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Abstract. We modeled the mathematical modeling of the production process using the
diffusion equation in the deterministic system in previous paper. We have also proposed
some modeling and system evaluation by considering the production process as stochastic
system. Based on these results, we report on the stochastic model of the production den-
sity distribution. The relationship between production density and lead time (throughput)
has not yet been clearly established. As a result, we clarify the effect of fluctuations of
lead time on production density by utilizing stochastic analysis.
Keywords: Production density, Lead time, Diffusion process, Fokker-Plank equation,
Stochastic analysis

1. Introduction. We have working on mathematical modeling and system evaluation of
production process targeting a small-to-medium-sized equipment manufacturing industry.
A human intervention constitutes a significant part of the production process, and revenue
can sometimes be greatly affected by human behavior in our business area.

Firstly, we had worked on a physical model of the production process using a one-
dimensional diffusion equation with respect to mathematical modeling of deterministic
systems [1, 2]. In our previous studies related to this topic, we reported a production prop-
agation model as a deterministic system and subsequently proposed a lead-time analysis
method [3].

With respect to a stochastic system of the production process, we have introduced an
idea of a production level corresponding to an energy level being discussed in physics. A
valence electron transits to a conducting state due to a rise in potential (transition of a
manufacturing process), and lowers an energy level by radiating energy with time [4, 5, 6].
We have also proposed a stochastic differential equation (SDE) for the mathematical
model describing production processes from the input of materials to the end. We utilized
a risk-neutral principal in stochastic calculus based on the SDE [4, 7].

With respect to the analysis of production processes in stochastic systems based on fi-
nancial engineering, we have proposed that a production throughput rate can be estimated
utilizing a Kalman filter based on a stochastic differential equation [4, 8, 9].

However, the many concerns that occur in the supply chain are major problems facing
production efficiency and business profitability. A stochastic partial bilinear differential
equation with time delay was derived for outlet processes. The supply chain was modeled
by considering as time delay [10].
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On the other hand, when a delay occurs in a stage, the delay propagates to the successive
stage in manufacturing. This delays the entire production process, which is equivalent
to fluctuations in physical phenomena. A delay in the entire process is attributed to the
propagation of fluctuations (volatility). We mathematically analyzed this phenomenon
[7, 11, 12].

With respect to a lead-time analysis, we implemented a lead-time function and a loss
function to calculate the expected loss value. In other words, it can be assumed that if
the cash flow is critically required for lead-time, it can be obtained before the production
process. Furthermore, it is possible to identify lead-time in advance as suitable targets,
which is a very innovative approach [3, 13].

In this study, we present the stochastic model of the production density distribution.
The relationship between production density and lead time (throughput) has not yet been
clearly established. The changes in lead time cause fluctuations in production density. We
build a production propagation model based on a stochastic theory by considering lead
time as a medium. We propose two stochastic differential equations as a mathematical
model. One is related to production density, and the other relates to lead time. A major
feature of this paper is that the production density is a functional as a variable with
time and a lead-time as a variable. We further consider through stochastic analysis that
lead time is strongly related to production density. Then, on the basis of the concept
of continuity approximation, we build a mathematical model that considers production
density. This idea is based on the diffusion approximation of a production process, which
was used as a deterministic model in our previous research.

2. Production Business of a Small-to-Midsize Firm.

2.1. Production systems in the production equipment industry. We refer to the
production system in manufacturing equipment industry studied in this paper. This is not
a special system but “Make-to-order system with version control”. Make-to-order system
is a system which allows necessary manufacturing after taking orders from clients, resulting
in “volatility” according to its delivery date and lead time. In addition, “volatility” occurs
in lead time depending on the contents of make-to-order products (production equipment).

However, effective utilization of the production forecast information on the orders may
suppress certain amount of “variation”, but the complete suppression of variation will be
difficult. In other words, “volatility” in monthly cash flow occurs and of course influences
a rate of return in these companies. Production management system, suitable for the
separate make-to-order system which is managed by numbers assigned to each product
upon order, is called as “product number management system” and is widely used.

