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Abstract. This paper presents a new mathematical model for design of square isolated
footings for the general case, i.e., the column subjected to an axial load and moments
in two directions in the joint with the footing, and the column is localized anywhere of
the footing. The main part of this research is that the new model considers the soil real
pressure and it is presented in terms of the mechanical elements (P , Mx and My), and
the classical model takes account of the maximum pressure and it is considered uniform
at all the contact area of the footing. The new model is verified by balance of forces
and moments in the main points of the footing. Also a comparison is presented between
the new model and the classical model by three examples, and the results show that the
classical model is bigger in terms of design with respect to the new model. Then, the new
model is the most appropriate, since it is adjusted to the real conditions of the soil, and
the forces and moments comply with balance condition, and also is more economic.
Keywords: Square isolated footings, Mathematical models, Contact surface, Moments,
Bending shear, Punching shear

1. Introduction. The purpose of the foundation is to effectively support the super-
structure by transmitting the applied load effects (forces and moments) to the soil below,
without exceeding the bearing capacity of the soil, and ensuring that the settlements of
the structure are within tolerable limits, and as nearly uniform as possible [1,2].

The foundations are classified as shallow and deep, which have important differences: in
terms of geometry, the behavior of the soil, its structural functionality and its constructive
systems [1,2]. Shallow foundations are provided when the ratio of H/B < 1, where H is
the depth of footing and B is the width of footing. Deep foundations are provided when
the ratio of H/B ≥ 1. Shallow foundations may be of various types according to their
function: isolated footing, combined footing, strip footing, or mat foundation [1-6]. The
isolated footings can have different shapes in plan. Generally it depends on the shape of
column cross section, and some of the popular shapes of footings are: square, rectangular
and circular [7-9].

Footings belong to the category of shallow foundations (as opposed to deep foundations
such as piles and caissons) and are used when soil has a sufficient strength to a small
depth below the ground surface. Shallow foundations (footings) have a large plan area in
comparison with the cross-sectional area of the column.

The design of shallow foundations in terms of the application of loads is: 1) the footings
subjected to an axial load, 2) the footings subjected to an axial load and moment in one
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direction (uniaxial bending), 3) the footings subjected to an axial load and moment in
two directions (biaxial bending) [1-6].

The distribution of soil pressure under a footing is a function of the type of soil, the
relative rigidity of the soil and the footing, and the depth of foundation at level of contact
between footing and soil. A concrete footing on sand will have a pressure distribution
similar to Figure 1(a). When a rigid footing is resting on sandy soil, the sand near the
edges of the footing tends to displace laterally when the footing is loaded. This tends to
decrease in soil pressure near the edges, whereas soil away from the edges of footing is
relatively confined. On the other hand, the pressure distribution under a footing on clay
is similar to Figure 1(b). As the footing is loaded, the soil under the footing deflects in a
bowl-shaped depression, relieving the pressure under the middle of the footing. For design
purposes, it is common to assume the soil pressures are linearly distributed. The pressure
distribution will be uniform if the centroid of the footing coincides with the resultant of
the applied loads, as shown in Figure 1(c) [1].

Figure 1. Pressure distribution under footing: (a) footing on sand; (b)
footing on clay; (c) equivalent uniform distribution

The hypothesis used in the classical model is to consider the uniform pressure for the
design, i.e., the same pressure at all points of contact in the foundation with the soil; this
design pressure is the maximum value that occurs in an isolated footing [1-6].

The most relevant papers addressing the issue of the foundations models are: Yin re-
alized a comparative modeling study of reinforced beam on elastic foundation between
the finite element model (FEM) and the Timoshenko beam model (TBM) [10]; Smith-
Pardo presented nonlinear time-history analyses of wall-frame structural models indicate
that the condition of vulnerable foundations for which uplifting and reaching the bearing
capacity of the supporting soil can occur before yielding at the base of the shear walls
may not be necessarily detrimental to the drift response of buildings under strong ground
motions [11]; Agrawal and Hora made a study on the nonlinear interaction behaviour
of infilled frame-isolated footings-soil system subjected to seismic loading [12]; Mahesh-
wari and Khatri presented the influence of inclusion of geosynthetic layer on response
of combined footings on stone column reinforced earth beds [13]; Luévanos Rojas et al.
proposed a design of isolated footings of rectangular form using a new model and the
column is located in the center of the footing [14]; Dixit and Patil estimated experimen-
tally the values of Nγ (bearing capacity factor) and corresponding settlements for square
footings on finite layer of sand [15]; Cure et al. developed a series of bearing capacity
tests was conducted with eccentrically loaded model surface and shallow strip footings
resting close to a slope to investigate behavior of such footings (ultimate loads, failure
surfaces, load-displacement curves, rotation of footing, etc.) [16]; Luévanos Rojas has
presented several studies on footings, which are: design of isolated footings of circular
form using a new model and the column is located in the center of the footing [17]; design
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of boundary combined footings of rectangular shape using a new model, in this paper
one column is located in the property line of the construction and the other column is
located on the interior part of the construction aligned with the edge column located in
direction perpendicular to the property line [18]; design of boundary combined footings
of trapezoidal form using a new model, in this paper it presents the same situation as the
previous paper but the footing is trapezoidal [19]; a comparative study for the design of
rectangular and circular isolated footings using new models and the column is located in
the center of each footing for the two models [20]; a new model for design of boundary
rectangular combined footings with two opposite sides constrained, and in this paper the
two columns are located in the property lines of opposite sides [21].

This paper presents in its theoretical part a new mathematical model for design of
square isolated footings for the general case, i.e., the column subjected to an axial load
and moments in two directions in the joint with the footing, and the column is localized
anywhere of the footing. The main part of this research is that new model considers the
real pressure of the soil, this is presented in terms of the mechanical elements (P , Mx and
My) and the classical model takes account of the maximum pressure and it is considered
uniform at all the contact area of the footing.

