

z̄3, ω̄4 =
√

z̄4, ω̄5 =
√

z̄5, ω̄6 =
√

z̄6.

If we denote

τ
(j)
k =

1

ω̄k

{

arccos

(

(n2ω̄ − n0)(m0 − m2ω̄
2 − s0) + n1ω̄(s1ω̄ − m1ω̄ + ω̄3)

(m0 − m2ω̄2)2 − s2
0 − (s1ω̄)2 + (m1ω̄ − ω̄3)2

)

+ 2jπ

}

,

(34)
where k = 1, 2, 3; j = 0, 1, 2, . . . , then ±iω̄k are a pair of imaginary roots of Equation (26)

with τ
(j)
k . Define

τ0 = τ
(0)
k0 = min

k∈{1,2,3,4,5,6}

{

τ
(0)
k

}

, ω̄0 = ω̄k0. (35)
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Let λ(τ) = ᾱ(τ) + iω̄(τ) be a root of (26) around τ = τ
(j)
0 , and ᾱ

(

τ
(j)
0

)

= 0 and

ω̄
(

τ
(j)
0

)

= ω̄k. Differentiating both sides of (25) with respect to τ yields

[

dλ

dτ

]−1

=
(3λ2 + 2m2λ + m1)e

λτ + 2n2λ + n1 + s1e
−λτ

−λ(λ3 + m2λ2 + m1λ + m0)eλτ + λ(s1λ + s0)e−λτ
− τ

λ
.

Let λ = iω̄k, τ = τ
(j)
k , and then we have

[

dλ

dτ

]−1
∣

∣

∣

∣

∣

λ=iω̄k,τ=τ
(j)
k

=
A1 + iA2

B1 + iB2
− τ

(j)
k

iω̄k

.

where

A1 = (m1 − 3ω̄2
k + s1) cos ω̄kτ

(j)
k − 2m2ω̄k cos ω̄kτ

(j)
k ,

A2 = 2m2ω̄
2
k cos ω̄kτ

(j)
k + (m1 − 3ω̄2

k − s1) sin ω̄kτ
(j)
k + 2n2ω̄k,

B1 = ω
[

(

n1ω̄k − ω̄3
k − s1ω̄k

)

cos ω̄kτ
(j)
k +

(

m0 − m1ω̄
2
k + s0

)

sin ω̄kτ
(j)
k

]

,

B2 = ω
[

(

s0 − m0 + m2ω̄
2
k

)

cos ω̄kτ
(j)
k +

(

s1ω̄k + n1ω̄k − ω̄3
k

)

sin ω̄kτ
(j)
k

]

.

Then

Re







[

dλ

dτ

]−1
∣

∣

∣

∣

∣

λ=iωk,τ=τ
(j)
k







= Re

{

A1 + iA2

B1 + iB2

}

=
A1B1 + A2B2

B2
1 + B2

2

,

where Re{.} is the real part of ·. We assume that the following condition holds.

(H7) A1B1 + A2B2 6= 0.

Based on above analysis and the results of Yang [26] and Kuang [27], we have

Theorem 2.3. If (H1) and (H6) hold, then the equilibrium (x∗, 0, 0) of system (23) is
asymptotically stable for τ ∈ [0, τ0). Under the conditions (H1) and (H6), if the condition
(H7) holds, then system (23) undergoes a Hopf bifurcation at the equilibrium (x∗, 0, 0)

when τ = τ
(j)
0 , j = 0, 1, 2, . . ..

Remark 2.1. Kapitaniak [6] studied the chaos control without feedback, Yassen [18] and
Liao and Lin [19] studied the chaos control with adaptive control method, Song and Wei
[21] considered the control of chaos for Chen’s system by adding a delayed feedback term to
a certain equation, Pyragas [23] analyzed the continuous control of chaos by self-controlling
feedback, Zhou and Yang [28] investigated the chaos control of a 3D autonomous system
with the stability transformation method. In this paper, we investigate the chaos control
with adding different feedback term to different equations to suppress the chaos of the
chaotic system. From this viewpoint, our results are new and complement some previous
results of [6,18,19,21,23,28].

3. Computer Simulations. In this section, we present some numerical results of system
(2) to verify the analytical predictions obtained in the previous section. Let us consider
the following system:







ẋ = y + k1(x(t) − x(t − τ1)),
ẏ = z + k2(y(t) − y(t− τ2)),
ż = −y + 3y2 − x2 − xz − 0.05.

(36)

It is easy to see that system (36) has an equilibrium E(0.2236, 0, 0). For k1 = −2, k2 = 0,
we can obtain that (H1)-(H3) are fulfilled. Let j = 0 and by means of Matlab 7.0 software,
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Figure 2. Chaos vanishes when τ1 = 0.45 < τ10 ≈ 0.5. The equilibrium
E(0.2236, 0, 0) is asymptotically stable. The initial value is (0.24,−0.04,
−0.1).

we derive ω10 ≈ 0.5541, τ10 ≈ 0.5. Thus the equilibrium E(0.2236, 0, 0) is asymptotically
stable for τ1 < τ10 ≈ 0.5 which is illustrated in Figure 2 (Figure 2 shows the time history
plots of t − x, t − y and t − z, phase plots x − y, x − z and y − z, space plots of space
plots of t− x− y, t− x− z, t− y − z and x− y − z). When τ1 = τ10 ≈ 0.5, Equation (36)
undergoes a Hopf bifurcation at the equilibrium E(0.2236, 0, 0), i.e., a small amplitude
periodic solution occurs near E(0.2236, 0, 0). When τ1 is close to τ10 ≈ 0.5 it can be shown
in Figure 3 (Figure 3 shows the time history plots of t − x, t − y and t − z, phase plots
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Figure 3. Chaos vanishes when τ1 = 0.8 > τ10 ≈ 0.5. Hopf bifurcation
occurs from the equilibrium E(0.2236, 0, 0). The initial value is (0.24,−0.04,
−0.1).

x − y, x − z and y − z, space plots of space plots of t − x − y, t − x − z, t − y − z and
x − y − z).