All productions are controlled with numbered products and instructions are given for
each numbered product.

Thus, ordering design, logistics and suppliers are conducted for each manufacturer’s
serial numbers in most cases except for semifinished products (unit incorporated into the
final product) and strategic stocks.

Therefore, careful management of the lead time or production date may not suppress
“volatility” in manufacturing (production).

The company in this study is the “supplier” in Figure 1 and “factory” here. Companies
are under the assumption that there are N (numbers of) suppliers; however, this study
deals with one company because no data is published for the rest of the companies (N−1).

2.2. Production flow process. A manufacturing process that is termed as a production
flow process is shown in Figure 2. The production flow process, which manufactures
low volumes of a wide variety of products, is produced through several stages in the
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Figure 1. Business structure
of company of research target Figure 2. Production flow process

production process. In Figure 2, the process consists of six stages. In each step S1-S6 of
the manufacturing process, materials are being produced.

Figure 2 represents a manufacturing process called a flow production system, which
is a manufacturing method employed in the production of control equipment. The flow
production system, which in this case has six stages, is commercialized by the production
of material in steps S1-S6 of the manufacturing process.

The direction of the arrow represents the direction of the production flow. In this
system, production materials are supplied from the inlet and the end product will be
shipped from the outlet.

Assumption 2.1. The production structure is nonlinear.

Assumption 2.2. The production structure is a closed structure; that is, the production
is driven by a cyclic system (production flow system).

Assumption 2.1 indicates that the determination of the production structure is consid-
ered a major factor, which includes the generation value of production or the throughput
generation structure in a stochastic manufacturing process (hereafter called the manu-
facturing field). Because such a structure is at least dependent on the demand, it is
considered to have a nonlinear structure.

Because the value of such a product depends on the throughput, its production structure
is nonlinear. Therefore, Assumption 2.1 reflects the realistic production structure and is
somewhat valid. Assumption 2.2 is completed in each step and flows from the next step
until stage S6 is completed. Assumption 2.2 is reasonable because new production starts
from S1.

Based on the control equipment, the product can be manufactured in one cycle. The
production throughput required to maintain 6 pieces of equipment/day is as follows:

(60 × 8 − 28)

3
× 1

6
≃ 25 (min) (1)
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where the throughput of the previous process is set as 20 (min). In Equation (1), “28”
represents the throughput of the previous process plus the idle time for synchronization.
“8” is the number of processes and the total number of all processes is “8” plus the
previous process. “60” is given by 20 (min) × 3 (cycles).

One process throughput (20 min) in full synchronization is

Ts = 3 × 120 + 40 = 400 (min) (2)

Therefore, a throughput reduction of about 10% can be achieved. However, the time
between processes involves some asynchronous idle time.

As a result, the above test run is as follows. Tables 4-8 are shown in Appendix A.

• (test run1): Each throughput in every process (S1-S6) is asynchronous, and its
process throughput is asynchronous. Table 4 represents the manufacturing time
(min) in each process. Table 5 represents the variance in each process performed by
workers. Table 4 represents the target time, and the theoretical throughput is given
by 3 × 199 + 2 × 15 = 627 (min).

In addition, the total working time in stage S3 is 199 (min), which causes a
bottleneck. Figure 22 is a graph illustrating the measurement data in Table 4,
and it represents the total working time for each worker (K1-K9). The graph in
Figure 23 represents the variance data for each working time in Table 4.

• (test run2): Set to synchronously process the throughput.
The target time in Table 6 is 500 (min), and the theoretical throughput (not

including the synchronized idle time) is 400 (min). Table 7 represents the variance
data of each working process (S1-S6) for each worker (K1-K9).

• (test run3): The process throughput is performed synchronously with the reclassi-
fication of the process. The theoretical throughput (not including the synchronized
idle time) is 400 (min) in Table 8.

Table 9 represents the variance data of Table 8. “WS” in the measurement tables
represents the standard working time. This is an empirical value obtained from
long-term experiments.