The paper is organized as follows. Section 2 describes the formulation of the new
mathematical model for design of square isolated footings for the general case, and the
equations for moments, bending shear and punching shear are shown. Section 3 shows the
classical model. The validation of the new mathematical model is presented in Section 4.
Section 5 shows three numerical examples for design of square isolated footings supporting
one square column and the dimensions are obtained using optimization techniques, and
the three examples are: concentric footing, edge footing and corner footing. Results and
discussion are presented in Section 6. Conclusions (Section 7) complete the paper.

2. Formulation of the New Mathematical Model. According to Building Code
Requirements for Structural Concrete and Commentary, the critical sections are: 1) the
maximum moment is located in face of column, pedestal, or wall, for footings supporting a
concrete column, pedestal, or wall; 2) bending shear presented at a distance “d” (distance
from extreme compression fiber to centroid of longitudinal tension reinforcement) shall
be measured from face of column, pedestal, or wall for footings supporting a column,
pedestal, or wall; 3) punching shear is localized so that its perimeter “bo” is a minimum
but need not approach closer than “d/2” to: (a) edges or corners of columns, concentrated
loads, or reaction areas, and (b) changes in slab thickness such as edges of capitals, drop
panels, or shear caps [22].

Figure 2 shows a square footing subjected to an axial load and moment in two directions
(biaxial bending) and the column is localized anywhere of the footing, where pressure is
different in the four corners of the contact surface [23].

The general equation for any type of footings subjected to biaxial bending is [1-4,14,17-
21,23,24]:

σ =
P

A
± MxT y

Ix

± MyT x

Iy

(1)

where σ is the pressure exerted by the soil on the footing, A is the contact area of the
footing, P is the axial load applied at the center of gravity of the footing, MxT is the total
moment around the axis “X”, MyT is the total moment around the axis “Y ”, x is the
distance in the direction “X” measured from the axis “Y ” up the fiber under study, y is
the distance in direction “Y ” measured from the axis “X” up the fiber under study, Iy is
the moment of inertia around the axis “Y ” and Ix is the moment of inertia around the
axis “X”.
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Figure 2. Square footing under a column localized anywhere of the footing

Figure 3. Critical sections for moments

Substitute MxT = Mx +Pey, MyT = My +Pex, A = L2, Ix = Iy = L4/12 into Equation
(1) and the pressure exerted by the soil anywhere on the footing in function of coordinates
(x, y) is obtained [23]:

σ(x, y) =
P

L2
+

12(Mx + Pey)y

L4
+

12(My + Pex)x

L4
(2)

2.1. Moments. Critical sections for moments are presented in section a1-a1, a2-a2, b1-b1

and b2-b2, as shown in Figure 3.

2.1.1. Moment around the axis “x′
1-x

′
1” for “ey ≤ y1 ≤ L/2”. Shear force “Vy1” is obtained

by means of the pressure volume of the area formed by the axis x′
1-x

′
1 and the corners 1
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and 2 of the footing:

Vy1 = −
∫ L/2

y1

∫ L/2

−L/2

σ(x, y)dxdy (3)

Vy1 = −P

2
− 3(Mx + Pey)

2L
+

Py1

L
+

6(Mx + Pey)y
2
1

L3
(4)

If the derivation of the moment is the shear force, it is presented as follows:

Vy1 =
dMx′

1

dy1

(5)

where Mx′
1

is the moment around the axis “x′
1” and Vy1 is the shear force at a distance

“y1”.
Then, the moment is:

Mx′
1

=

∫ (
−P

2
− 3(Mx + Pey)

2L
+

Py1

L
+

6(Mx + Pey)y
2
1

L3

)
dy1 (6)

Mx′
1

= −Py1

2
− 3(Mx + Pey)y1

2L
+

Py2
1

2L
+

2(Mx + Pey)y
3
1

L3
+ C1 (7)

Substituting “y1 = L/2” and Mx′
1

= 0 into Equation (7), the constant “C1” is obtained:

C1 =
PL

8
+

(Mx + Pey)

2
(8)

Now, substituting Equation (8) into Equation (7) to find the moments equation, this is:

Mx′
1

=
P (L − 2y1)

2

8L
+

(Mx + Pey) (4y3
1 − 3L2y1 + L3)

2L3
(9)

Substituting “y1 = c1/2 + ey” into Equation (9) to obtain Ma1 (moment around the
axis “a1-a1”), this is:

Ma1 =
P (L − c1 − 2ey)

2

8L
+

(Mx + Pey) [4(c1/2 + ey)
3 − 3L2(c1/2 + ey) + L3]

2L3
(10)

Substituting “y1 = ey” into Equation (9) to find Mc1/2 (moment around the axis located
in the column center), this is:

Mc1/2 =
P (L − 2ey)

2

8L
+

(Mx + Pey)
(
4e3

y − 3L2ey + L3
)

2L3
(11)

2.1.2. Moment around the axis “x′
2-x

′
2” for “−L/2 ≤ y2 ≤ ey”. Shear force “Vy2” is found

by means of the pressure volume of the area formed by the axis x′
2-x

′
2 and the corners 1

and 2 of the footing:

Vy2 = P −
∫ L/2

y2

∫ L/2

−L/2

σ(x, y)dxdy (12)

Vy2 =
P

2
− 3(Mx + Pey)

2L
+

Py2

L
+

6(Mx + Pey)y
2
2

L3
(13)

If the derivation of the moment is the shear force, it is presented as follows:

Vy2 =
dMx′

2

dy2

(14)

where Mx′
2

is the moment around the axis “x′
2” and Vy2 is the shear force at a distance

“y2”.
Then, the moment is:

Mx′
2

=

∫ (
P

2
− 3(Mx + Pey)

