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Abstract. Avoiding premature convergence while keeping performance is a challenge
in training neural network (NN), especially in a case of large NNs or a large number of
training data. This paper proposes an improved particle swarm optimization (PSO) al-
gorithm called the PSOseed2 algorithm for training NN. The PSOseed2 algorithm solves
the premature convergence of the standard PSO (SPSO) algorithm by slightly modify-
ing the velocity update function without adding many computational tasks to the SPSO
algorithm. To confirm the efficiency of the PSOseed2 algorithm on different NN architec-
tures, we evaluated this algorithm on field-programmable gate array (FPGA)-based NN
and software-based NN and trained these NNs with four different PSO algorithms that
are SPSO, PSOseed, PSOseed2, and dissipative PSO. Experimental results with four dif-
ferent datasets confirmed that the NNs trained by the proposed PSOseed2 algorithm had
better recognition rates and lower global learning errors than the NN trained by three
other PSO algorithms.
Keywords: Particle swarm optimization, Premature convergence, FPGA-based neural
network, Software-based neural network

1. Introduction. Nowadays, particle swarm optimization (PSO) algorithm has become
an attractive target for research. In the PSO algorithm, a movement of each particle in
the swarm is based on the knowledge of this particle and the knowledge of the whole
population. Each individual in the swarm tends to move to a particle which obtains the
best position in the population [1, 2].

The PSO algorithm is a popular method for the training of a neural network (NN).
In this situation, parameters concerning weights and biases of the NN are determined by
the PSO algorithm during the training phase. The NN trained by the PSO algorithm
(NN-PSO) has been used in previous studies [3, 4, 5].

However, the standard PSO (SPSO) algorithm may stick to a local minimum. In this
case, the training phase of the NN will stop. The NN cannot be trained, and the recogni-
tion rate will be low. Several researchers have focused on the problem of the premature
convergence of the SPSO algorithm. The attractive and repulsive PSO (ARPSO) adds
the repulsion phase to the SPSO algorithm [6]. In each iteration, the diversity of the
swarm is calculated to determine whether the repulsive function is conducted or not.
The opposition-based PSO (OPSO) algorithm is also introduced to improve the SPSO
algorithm [7, 8]. In OPSO algorithm, the opposition-based particles are calculated. If
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these opposition-based particles have higher fitness values than the original particles, the
opposition-based particles will replace the original particles. Another algorithm called
particle swarm optimization with spatial particle extension (SEPSO) uses radius r to
detect the collision of the particles [9]. This mechanism prevents the situation where
one particle is trapped in the local minimum, other particles are also attracted to this
local minimum, and the algorithm will be stopped. The fully informed PSO algorithm
determines not only the best position of one particle but also the best positions of the
neighborhood of this particle [10]. These positions are used to calculate the new velocities
of the particle. The knowledge-based cooperative particle swarm optimization (KCPSO)
uses a multi-swarm mechanism to maintain the swarm diversity [11, 12]. Hence, the pre-
mature convergence could be alleviated. Several other researchers have used mutation
operations such as Gaussian mutation [13, 14], and Cauchy mutation [15, 16]. The com-
bination of SPSO algorithm and genetic algorithm (GA) is also used to avoid the local
minimum [17, 18]. The GA operators such as the crossover and the mutation are added
to the SPSO algorithm. These improved versions of the SPSO algorithm may add many
compute-intensive tasks to the SPSO.

This paper proposes a novel PSO algorithm called PSOseed2 algorithm which slightly
changes the velocity update function without adding many computational tasks to the
SPSO algorithm. The PSOseed2 algorithm is based on our PSOseed algorithm which
uses seed factors to pull the particles out of the local minimum [19]. In our experiments,
the proposed PSOseed2 algorithm was also compared with the dissipative particle swarm
optimization (DPSO) algorithm [20]. The DPSO algorithm is an improved version of the
SPSO algorithm which also keeps the particles out of the premature convergence without
adding many computational tasks to the SPSO algorithm.

In recent years, field-programmable gate array (FPGA) has become an emerging re-
search topic. An FPGA-based program may obtain a higher operating speed than the
conventional software-based program [21, 22, 23]. Due to the limitation of logic elements
and memory bits, FPGA-based programs are suitable for small scaled applications. In
our research, a small-size FPGA-based NN is trained with four different PSO algorithms,
namely SPSO, DPSO, PSOseed, and PSOseed2. For experiments with large NNs, the
software-based NN is employed.

The main contribution of this paper is to propose an improved version of the PSOseed
algorithm, the PSOseed2 algorithm, which could obtain high recognition rates and low
learning errors in the training of the NNs without adding many computational tasks to
the SPSO algorithm. The hardware-based NN and the software-based NN are used to
evaluate the PSOseed2 algorithm.

The rest of this paper is presented as follows. Section 2 describes the encoding strategy
for the NN trained by the PSO algorithms. Three different PSO algorithms (standard
PSO, dissipative PSO, and PSOseed) are also presented in this section. Section 3 in-
troduces our proposed PSOseed2 algorithm. Section 4 details two approaches for the
implementation of the NN-PSO system. One is the software-based NN, and the other one
is the hardware-based NN. Section 5 introduces our experiments. Section 6 concludes our
paper and also gives several possible avenues for the future research.