3. Distribution System and Diffusion Equation of the Production Process.

From Figure 3, we refer to the network capacity (i.e., a statically acceptable amount of
production) in an interprocess network (a production field) as R. An interprocess network
indicates a sequential flow from one process to the other after the completion of the current
process. Here assuming that the production density function for the i-th equipment is
Si(x, t), Si(x, t) is expressed by

[J(x, t)dt − J(x + dx, t)dt]R = [Si(x, t + dt) − Si(x, t)]Rdx (3)

where J is the production flow [1, 14].
We define production flow as the displacement of a production density function in

the unit-production direction. The production density function is proportional to the
cost necessary for production; thus, it can be considered as the production cost per unit
production. Furthermore, as production leads to returns, the production density function
can be considered as returns.

∂Si(x, t)

∂t
= D

∂2Si(x, t)

∂x2
(4)

where D is the diffusion coefficient, t is the time variable, and x is the spatial variable.
A model of the production process, which is connected in one dimension, is described

as follows. The process of production is indicated by the movement of production units
from one process (node) to another. This production flow is equivalent to transmission
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Figure 3. Network inter-
process division of worker

Figure 4. Unit of production
by changing the excitation
force

rate, which is defined as the rate of data flow between connected nodes in communication
engineering. Accordingly, we formulate the production model in a manner similar to heat
propagation in physics. Thus, the production process is modeled mathematically using
a continuous diffusion type of partial differential equation consisting of time and spatial
variables [1].

Setting the network capacity (the available static production volume) to R in an inter-
process network (production field, equivalent to a stochastic field), we obtain the following:

[J(x)dt − J(X + dx)dt]R = [S(t + dt) − S(t)]Rdx (5)

where J is the production flow and S is the production density.
In the present model, the production flow indicates the displacement of production

processes in the direction related to the production density. In other words, the production
cost per production is as follows.

Definition 1. Production cost per unit production

J = −D
∂S

∂x
(6)

where D is a diffusion coefficient.

From Equation (5), we obtain

−∂J

∂x
=

∂S

∂t
(7)

From Equations (6) and (7), we obtain

∂S

∂t
= D

∂2S

∂x2
(8)

where t ∈ [0, T ], x ∈ [0, L] ≡ Ω, S(0, x) = S0(x), BxS(t, x)|x=∂Ω.
This equation is equivalent to the diffusion equation derived from the minimization

condition of free energy in a production field [1, 2]. The connections between processes
can be treated as a diffusive propagation of products (refer to Figure 3).

As shown in Figure 4, X represents the production elements that constitute a unit
production and varies X → X

′

at [t + dt]. In other words, the unit production varies by
exciting the external force and is the basis for revenue generation (an increase of potential
energy). Therefore, in the transition Si(t, x) → Si(t, x

′

), the production cost, which is the
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cumulated external force, increases. The connections between production processes are
referred to as “joints”.

In the general idea of production flow, we define the joint propagation model at multiple
stages in the production process and the potential energy in the production field.

Thereafter, we can construct a control system, which increases the process throughput,
by calculating the gradient function in the autonomous distributed system. The gradient
function is described in the next opportunity.

∂S

∂t
+ ∆(v · S) =

1

2
∆(D2S) + λ (9)

where λ denotes a forced external force function and v denotes a production propagation
speed. Here, λ is omitted.

We assume that S defines as follows: S represents a production density with a fluc-
tuation, and v also causes a fluctuation in throughput. As a result, a production is
proportional to the slope of production density.

Definition 3.1. Mathematical model of each stage

dx(t) =
{

a(t, x)dt + c(t, x)dB̃(t)
}

+ D(t, x)dB(t) (10)

where B̃ and B denote an independent Brownian motion. c denotes a fluctuation term,
which follows a stochastic differential equation.

The first term on the right-hand side of Equation (10) denotes the flow of the medium,
and the second term represents the fluctuation of diffusion. Moreover, a(t, ·) denotes an
average lead-time and c(t, x)dB̃(t) denotes a fluctuation around processes [10, 12].