2L
+

Py2

L
+

6(Mx + Pey)y
2
2

L3

)
dy2 (15)
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Mx′
2

=
Py2

2
− 3(Mx + Pey)y2

2L
+

Py2
2

2L
+

2(Mx + Pey)y
3
2

L3
+ C2 (16)

Substituting “y2 = ey”, Mc1/2 = P (L−2ey)2

8L
+

(Mx+Pey)(4e3
y−3L2ey+L3)

2L3 − Mx into Equation
(16), the constant “C2” is obtained:

C2 =
PL

8
− (Mx + Pey)

2
(17)

Now, substituting Equation (17) into Equation (16) to find the moments equation, this
is:

Mx′
2

=
P (L + 2y2)

2

8L
+

(Mx + Pey) (4y3
2 − 3L2y2 − L3)

2L3
(18)

Substituting “y2 = ey − c1/2” into Equation (18) to obtain Ma2 (moment around the
axis “a2-a2”), this is:

Ma2 =
P (L + 2ey − c1)

2

8L
+

(Mx + Pey) [4(ey − c1/2)3 − 3L2(ey − c1/2) − L3]

2L3
(19)

2.1.3. Moment around the axis “y′
1-y

′
1” for “ex ≤ x1 ≤ L/2”. Shear force “Vx1” is obtained

by means of the pressure volume of the area formed by the axis y′
1-y

′
1 and the corners 1

and 3 of the footing:

Vx1 = −
∫ L/2

−L/2

∫ L/2

x1

σ(x, y)dxdy (20)

Vx1 = −P

2
− 3(My + Pex)

2L
+

Px1

L
+

6(My + Pex)x
2
1

L3
(21)

If the derivation of the moment is the shear force, it is presented as follows:

Vx1 =
dMy′

1

dx1

(22)

where My′
1

is the moment around the axis “y′
1” and Vx1 is the shear force at a distance

“x1”.
Then, the moment is:

My′
1

=

∫ (
−P

2
− 3(My + Pex)

2L
+

Px1

L
+

6(My + Pex)x
2
1

L3

)
dx1 (23)

My′
1

= −Px1

2
− 3(My + Pex)x1

2L
+

Px2
1

2L
+

6(My + Pex)x
3
1

3L3
+ C3 (24)

Substituting “x1 = L/2” and My′
1

= 0 into Equation (24), the constant “C3” is obtained:

C3 =
PL

8
+

(My + Pex)

2
(25)

Now, substituting Equation (25) into Equation (24) to find the moments equation, this
is:

My′
1

=
P (L − 2x1)

2

8L
+

(My + Pex) (4x3
1 − 3L2x1 + L3)

2L3
(26)

Substituting “x1 = c2/2 + ex” into Equation (26) to obtain Mb1 (moment around the
axis “b1-b1”), this is:

Mb1 =
P (L − c2 − 2ex)

2

8L
+

(My + Pex) [4(c2/2 + ex)
3 − 3L2(c2/2 + ex) + L3]

2L3
(27)
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Substituting “x1 = ex” into Equation (26) to find Mc2/2 (moment around the axis
located in the column center), this is:

Mc2/2 =
P (L − 2ex)

2

8L
+

(My + Pex) (4e3
x − 3L2ex + L3)

2L3
(28)

2.1.4. Moment around the axis “y′
2-y

′
2” for “−L/2 ≤ x2 ≤ ex”. Shear force “Vx2” is found

by means of the pressure volume of the area formed by the axis y′
2-y

′
2 and the corners 1

and 3 of the footing:

Vx2 = P −
∫ L/2

−L/2

∫ L/2

x2

σ(x, y)dxdy (29)

Vx2 =
P

2
− 3(My + Pex)

2L
+

Px2

L
+

6(My + Pex)x
2
2

L3
(30)

If the derivation of the moment is the shear force, it is presented as follows:

Vx2 =
dMy′

2

dx2

(31)

where My′
2

is the moment around the axis “y′
2” and Vx2 is the shear force at a distance

“x2”.
Then, the moment is:

My′
2

=

∫ (
P

2
− 3(My + Pex)

2L
+

Px2

L
+

6(My + Pex)x
2
2

L3

)
dx2 (32)

My′
2

=
Px2

2
− 3(My + Pex)x2

2L
+

Px2
2

2L
+

6(My + Pex)x
3
2

3L3
+ C4 (33)

Substituting “x2 = ex”, Mc2/2 = P (L−2ex)2

8L
+

(My+Pex)(4e3
x−3L2ex+L3)

2L3 −My into Equation
(33), the constant “C4” is obtained:

C4 =
PL

8
− (My + Pex)

2
(34)

Now, substituting Equation (34) into Equation (33) to find the moments equation, this
is:

My′
2

=
P (L + 2x2)

2

8L
+

(My + Pex)(4x
3
2 − 3L2x2 − L3)

2L3
(35)

Substituting “x2 = ex − c2/2” into Equation (35) to obtain Mb2 (moment around the
axis “b2-b2”), this is:

Mb2 =
P (L + 2ex − c2)

2

8L
+

(My + Pex) [4(ex − c2/2)3 − 3L2(ex − c2/2) − L3]

2L3
(36)

2.2. Bending shear (unidirectional shear force). Critical sections for bending shear
at a distance “d” starting the junction of the column with the footing as seen in Figure
4 are obtained, which are presented in sections f1-f1, f2-f2, g1-g1 and g2-g2.