For k1 = 0, k2 = −2, we can obtain that (H1), (H4) and (H5) are fulfilled. Let j = 0 and
we have ω̃2 ≈ 0.3976, τ20 ≈ 1.8. Thus, the equilibrium E(0.2236, 0, 0) is asymptotically
stable for τ2 < τ20 ≈ 1.8 which is illustrated in Figure 4 (Figure 4 shows the time history
plots of t − x, t − y and t − z, phase plots x − y, x − z and y − z, space plots of space
plots of t− x− y, t− x− z, t− y− z and x− y − z). When τ2 = τ20 ≈ 1.8, Equation (36)
undergoes a Hopf bifurcation around the equilibrium E(0.2236, 0, 0). When τ2 is close to
τ20 ≈ 1.8 it can be shown in Figure 5 (Figure 5 shows the time history plots of t − x,
t− y and t− z, phase plots x− y, x− z and y − z, space plots of space plots of t− x− y,
t − x − z, t − y − z and x − y − z).
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Figure 4. Chaos vanishes when τ2 = 1.2 < τ20 ≈ 1.8. The equilibrium
E(0.2236, 0, 0) is asymptotically stable. The initial value is (0.24,−0.04,
−0.1).

For k1 = −2, k2 = −2, we can obtain that (H1), (H6) and (H7) are fulfilled. Let
j = 0 and we obtain ω̄0 ≈ 0.3782, τ0 ≈ 0.4. Thus, the equilibrium E(0.2236, 0, 0) is
asymptotically stable for τ < τ0 ≈ 0.4 which is illustrated in Figure 6 (Figure 6 shows
the time history plots of t− x, t− y and t − z, phase plots x− y, x − z and y − z, space
plots of space plots of t − x− y, t− x − z, t − y − z and x − y − z). When τ = τ0 ≈ 0.4,
Equation (36) undergoes a Hopf bifurcation at the equilibrium E(0.2236, 0, 0). When τ

is close to τ0 ≈ 0.4 it can be shown in Figure 7 (Figure 7 shows the time history plots of
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Figure 5. Chaos vanishes when τ2 = 2.3 < τ20 ≈ 1.8. Hopf bifurcation
occurs from the equilibrium E(0.2236, 0, 0). The initial value is (0.24,−0.04,
−0.1).

t − x, t − y and t − z, phase plots x − y, x − z and y − z, space plots of space plots of
t − x − y, t − x − z, t − y − z and x − y − z).

4. Conclusions. In this paper, a feedback control method is applied to suppressing
chaotic behavior of a 3D autonomous system within the chaotic attractor. By adding a
time-delayed force to the first equation of 3D autonomous system, we have focused on
the local stability of the equilibrium (

√
a, 0, 0) and local Hopf bifurcation of the delayed

3D autonomous system. It is showed that if the conditions (H1) and (H2) are satisfied,
then 3D autonomous system is asymptotically stable for τ1 ∈ [0, τ10). If (H1)-(H3) hold
true, a sequence of Hopf bifurcations occurs around the equilibrium (

√
a, 0, 0), that is, a

family of periodic orbits bifurcates from the equilibrium (
√

a, 0, 0). By adding a time-
delayed force to the second equation of 3D autonomous system, we have analyzed the
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Figure 6. Chaos vanishes when τ = 0.25 < τ0 ≈ 0.4. The equilibrium
E(0.2236, 0, 0) is asymptotically stable. The initial value is (0.24,−0.04,
−0.1).

local stability of the equilibrium (
√

a, 0, 0) and local Hopf bifurcation of the delayed 3D
autonomous system. It is showed that if the conditions (H1) and (H4) are satisfied,
then 3D autonomous system is asymptotically stable for τ2 ∈ [0, τ20). If (H1), (H4) and
(H5) hold true, a sequence of Hopf bifurcations occurs around the equilibrium (

√
a, 0, 0).

By adding a time-delayed force to the first and the second equations of 3D autonomous
system, we have discussed the local stability of the equilibrium (

√
a, 0, 0) and local Hopf

bifurcation of the delayed 3D autonomous system. We showed that if the conditions (H1)
and (H6) are fulfilled, then 3D autonomous system is asymptotically stable for τ ∈ [0, τ0).
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Figure 7. Chaos vanishes when τ = 0.5 > τ0 ≈ 0.4. Hopf bifurcation
occurs from the equilibrium E(0.2236, 0, 0). The initial value is (0.24,−0.04,
−0.1).

If (H1), (H6) and (H7) hold true, a sequence of Hopf bifurcations occurs around the
equilibrium (

√
a, 0, 0). All the cases show that chaos vanishes and can be suppressed.

Some computer simulations are carried out to visualize the theoretical results. To the
best of our knowledge, there are few results on the chaos control by feedback control with
distributed time delay, which might be our future research topic.
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