We report a stochastic approach for a production process based on the production
density equation [1], i.e., a fluctuation is induced by a stochastic characteristic of a lead-
time function. In this case, we apply stochastic analysis to evaluating the manner in
which the production density is constrained.

Generally, Equation (9) with constrained such as Equation (10) can be derived as
follows:

∂S(t, x) =

[

1

2

∂2

∂x2

{

D2(t, x) + c2(t, x)
}

S(t, x) − ∂

∂x
(a(t, x)S(t, x))

]

dt

+
∂

∂x
{c(t, x)S(t, x)} ∂B̃(t) (11)

where S(t, x) denotes a production density and is derived as follows [1]:

S(t, Ix
h) =

∫ t

0

P (τ, x0; t, I
x
h)S(τ, x0)dτ (12)

where Ix
h ≡ [x, x + h].

From Equation (12), a production density distribution varies according to increasing a
production density.

S(t, x) satisfies a Fokker-Plank equation as follows [16, 17, 18, 19].

∂S(t, x)

∂t
=

1

2

∂2

∂x2

{

D2(t, x)S(t, x)
}

− ∂

∂x
{a(t, x)S(t, x)} (13)

where x(t) satisfies Equation (10).
According to Okazaki’s analysis, we obtain as follows [15]:

∂S(t, x) =

[

1

2

∂2

∂x2

{

D2(t, x) + c2(t, x)
}

S(t, x) − ∂

∂x
(a(t, x)S(t, x))

]

dt
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+
∂

∂x
{c(t, x)S(t, x)} ∂B̃(t) (14)

where D2(t, x)+ c2(t, x) denotes a trend, a(t, x)S(t, x) denotes a fluctuation of stages and
c(t, x)S(t, x) denotes also a fluctuation of lead-time.

Definition 3.2. Trend function of a production density distribution

m(t, x) = E[S(t, x)] (15)

According to Equation (9), m(t, x) is derived as follows:

∂

∂t
m(t, x) =

1

2

∂2

∂x2

[{

D2(t, x) + c2(t, x)
}

m(t, x)
]

− {a(t, x)m(t, x)} (16)

where the dispersion covariance of a production density χ(t, x, x
′

) is defined as follows.

Definition 3.3. Dispersion covariance of a production density χ(t, x, x
′

)

χ
[

t, x, x
′

]

= E
[

S(t, x) · S
(

t, x
′

)]

, t ∈ R, x
′ ∈ R (17)

where R denotes Euclidean space.

From Equation (15), we obtain as follows:

Cov.
[

S(t, x) · S
(

t, x
′

)]

= χ
(

t, x, x
′

)

− m(t, x) · m
(

t, x
′

)

(18)

According to a stochastic process theory, the following equation holds.

d
{

S(t, x) · S
(

t, x
′

)}

= S(t, x) · dS
(

t, x
′

)

+ S
(

t, x
′

)

· dS(t, x)

+
1

2
· 2 · d < S(•, x), S

(

•, x′

)

>t

= S(t, x)

[

1

2

∂2

∂x2

{

D2(t, x) + c2(t, x)
}

S
(

t, x
′

)

− ∂

∂x
′

{

a
(

t, x
′

)

S
(

t, x
′

)}

]

dt

+ S
(

t, x
′

)

[

1

2

∂2

∂x
′2

{

D2(t, x) + c2(t, x)
}

S(t, x)

− ∂

∂x
{a(t, x)S(t, x)}

]

dt

+
∂

∂x
{c(t, x)S(t, x)} ∂

∂x
′

{

c
(

t, x
′

)

S
(

t, x
′

)}

+ S(t, x)
∂

∂x
′

{

c
(

t, x
′

)

S
(

t, x
′

)}

dB̃(t)

+ S
(

t, x
′

) ∂

∂x
{c(t, x)S(t, x)}dB̃(t) (19)

Then, we obtain the dispersion covariance of a production density between stages as
follows by taking the average value.