2.2.1. Bending shear on axis f1-f1. Substituting “y1 = ey + c1/2 + d” into Equation (4)
to obtain the bending shear on the axis f1-f1 of the footing “Vf1” (area formed by the
axis f1-f1 and the corners 1 and 2), this is:

Vf1 =
P (2ey + c1 + 2d − L)

2L
+

3(Mx + Pey) [4(ey + c1/2 + d)2 − L2]

2L3
(37)
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Figure 4. Critical sections for bending shear

2.2.2. Bending shear on axis f2-f2. Substituting “y2 = ey − c1/2− d” into Equation (13)
to obtain the bending shear on the axis f2-f2 of the footing “Vf2” (area formed by the
axis f2-f2 and the corners 1 and 2), this is:

Vf2 =
P (L + 2ey − c1 − 2d)

2L
+

3(Mx + Pey) [4(ey − c1/2 − d)2 − L2]

2L3
(38)

2.2.3. Bending shear on axis g1-g1. Substituting “x1 = ex + c2/2 + d” into Equation (21)
to obtain the bending shear on the axis g1-g1 of the footing “Vg1” (area formed by the
axis g1-g1 and the corners 1 and 3), this is:

Vg1 =
P (2ex + c2 + 2d − L)

2L
+

3(My + Pex) [4(ex + c2/2 + d)2 − L2]

2L3
(39)

2.2.4. Bending shear on axis g2-g2. Substituting “x2 = ex − c2/2− d” into Equation (30)
to obtain the bending shear on the axis g2-g2 of the footing “Vg2” (area formed by the
axis g2-g2 and the corners 1 and 3), this is:

Vg2 =
P (L + 2ex − c2 − 2d)

2L
+

3(My + Pex) [4(ex − c2/2 − d)2 − L2]

2L3
(40)

2.3. Punching shear (bidirectional shear force). Critical section for the punching
shear appears at a distance “d/2” starting the junction of the column with the footing in
the two directions, as shown in Figure 5.

Critical section for the punching shear occurs in rectangular section formed by points
5, 6, 7 and 8, as shown in Figure 5. Punching shear acting on the footing “Vp” is the force
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Figure 5. Critical sections for the punching shear

“P” acting on column subtracting the pressure volume of the area formed by the points
5, 6, 7 and 8.

2.3.1. To general case. Limits of the subtracted area are: Limits in direction “Y ” are of
ey + c1/2 + d/2 (points 5 and 6) to ey − c1/2 − d/2 (points 7 and 8). Limits in direction
“X” are of ex + c2/2 + d/2 (points 5 and 8) to ex − c2/2− d/2 (points 6 and 7). Then Vp

is:

Vp = P −
∫ ey+c1/2+d/2

ey−c1/2−d/2

∫ ex+c2/2+d/2

ex−c2/2−d/2

σ(x, y)dxdy (41)

Vp = P − [PL2 + 12ey(Mx + Pey) + 12ex(My + Pex)] (c1 + d)(c2 + d)

L4
(42)

Equation (42) satisfies for ey ≤ L/2 − c1/2 − d/2 and ex ≤ L/2 − c2/2 − d/2.

2.3.2. To specific cases.
To concentric footings: Limits of the subtracted area are: Limits in direction “Y ”

are of c1/2 + d/2 (points 5 and 6) to −c1/2 − d/2 (points 7 and 8). Limits in direction
“X” are of c2/2 + d/2 (points 5 and 8) to −c2/2 − d/2 (points 6 and 7). Then Vp is:

Vp = P −
∫ c1/2+d/2

−c1/2−d/2

∫ c2/2+d/2

−c2/2−d/2

σ(x, y)dxdy (43)

Vp = P − P (c1 + d)(c2 + d)

L2
(44)
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To edge footings in end of the axis “X-X”: Limits of the subtracted area are:
Limits in direction “Y ” are of c1/2 + d/2 (points 5 and 6) to −c1/2 − d/2 (points 7 and
8). Limits in direction “X” are of L/2 (points 5 and 8) to L/2− c2/2− d/2 (points 6 and
7). Then Vp is:

Vp = P −
∫ c1/2+d/2

−c1/2−d/2

∫ L/2

L/2−c2−d/2

σ(x, y)dxdy (45)

Vp = P − P (c1 + d)(2c2 + d)

2L2
− 3[2My + P (L − c2)](L − c2 − d/2)(c1 + d)(2c2 + d)

2L4
(46)

To edge footings in end of the axis “Y -Y ”: Limits of the subtracted area are:
Limits in direction “Y ” are of L/2 (points 5 and 6) to L/2− c1/2− d/2 (points 7 and 8).
Limits in direction “X” are of c2/2 + d/2 (points 5 and 8) to −c2/2 − d/2 (points 6 and
7). Then Vp is:

Vp = P −
∫ L/2

L/2−c1−d/2

∫ c2/2+d/2

−c2/2−d/2

σ(x, y)dxdy (47)

Vp = P − P (c2 + d)(2c1 + d)

2L2
− 3[2Mx + P (L − c1)](L − c1 − d/2)(c2 + d)(2c1 + d)

2L4
(48)

To corner footings: Limits of the subtracted area are: Limits in direction “Y ” are of
L/2 (points 5 and 6) to L/2 − c1/2 − d/2 (points 7 and 8). Limits in direction “X” are
of L/2 (points 5 and 8) to L/2 − c2/2 − d/2 (points 6 and 7). Then Vp is:

Vp = P −
∫ L/2

L/2−c1−d/2

∫ L/2

L/2−c2−d/2

σ(x, y)dxdy (49)

Vp = P − P (2c1 + d)(2c2 + d)

4L2
− 3[2Mx + P (L − c1)](L − c1 − d/2)(2c1 + d)(2c2 + d)

4L4

− 3[2My + P (L − c2)](L − c2 − d/2)(2c1 + d)(2c2 + d)

4L4

(50)

3. Classical Model. The maximum pressure exerted by the soil in the four corners is
obtained as follows:

σ1 =
P

L2
+

6(Mx + Pey)

L3
+

6(My + Pex)

L3
(51)

σ2 =
P

L2
+

6(Mx + Pey)

L3
− 6(My + Pex)

L3
(52)

σ3 =
P

L2
− 6(Mx + Pey)

L3
+

6(My + Pex)

L3
(53)

σ4 =
P

L2
− 6(Mx + Pey)

L3
− 6(My + Pex)

L3
(54)

where σmax ≥ σ1, σ2, σ3, σ4.

3.1. Moments. Critical sections for moments are presented in sections a1-a1, a2-a2, b1-b1

and b2-b2, as shown in Figure 3. The moment in each section is:

Ma1 =
σmaxL(L/2 − ey − c1/2)2

2
(55)

Ma2 =
σmaxL(L/2 + ey − c1/2)2

2
(56)

Mb1 =
σmaxL(L/2 − ex − c2/2)2

2
(57)
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Mb2 =
σmaxL(L/2 + ex − c2/2)2

2
(58)

3.2. Bending shear (unidirectional shear force). Critical sections for bending shear
are shown in sections f1-f1, f2-f2, g1-g1 and g2-g2, as presented in Figure 4. The bending
shear in each section is:

Vf1 = σmaxL(L/2 − ey − c1/2 − d) (59)

Vf2 = σmaxL(L/2 + ey − c1/2 − d) (60)

Vg1 = σmaxL(L/2 − ex − c2/2 − d) (61)

Vg2 = σmaxL(L/2 + ex − c2/2 − d) (62)

3.3. Punching shear (bidirectional shear force). Critical sections for punching shear
are presented in Figure 5.

To concentric footings:

Vp = σmax

[
L2 − (c1 + d)(c2 + d)

]
(63)

To edge footings in end of the axis “X-X” is:

Vp = σmax

[
L2 − (c1 + d)(c2 + d/2)

]
(64)

To edge footings in end of the axis “Y -Y ” is:

Vp = σmax

[
L2 − (c1 + d/2)(c2 + d)

]
(65)

To corner footings:

Vp = σmax

[
L2 − (c1 + d/2)(c2 + d/2)

]
(66)

4. Validation of the New Mathematical Model. Effects that govern the design for
isolated footings are the moments, bending shear, and punching shear.

One way to validate the model is as follows.

• To moments
a) If the axis “x′

1-x
′
1” at the free end of the footing is located, then y1 = L/2 is

substituted into Equation (9) and the moment is M = 0.
b) If the axis “x′

1-x
′
1” in the center of the column is located, y1 = ey is substituted into

Equation (9) and the moment is Mc1/2 = P (L−2ey)2

8L
+

(Mx+Pey)(4e3
y−3L2ey+L3)

2L3 . Now,
if the axis “x′

2-x
′
2” in the center of the column is located, y2 = ey is substituted

into Equation (18) and the moment is Mc1/2 = P (L+2ey)2

8L
+

(Mx+Pey)(4e3
y−3L2ey+L3)

2L3 .
If it obtains the difference from the last equation and subtracts the first, the
moment is found M = Pey. This value is exactly the moment that influences
when the axial load is included.

c) If the axis “x′
2-x

′
2” at the free end of the footing is located, then y2 = −L/2 is

substituted into Equation (18) and the moment is M = 0.
d) If the axis “y′

1-y
′
1” at the free end of the footing is located, then x1 = L/2 is

substituted into Equation (26) and the moment is M = 0.
e) If the axis “y′

1-y
′
1” in the center of the column is located, x1 = ex is substituted into

Equation (26) and the moment is Mc2/2 = P (L−2ex)2

8L
+ (My+Pex)(4e3

x−3L2ex+L3)

2L3 . Now,
if the axis “y′

2-y
′
2” in the center of the column is located, x2 = ex is substituted

into Equation (35) and the moment is Mc2/2 = P (L+2ex)2

8L
+ (My+Pex)(4e3

x−3L2ex+L3)

2L3 .
If it obtains the difference from the last equation and subtracts the first, the
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moment is found M = Pex. This value is exactly the moment that influences
when the axial load is included.

f) If the axis “y′
2-y

′
2” at the free end of the footing is located, then x2 = −L/2 is

substituted into Equation (35) and the moment is M = 0.
• To bending shear

a) If the axis “x′
1-x

′
1” at the free end of the footing is located, then y1 = L/2 is

substituted into Equation (4) and the shear force is V = 0.
b) If the axis “x′

1-x
′
1” in the center of the column is located, y1 = ey is substituted

into Equation (4) and the shear force is Vc1/2 = P (2ey−L)

2L
+

3(Mx+Pey)(4e2
y−L2)

2L3 . Now,
if the axis “x′

2-x
′
2” in the center of the column is located, and y2 = ey is substituted

into Equation (13) and the shear force is Vc1/2 = P (2ey+L)

2L
+

3(Mx+Pey)(4e2
y−L2)

2L3 . If
it obtains the difference from the last equation and subtracts the first, the shear
force is found V = P . This value is exactly the shear force that influences when
the axial load is included.

c) If the axis “x′
2-x

′
2” at the free end of the footing is located, then y2 = −L/2 is

substituted into Equation (13) and the shear force is V = 0.
d) If the axis “y′

1-y
′
1” at the free end of the footing is located, then x1 = L/2 is

substituted into Equation (21) and the shear force is V = 0.
e) If the axis “y′

1-y
′
1” in the center of the column is located, x1 = ex is substituted into

Equation (21) and the shear force is Vc2/2 = P (2ex−L)
2L

+
3(My+Pex)(4e2

x−L2)
2L3 . Now,

if the axis “y′
2-y

′
2” in the center of the column is located, x2 = ex is substituted

into Equation (30) and the shear force is Vc2/2 = P (2ex+L)
2L

+ 3(My+Pex)(4e2
x−L2)

2L3 . If
it obtains the difference from the last equation and subtracts the first, the shear
force is found V = P . This value is exactly the shear force that influences when
the axial load is included.

f) If the axis “x′
2-x

′
2” at the free end of the footing is located, then y2 = −L/2 is

substituted into Equation (30) and the shear force is V = 0.
• To punching shear

a) If now the punching shear acting on the footing “Vp” is obtained by integration
of the pressure volume of the area formed by the points 1, 2, 3 and 4 (total
area) subtracting the pressure volume of the area formed by the points 5, 6,
7 and 8 (general case), then the punching shear for the general case is Vp =

P − [PL2+12ey(Mx+Pey)+12ex(My+Pex)](c1+d)(c2+d)

L4 . This value is exactly the punching
shear that appears in Equation (42).