∂

∂t
χ
[

t, x, x
′

]

=
1

2

∂2

∂x2

[

(

D2(t, x) + c2(t, x)
)

χ
(

t, x, x
′

)]

+
1

2

∂2

∂x
′2

[

D2
(

t, x
′

)

+ c2
(

t, x
′

)

χ
(

t, x, x
′

)]

− ∂

∂x

{

a(t, x)χ
(

t, x, x
′

)}

− ∂

∂x
′

{

a
(

t, x
′

)

χ
(

t, x, x
′

)}

(20)
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where a(t, x) > 0, b(t, x) > 0 and c(t, x) > 0.

Definition 3.4. Correlation function of lead-time function between stages

dxi+1(t) =

{

a
(

t, xi+1
)

dt +

∫

R

c
(

t, xi, xi+1
)

B̃
(

dt, dxi+1
)

}

+ b
(

t, xi+1(t)
)

dBi(t) (21)

The production density distribution satisfies as follows based on Equation (21):

dS(t, x) =

[

1

2

∂2

∂x2

{

b2(t, x) +

∫

R

c2(t, x, z)dzS(t, x)

}

− ∂

∂x
{a(t, x)S(t, x)}

]

dt

+

∫

R

∂

∂x

{

c
(

t, x, x
′

)

S(t, x)
}

B̃
(

dt, dx
′

)

(22)

4. Preparation for Numerical Calculation.

4.1. Trend function of production density distribution. We present an example
for numerical parameters such as the following: a > 0, b > 0 and c > 0 are constant
parameters. Let S(0, x) = δ(x), which denotes as follows:

δ(x) = lim
σ→0

1√
2πσ

exp

(

− x2

2σ2

)

, x ∈ R (23)

The condition of these parameters a > 0, b > 0 and c > 0 represents that a production
density exists between any stages.

Then, according to Equation (16), we obtain as follows:

∂

∂t
m(t, x) =

1

2

(

r
∂2

∂x2

)

− am(t, x) (24)

According to Equation (16), we obtain as follows:

∂χ
(

t, x, x
′
)

∂t
=

1

2
r

{

∂2χ
(

t, x, x
′
)

∂x2
+

∂2χ
(

t, x, x
′
)

∂x
′2

}

− a

{

∂χ
(

t, x, x
′
)

∂x
+

∂χ
(

t, x, x
′
)

∂x
′

}

(25)

From Equation (24), we obtain as follows:

m(t, x) =
1√
2πrt

exp

(

−(x − at)2

2r2t2

)

(26)

Similarly, according to Equation (25), we obtain as follows:

χ
(

t, x, x
′

)

=
1

2π(r2 − c4)t
exp

(

− 1

2(r2 − c4)t

×
{

r(x − at)2 − 2c2(x − at)
(

x
′ − at

)

+ r
(

x
′ − at

)2
}

)

(27)

where r = D2 + c2.
From Equation (27), the numerical data of correlation function can be calculated for x

and x
′

of production density.

dS(t, x) =
1

2

[{

D2 +

∫

R

c2
(

t, x, x
′

)

}

∂2S(t, x)

∂x2
− a

∂S(t, x)

∂x

]

dt

+
∂

∂x

[
∫

R

c
(

t, x, x
′

)

S(t, x)B̃
(

dt, dx
′

)

]

(28)
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where B̃(dt, dx
′

) denotes any of the k interval F1 = I1 × J1, F2 = I2 × J2, · · · , Fk =

Ik × Jk ⊂ R2. (B(F1), B(F2), · · · , B(Fk))
′

in B̃(dt, dx
′

) denotes a k-dimensional normal
distribution with average zero. However, from Equation (11) in case of a single Brownian
motion, we obtain as follows:

∂S(t, x) =
1

2

[

(

D2 + c2
) ∂2S(t, x)

∂x2

]

∂t − a
∂

∂x
S(t, x)∂t + c

∂

∂x
S(t, x)B̃(t) (29)

The aforementioned calculation clarifies that the trend of a production density distribution
fluctuation represents a normal distribution from Equation (26). In the case of a single
Brownian motion, the trend denotes a stochastic diffusion partial differential equation
from Equation (29). In other words, the motion of the trend is affected by the coefficient
c, which is caused in a lead-time fluctuation.

With respect to a lead-time distribution, we obtain from Equation (10) as follows:

dx(t) =
{

adt + cdB̃(t)
}

+ DdB(t) (30)

When Equation (31) is derived, the stochastic model of a production density distribution
is derived by Equation (29).

For simplicity, let B̃(t) ≈ B(t), we can rewrite Equation (31) as follows:

dx(t) = adt + (c + D)dB(t) (31)

4.2. Partial differential equation eigenvalue problem. We define a partial differen-
tial equation eigenvalue problem under appropriate boundary conditions.

Definition 4.1. Partial differential operator L

L ≡
(

D2 + c2
) ∂2

∂x2
− a

∂

∂x
(32)

Definition 4.2.

Si(t) =

∫

R

S(t, x)ϕi(x)dx (33)

S(t, x) =
∑

i

Si(t)ϕi(t), i = 1, 2, · · · (34)

L ≡
(

D2 + c2
) ∂2

∂x2
− a

∂

∂x
(35)

From Green’s theorem, Equation (29) can be rewritten as follows:

dSi(t) = λiSi(t) + σ(x)Si(t)dB(t), i = 1, 2, · · · (36)

where σ(x) ≡ dϕi(x)
dx

.
Equation (36) denotes a state-dependent stochastic differential equation (log-normal

type). In Figure 5, lead-time fluctuations are strongly related to production density; they
represent a phenomenon in which mutual fluctuation occurs. Characters “A” and “B” in
Figure 5 represent a lead-time fluctuation and a production density fluctuation, respec-
tively. The mutual fluctuation between a lead time and production density represents the
fluctuations in the actual data of test runs 1 through 3 in Appendix A. The work time
indicated by the circle in the table indicates that the reference time is over in Tables 4, 6
and 8 of Appendix A.

Definition 4.3. Probability density function of production density distribution in station-
ary Sp(x : µx, σx), where µx and σx represent a trend coefficient and a volatility depending
on x respectively.
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Figure 5. Influence of lead-time fluctuation

Thus, the expectation FE(x; µx, σx) is derived as follows:

FE(x; µx, σx) =

∫

R

g(x)dFp(x; µx, σx),
dFp(x; µx, σx)

dx
= Sp(x; µx, σx) (37)

Similarly, the production density fluctuation affects the expected total production volume.
Then, the stochastic model of production density distribution is denoted as follows in the
case of a single Brownian motion:

dx(t) = a(t, x) + c(t, x)dB̃(t) (38)

∂S(t, x) =
1

2

{

(

D2 + c2
) ∂2S(t, x)

∂x2
− a(t, x)

∂S(t, x)

∂x

}

+ c(t, x)
∂S(t, x)

∂x
dB̃(t) (39)

4.3. Numerical simulation of the trend function of a production density distri-

bution. A trend function, which denotes an expectation of a production density function,
represents a lead time and is dependent on the trend function coefficient but not on the
volatility. An autocorrelation function is also dependent on the trend function coefficient.
With respect to the time trend of a production density function S(t, x), the function is
affected by the trend function and the effect of x is large, especially in the case of nonlinear
terms such as a triangle function or δ function.

Figures 6 through 9 show the solution values of a stochastic differential equation, which
denotes the constant data of Figure 6 and the nonlinear data of Figures 7 through 9 with
respect to σ. In Figures 10 through 15, regarding parameter “a”, symbol “N” is set to
three times of the symbol “�” and the symbol “�” is set to ten times of the symbol “�”.