5. Numerical Examples. Three types of designs for square isolated footings supporting
one square column of 40 × 40 cm are presented as in Figure 2. Dimensions of the square
footings are obtained from the optimization techniques [23]. Thickness of the footing is
developed as follows: the first proposal is the minimum thickness of 25 cm marked by
the code of the ACI, and subsequently the thickness is revised to satisfy the following
conditions: moments, bending shear, and punching shear. If such conditions are not
satisfied, a greater thickness is proposed until it fulfills the three conditions mentioned
[14,17-21].

5.1. Concentric footing. The column is located in the gravity center of the footing and
the following information is: H = 1.5 m; PD = 700 kN; PL = 500 kN; MDx = 140 kN-m;
MLx = 100 kN-m; MDy = 120 kN-m; MLy = 80 kN-m; ex = 0; ey = 0; f ′

c = 21 MPa;
fy = 420 MPa; qa = 220 kN/m2; γppz = 24 kN/m3; γpps = 15 kN/m3, where H is the
depth of the footing, PD is the dead load, PL is the live load, MDx is the moment around
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the axis “X-X” of the dead load, MLx is the moment around the axis “X-X” of the live
load, MDy is the moment around the axis “Y -Y ” of the dead load, MLy is the moment
around the axis “Y -Y ” of the live load, qa is the allowable load capacity of the soil, γppz

is the self-weight of the footing, and γpps is the self-weight of soil fill. Load and moments
acting on soil are: P = 1200 kN; Mx = 240 kN-m; My = 200 kN-m. Thickness of the
footing that fulfills the three conditions listed above is 50 cm (effective depth is 42 cm, and
coating is 8 cm) for new model and for classical model is 65 cm (effective depth is 57 cm,
and coating is 8 cm), and the available load capacity of the soil “σadm” is 193.00 kN/m2

(new model) and 191.65 kN/m2 (classical model) [5,6,14,17-21]. Dimension that meets
the above conditions is: L = 3.25 m. Pressures generated by the loads and moments at
each corner are: σ1 = 190.51 kN/m2, σ2 = 120.60 kN/m2, σ3 = 106.62 kN/m2, σ4 = 36.70
kN/m2. Mechanical elements (P, Mx,My) acting on the footing are factored: Pu = 1640
kN, Mux = 328 kN-m, Muy = 272 kN-m. Maximum pressure for the design by classical
model is: σmax = 260.14 kN/m2.

Substitute these values into the corresponding equations to obtain the moment, bending
shear and punching shear acting in each section on the footing for the new model and
classical model.

Table 1 shows the differences between the two models and Figure 6 presents the concrete
dimensions and reinforcement steel of the two footings.

5.2. Edge footing. The column is located on a property line (at the end of the axis “X-
X”) and the following information is: H = 1.5 m; PD = 250 kN; PL = 150 kN; MDx = 75
kN-m; MLx = 50 kN-m; MDy = −180 kN-m; MLy = −120 kN-m; ex = L/2 − c2/2;
ey = 0; f ′

c = 21 MPa; fy = 420 MPa; qa = 250 kN/m2; γppz = 24 kN/m3; γpps = 15
kN/m3. Load and moments acting on soil are: P = 400 kN; Mx = 125 kN-m; My = −300
kN-m. Thickness of the footing that fulfills the three conditions listed above is 40 cm
(effective depth is 32 cm, and coating is 8 cm) for new model and for classical model is
55 cm (effective depth is 47 cm, and coating is 8 cm), the available load capacity of the
soil “σadm” is 223.90 kN/m2 (new model) and 222.55 kN/m2 (classical model) [5,6,14,17-
21]. Dimension that meets the above conditions is: L = 1.90 m. Pressures generated
by the loads and moments at each corner are: σ1 = 220.15 kN/m2, σ2 = 220.15 kN/m2,
σ3 = 1.46 kN/m2, σ4 = 1.46 kN/m2. Mechanical elements (P, Mx,My) acting on the
footing are factored: Pu = 540 kN, Mux = 170 kN-m, Muy = −408 kN-m.

Maximum pressure for the design by classical model is: σmax = 306.17 kN/m2.
Substitute these values into the corresponding equations to obtain the moment, bending

shear and punching shear acting in each section on the footing for the new model and
classical model.

Table 2 shows the differences between the two models and Figure 7 presents the concrete
dimensions and reinforcement steel of the two footings.

5.3. Corner footing. The column is located on two property lines and the following
information is: H = 1.5 m; PD = 250 kN; PL = 150 kN; MDx = −100 kN-m; MLx = −75
kN-m; MDy = −180 kN-m; MLy = −120 kN-m; ex = L/2 − c2/2; ey = L/2 − c1/2;
f ′

c = 21 MPa; fy = 420 MPa; qa = 250 kN/m2; γppz = 24 kN/m3; γpps = 15 kN/m3.
Load and moments acting on soil are: P = 400 kN; Mx = −175 kN-m; My = −300
kN-m. Thickness of the footing that fulfills the three conditions listed above is 40 cm
(effective depth is 32 cm, and coating is 8 cm) for new model and for classical model is
65 cm (effective depth is 57 cm, and coating is 8 cm), the available load capacity of the
soil “σadm” is 223.90 kN/m2 (new model) and 221.65 kN/m2 (classical model) [5,6,14,17-
21]. Dimension that meets the above conditions is: L = 1.90 m. Pressures generated
by the loads and moments at each corner are: σ1 = 220.15 kN/m2, σ2 = 1.46 kN/m2,
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σ3 = 220.15 kN/m2, σ4 = 1.46 kN/m2. Mechanical elements (P,Mx, My) acting on the
footing are factored: Pu = 540 kN, Mux = −240 kN-m, Muy = −408 kN-m. Maximum
pressure for the design by classical model is: σmax = 296.54 kN/m2.