In each Figures 10 through 15, “a” affects the trend function value greatly. However,
with respect to Figures 10 through 15, it can be said that “a” has less influence than “c”
and “D” on the trend function value. In other words, “c” denotes a fluctuation parameter
and “D” denotes the parameter corresponding to the diffusion coefficient. Because the
trend function values of Figures 14 and 15 are lower than those of the other Figures
10 through 13. It can be said that “D” is a parameter corresponding to the diffusion
coefficient. It can be also said that “c” is a parameter corresponding to the production
retention.

Table 1. Parameter setting of trend function of production density distribution

Figure number Initial value S0 Average µ Volatility σ

Figure 6 0.1 0.6 0.3
Figure 7 0.1 0.6 sin(2πx)
Figure 8 0.1 0.6 sin(2πx) + constant value
Figure 9 0.1 0.6 constant value + δ function
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Figure 6. Solution process
of stochastic differential Equa-
tion (38)

Figure 7. Solution process
of stochastic differential Equa-
tion (38)

Figure 8. Solution process
of stochastic differential Equa-
tion (38)

Figure 9. Solution process
of stochastic differential Equa-
tion (38)

4.4. Autocorrelation function of stages in a production process. We can calculate
an autocorrelation function of stages at x = x

′

as follows:

ξ(t, x) =
1

2π(r2 − c4)t
exp

[

−r(x − at)2 − c2(x − at)2

(r2 − c4)t

]

=
1

2π(r2 − c4)t
exp

[

(r − c2)(x − at)2

(r2 − c4)t

]

(40)

With respect to Figures 16 through 21, the influence of the stage on the autocorrelation
function is the same as the trend function value. In each Figures 16 through 21, “a”
affects the trend function value greatly. However, with respect to Figures 16 through 21,
it can be said that “a” has less influence than “c” and “D” on the trend function value.
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Table 2. Parameter setting of trend function of production density distribution

Figure number a r c D
Figure 10 0.3 0.5 0.5 1
Figure 11 1 0.5 0.5 1
Figure 12 0.5 0.5 0.5 1
Figure 13 0.1 0.5 0.5 1
Figure 14 1 0.5 0.2 0.7
Figure 15 1 0.5 0.1 0.6

Figure 10. Trend function
of production density distribu-
tion (Table 2)

Figure 11. Trend function
of production density distribu-
tion (Table 2)

Figure 12. Trend function
of production density distribu-
tion (Table 2)

Figure 13. Trend function
of production density distribu-
tion (Table 2)
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Figure 14. Trend function
of production density distribu-
tion (Table 2)

Figure 15. Trend function
of production density distribu-
tion (Table 2)

Table 3. Parameter setting of trend function of production density distribution

Figure number a r c D
Figure 16 0.3 0.5 0.5 1
Figure 17 1 0.5 0.5 1
Figure 18 0.5 0.5 0.5 1
Figure 19 0.1 0.5 0.5 1
Figure 20 1 0.5 0.2 0.7
Figure 21 1 0.5 0.1 0.6

Figure 16. Autocorrelation
function of production density
distribution (Table 3)

Figure 17. Autocorrelation
function of production density
distribution (Table 3)



1130 K. SHIRAI AND Y. AMANO

Figure 18. Autocorrelation
function of production density
distribution (Table 3)

Figure 19. Autocorrelation
function of production density
distribution (Table 3)

Figure 20. Autocorrelation
function of production density
distribution (Table 3)

Figure 21. Autocorrelation
function of production density
distribution (Table 3)

5. Conclusion. We clarified the relation between lead time and production density by
constructing two stochastic differential equations as a mathematical model. We also
clarified that production density is greatly affected by a fluctuation in lead time. In
other words, the production density distribution is highly dependent on the trend and
volatility of the lead time (throughput) as a medium. The mathematical stochastic model
of production density distribution presented in the present work has significant meaning,
and its validity was recognized under the conditions mentioned in this paper. A model
that considers external forces will be reported in due course.
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Appendix A. Analysis of Actual Data in the Production Flow System.

Table 4. Total manufacturing
time at each stage for each
worker

WS S1 S2 S3 S4 S5 S6

K1 15
�

�

�

�
20

�

�

�

�
20

�

�

�

�
25

�

�

�

�
20

�

�

�

�
20

�

�

�

�
20

K2 20
�

�

�

�
22

�

�

�

�
21

�

�

�

�
22

�

�

�

�
21

�

�

�

�
19

�

�

�

�
20

K3 10
�

�

�

�
20

�

�

�

�
26

�

�

�

�
25

�

�

�

�
22

�

�

�

�
22

�

�

�

�
26

K4 20 17 15 19 18 16 18

K5 15 15
�

�

�

�
20

�

�

�

�
18

�

�

�

�
16 15 15

K6 15 15 15 15 15 15 15

K7 15
�

�

�

�
20

�

�

�

�
20

�

�

�

�
30

�

�

�

�
20

�

�

�

�
21

�

�

�

�
20

K8 20
�

�

�

�
29

�

�

�

�
33

�

�

�

�
30

�

�

�

�
29

�

�

�

�
32

�

�

�

�
33

K9 15 14 14 15 14 14 14
Total 145 172 184 199 175 174 181

Table 5. Volatility of Table 4

K1 1.67 1.67 3.33 1.67 1.67 1.67
K2 2.33 2 2.33 2 1.33 1.67
K3 1.67 3.67 3.33 2.33 2.33 3.67
K4 0.67 0 1.33 1 0.33 1
K5 0 1.67 1 0.33 0 0
K6 0 0 0 0 0 0
K7 1.67 1.67 5 1.67 2 1.67
K8 4.67 6 5 4.67 5.67 6
K9 0.33 0.33 0 0.33 0.33 0.33

Figure 22. Total work time for
each stage (S1-S6) in Table 4

Figure 23. Volatility data for
each stage (S1-S6) in Table 4

Table 6. Total manufacturing
time at each stage for each
worker

WS S1 S2 S3 S4 S5 S6

K1 20 20
�

�

�

�
24 20 20 20 20

K2 20 20 20 20 20 22 20
K3 20 20 20 20 20 20 20

K4 20
�

�

�

�
25

�

�

�

�
25 20 20 20 20

K5 20 20 20 20 20 20 20
K6 20 20 20 20 20 20 20
K7 20 20 20 20 20 20 20

K8 20
�

�

�

�
27

�

�

�

�
27

�

�

�

�
22

�

�

�

�
23 20 20

K9 20 20 20 20 20 20 20
Total 180 192 196 182 183 182 180

Table 7. Volatility of Table 6

K1 0 1.33 0 0 0 0
K2 0 0 0 0 0.67 0
K3 0 0 0 0 0 0
K4 1.67 1.67 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 0 0 0 0
K8 2.33 2.33 0.67 1 0 0
K9 0 0 0 0 0 0
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Table 8. Total manufactur-
ing time at each stage for each
worker

WS S1 S2 S3 S4 S5 S6
K1 20 18 19 18 20 20 20
K2 20 18 18 18 20 20 20

K3 20
�

�

�

�
21

�

�

�

�
21

�

�

�

�
21 20 20 20

K4 20 13 11 11 20 20 20
K5 20 16 16 17 20 20 20
K6 20 18 18 18 20 20 20
K7 20 14 14 13 20 20 20

K8 20
�

�

�

�
22

�

�

�

�
22 20 20 20 20

K9 20
�

�

�

�
25

�

�

�

�
25

�

�

�

�
25 20 20 20

Total 180 165 164 161 180 180 180

Table 9. Variance of Table 8

K1 0.67 0.33 0.67 0 0 0
K2 0.67 0.67 0.67 0 0 0
K3 0.33 0.33 0.33 0 0 0
K4 2.33 3 3 0 0 0
K5 1.33 1.33 1 0 0 0
K6 0.67 0.67 0.67 0 0 0
K7 2 2 2.33 0 0 0
K8 0.67 0.67 0 0 0 0
K9 1.67 1.67 1.67 0 0 0