Substitute these values into the corresponding equations to obtain the moment, bending
shear and punching shear acting in each section on the footing for the new model and
classical model.

Table 3 shows the differences between the two models and Figure 8 presents the concrete
dimensions and reinforcement steel of the two footings.

Tables 1, 2 and 3, and Figures 6, 7 and 8 are shown in the Appendix.

6. Results and Discussion. Effects that govern the design for isolated footings are the
moments, bending shear, and punching shear.

• For the concentric footing:
a) For the moment acting around the axis a1-a1, there is an increase of 33% in the

classical model with respect to the new model. For the moment acting around the
axis a2-a2, the classical model is 2.27 times greater than the new model. For the
moment acting around the axis b1-b1, there is an increase of 38% in the classical
model with respect to the new model. For the moment acting around the axis
b2-b2, the classical model is 2.14 times greater than the new model.

b) For the bending shear acting on the axis f1-f1, there is an increase of 14% in
the classical model with respect to the new model. For the bending shear acting
on the axis f2-f2, the classical model is 1.91 times greater than the new model.
For the bending shear acting on the axis g1-g1, there is an increase of 18% in the
classical model with respect to the new model. For the bending shear acting on
the axis g2-g2, the classical model is 1.81 times greater than the new model.

c) For the acting punching shear it presents an increase of 63% in the classical model
with respect to the new model.

• For the edge footing:
a) For the moment acting around the axis a1-a1, there is an increase of 16% in the

classical model with respect to the new model. The moment acting around the
axis a2-a2, the classical model is 7.52 times greater than the new model. The
moment acting around the axis b1-b1 is zero, because the column is located in the
edge of the footing. For the moment acting around the axis b2-b2, the classical
model is 2.00 times greater than the new model.

b) For the bending shear acting on the axis f1-f1, the classical model is 0.87 times
with respect to the new model. For the bending shear acting on the axis f2-f2,
the classical model is 6.81 times greater than the new model. The bending shear
acting on the axis g1-g1 is zero, because the column is located in the edge of the
footing. For the bending shear acting on the axis g2-g2, there is an increase of
74% in the classical model with respect to the new model.

c) For the acting punching shear it presents an increase of 92% in the classical model
with respect to the new model.

• For the corner footing:
a) For the moment acting around the axis a2-a2, the classical model is 3.65 times

greater than the new model. For the moment acting around the axis b2-b2, there
is an increase of 97% in the classical model with respect to the new model. The
moments acting around of the axes a1-a1 and b1-b1 are zero, because the column
is located in the corner of the footing.

b) For the bending shear acting on the axis f2-f2, the classical model is 2.46 times
greater than the new model. For the bending shear acting on the axis g2-g2, there
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is an increase of 55% in the classical model with respect to the new model. The
bending shear acting on the axes f1-f1 and g1-g1 are zero, because the column is
located in the corner of the footing.

c) For the acting punching shear it presents an increase of 2.42 times in the classical
model with respect to the new model.

Materials used for the construction of the isolated footings are the reinforcement steel
and concrete.

• For the concentric footing:
a) For the concrete, there is a saving of the 30% in the new model with respect to

the classical model, because the thickness for the new model is of 50 cm and for
the classical model is of 65 cm.

b) For reinforcement steel in direction of the axes “Y ” and “X” of the footing being
the same, there is a saving of the 35.73% in the new model with respect to the
classical model, because the reinforcement steel in both directions for the new
model is of 45.45 cm2 and for the classical model is of 61.69 cm2.

• For the edge footing:
a) For the concrete, there is a saving of 37.5% in the new model with respect to the

classical model, because the thickness for the new model is of 40 cm and for the
classical model is of 55cm.

b) For reinforcement steel in the direction of axis “Y ” of the footing, there is a
saving of 46.86% in the new model with respect to the classical model, because
the new model is of 20.25 cm2 and for the classical model is of 29.74 cm2, and in
the direction of axis “X” of the footing, also there is a saving of 35.23% in the
new model with respect to the classical model, because the new model is of 28.19
cm2 and for the classical model is of 38.12 cm2.

• For the corner footing:
a) For the concrete, there is a saving of 62.5% in the new model with respect to the

classical model, because the thickness for the new model is of 40 cm and for the
classical model is of 65 cm.

b) For reinforcement steel in the direction of axis “Y ” of the footing, there is a
saving of 78.07% in the new model with respect to the classical model, because
the new model is of 20.25 cm2 and for the classical model is of 36.06 cm2, and in
the direction of axis “X” of the footing, also there is a saving of 27.92% in the
new model with respect to the classical model, and with respect to the volume of
reinforcement steel, because the new model is of 28.19 cm2 and for the classical
model is of 36.06 cm2.

7. Conclusions. New model presented in this paper applies only for design of the square
isolated footings with a column localized anywhere of the footing, the structural member
assumes that should be rigid and the supporting soil layers elastic, which comply with
the equation of the biaxial bending, i.e., the pressure variation is linear.

This paper is concluded as the following.
1) The new model in this paper is valid, because the equilibrium of the moments and

the loads acting on the footing against the pressure exerted by the soil on the footing is
verified.

2) The new model is adjusted to real conditions with respect to the classical model,
because the new model takes account of the soil real pressure and the classical model
considers the maximum pressure in all the contact surface.

3) The new model for design of foundations subject to axial load and moments in two
directions considers one or two property lines restricted.
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4) The thicknesses for the new model of the square isolated footings are governed by:
for the concentric footing is the punching shear, for the edge footing is the bending shear,
and for the corner footing is the punching and bending shear.

The results show that the classical model is larger than the new model in terms of the
reinforcement steel and thickness of the footing. Therefore, the new model is the plus
appropriate, because it is more adjusted to the real conditions of soil and also is more
economic.

New model presented in this paper for the structural design of the square isolated
footings subjected to an axial load and moment in two directions with a column localized
anywhere of the footing, also it can be applied to other cases: 1) the footings subjected
to a axial load due to the column, 2) the footings subjected to an axial load and moment
in one direction due to the column.

Suggestions for future research are that when it is presents another type of soil, by
example in totally cohesive soils (clay soils) and totally granular soils (sandy soils), the
pressure diagram is not linear and should be treated differently.
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[14] A. Luévanos Rojas, J. G. Faudoa Herrera, R. A. Andrade Vallejo and M. A. Cano Álvarez, Design
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[19] A. Luévanos Rojas, Design of boundary combined footings of trapezoidal form using a new model,
Structural Engineering Mechanics, vol.56, no.5, pp.745-765, 2015.
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Appendix.

Table 1. Comparison of results for the concentric footing

Concept New model NM Classical model CM CM/NM

Moment Ma1-a1 (kN-m) 646.22 858.39 1.33

Moment Ma2-a2 (kN-m) 378.47 858.39 2.27

Moment Mb1-b1 (kN-m) 623.36 858.39 1.38

Moment Mb2-b2 (kN-m) 401.32 858.39 2.14

Effective depth d (cm) 42 57 1.36

Coating r (cm) 8 8 1.00

Total thickness t (cm) 50 65 1.30

Volume of concrete (m3) 5.28 6.87 1.30

Bending shear acting Vf1 (kN) 636.49 722.85 1.14

Bending shear acting Vf2 (kN) 377.79 722.85 1.91

Bending shear acting Vg1 (kN) 614.40 722.85 1.18

Bending shear acting Vg2 (kN) 399.87 722.85 1.81

Bending shear admissible Vf (kN) 903.88 1226.69 1.36

Punching shear acting Vp (kN) 1535.60 2502.93 1.63

Punching shear admissible Vp (kN) 2736.67 4393.45 1.61

Punching shear admissible Vp (kN) 3171.97 5631.64 1.78

Punching shear admissible Vp (kN) 1770.78 2842.82 1.61

Reinforcement steel in

direction of axis “Y ” As (cm2)
45.45 61.69 1.36

Reinforcement steel in

direction of axis “X” As (cm2)
45.45 61.69 1.36
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Table 2. Comparison of results for the edge footing

Concept New model NM
Classical

model CM
CM/NM

Moment Ma1-a1 (kN-m) 138.49 160.80 1.16

Moment Ma2-a2 (kN-m) 21.38 160.80 7.52

Moment Mb1-b1 (kN-m) 0.0 0.0 −
Moment Mb2-b2 (kN-m) 322.39 643.22 2.00

Effective depth d (cm) 32 47 1.47

Coating r (cm) 8 8 1.00

Total thickness t (cm) 40 55 1.38

Volume of concrete (m3) 1.44 1.99 1.38

Bending shear acting Vf1 (kN) 216.21 191.97 0.87

Bending shear acting Vf2 (kN) 28.21 191.97 6.81

Bending shear acting Vg1 (kN) 0.0 0.0 −
Bending shear acting Vg2 (kN) 337.60 588.90 1.74

Bending shear admissible Vf (kN) 402.61 591.33 1.47

Punching shear acting Vp (kN) 480.43 920.08 1.92

Punching shear admissible Vp (kN) 1169.68 1998.07 1.71

Punching shear admissible Vp (kN) 1373.90 2701.69 1.97

Punching shear admissible Vp (kN) 756.85 1111.62 1.47

Reinforcement steel in

direction of axis “Y ” As (cm2)
20.25 29.74 1.47

Reinforcement steel in

direction of axis “X” As (cm2)
28.19 38.12 1.35

Figure 6. Concentric footing: (a) new model, (b) classical model
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Figure 7. Edge footing: (a) new model, (b) classical model

Figure 8. Corner footing: (a) new model, (b) classical model
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Table 3. Comparison of results for the corner footing

Concept New model NM
Classical

model CM
CM/NM

Moment Ma1-a1 (kN-m) 0.0 0.0 −
Moment Ma2-a2 (kN-m) 173.60 633.85 3.65

Moment Mb1-b1 (kN-m) 0.0 0.0 −
Moment Mb2-b2 (kN-m) 322.39 633.85 1.97

Effective depth d (cm) 32 57 1.78

Coating r (cm) 8 8 1.00

Total thickness t (cm) 40 65 1.63

Volume of concrete (m3) 1.44 2.35 1.63

Bending shear acting Vf1 (kN) 0.0 0.0 −
Bending shear acting Vf2 (kN) 212.74 523.99 2.46

Bending shear acting Vg1 (kN) 0.0 0.0 −
Bending shear acting Vg2 (kN) 337.60 523.99 1.55

Bending shear admissible Vf (kN) 402.61 717.14 1.78

Punching shear acting Vp (kN) 383.50 931.37 2.42

Punching shear admissible Vp (kN) 711.98 1551.29 2.18

Punching shear admissible Vp (kN) 893.86 2237.18 2.50

Punching shear admissible Vp (kN) 460.69 1003.78 2.18

Reinforcement steel in

direction of axis “Y ” As (cm2)
20.25 36.06 1.78

Reinforcement steel in

direction of axis “X” As (cm2)
28.19 36.06 1.28