2. Related Work.

2.1. NN and encoding strategy. In our research, the NN has three layers which are
one input layer, one hidden layer, and one output layer. Each layer consists of several
nodes. In the NN, the output of one layer becomes the input of the next layer through
an activation function. The operation of one node with two inputs of the NN is shown in
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Figure 1. Operation of one node

Figure 2. Operation of the neural network

Figure 1, and the operation of the NN is illustrated in Figure 2. In Figure 1, the result
calculated before the activation function is expressed in Equation (1). This study uses
the Sigmoid function as the activation function which is presented in Equation (2).

x = Bias + Weight1 × Input1 + Weight2 × Input2 (1)

where Bias is the bias value, Input1 and Input2 are the input signals, Weight1 and
Weight2 are the weights, and x is used in the activation function.

f(x) =
1

1 + e−x
(2)

Our research focuses only on the feedforward neural network because this type of NN
does not contain any loop and may not require many resources of the FPGA device. The
number of weights and biases of the NN is calculated as Equation (3).

D = (NI + 1) × NH + (NH + 1) × NO (3)

where D is the number of weights and biases, (NI + 1) × NH indicates NI × NH weights
and NH biases in the hidden layer. In a similar way, (NH + 1) × NO indicates NH × NO

weights and NO biases in the output layer.
The position #»xp of particle p could be presented as one vector as shown in Figure 3. If

the PSO training has P particles, P vectors will be used during the training phase of the
NN-PSO system. Each vector is considered as one particle which has D parameters. As
presented in Equation (3), these D parameters are the number of weights and biases of
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Figure 3. Encoding vector for one particle of the NN-PSO system

the NN. These parameters are determined during the PSO training. The PSO algorithms
for the training of the NN will be described in the following sections of this paper.

2.2. Standard PSO (SPSO) algorithm. The PSO algorithm is based on social behav-
iors, for example, the bird flocking [1, 2]. At any given time t, the position of a particle
p is #»xp. The new velocity #»vp(t + 1) of particle p at time (t + 1) can be updated based on
Equation (4).

#»vp(t + 1) = w × #»vp(t) + c1 × r1 ×
(

#               »

xPbestp(t) − #»xp(t)
)

+ c2 × r2 ×
(

#             »

xGbest(t) − #»xp(t)
) (4)

where w is the inertia weight, r1 and r2 are the random numbers, c1 is the cognitive

coefficient, c2 is the social coefficient,
#             »

xPbestp is the best personal position found by

particle p,
#             »

xGbest is the best position found by any particle in the swarm, and #»vp(t) is
the velocity of particle p at time t.

The new position #»xp(t + 1) at time (t + 1) is expressed in Equation (5).

#»xp(t + 1) = #»xp(t) + #»vp(t + 1) (5)

The new fitness values at time (t + 1) are also calculated based on Equations (6) and
(7).

Pbestp(t + 1) =

{
f( #»xp(t + 1)) if f( #»xp(t + 1)) < Pbestp(t)

Pbestp(t) if f( #»xp(t + 1)) > Pbestp(t)
(6)

Gbest(t + 1) = argmin
p

Pbestp(t + 1) (7)

where Pbestp(t+1) is the fitness value of position
#               »

xPbestp(t+1) at time (t+1), Gbest(t+1)

is the fitness value of position
#             »

xGbest(t+1) at time (t+1), and f(.) is the fitness function.
The PSO algorithm continues a new iteration to calculate the new velocity #»vp(t + 2),

new position #»xp(t + 2), new fitness values Pbestp(t + 2), Gbest(t + 2) at time (t + 2) until
stopping criteria are met. The stopping criteria could be the number of iterations or the
final fitness value Gbest.

2.3. Dissipative PSO (DPSO) algorithm. The standard PSO (SPSO) could be trap-
ped by the local minimum. In this situation, the NN may not be trained. A well-known
algorithm was created to overcome the premature convergence called dissipative PSO
algorithm (DPSO) [20]. This is a simple algorithm which adds Equations (8) and (9)
after calculating the new velocity #»vp(t + 1) and the new position #»xp(t + 1).

If (rand() < cv) Then #»vp(t + 1) = rand() × #      »vmax (8)

If (rand() < cl) Then #»xp(t + 1) = Rand(lo, up) (9)

cv and cl are numbers in the range [0, 1], Rand(lo, up) is the random number between
[lo, up], rand() is the random number in the range [0, 1], and #      »vmax is the maximum velocity.
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2.4. PSOseed algorithm. In our previous research, the PSOseed algorithm was intro-
duced to solve the premature convergence [19]. In this PSOseed algorithm, the velocity
update function was modified as can be seen in Equation (10).

#»vp(t + 1) = w × #»vp(t) + c1 ×
(

#               »

xPbestp(t) − #»xp(t)
)

+ c2 ×
(

#             »

xGbest(t) − #»xp(t)
)

+ c3 × r ×
(

#             »

xSeedp − #»xp(t)
) (10)

where
#             »

xSeedp is the seed position of particle p, c3 is the coefficient, and r is the random
number.

In this algorithm, the seed positions of all particles are randomly generated in the
initialization phase of the PSO training. At any given time t, the calculation of the
new velocity at time (t + 1) is not only influenced by the current velocity #»vp(t), current
#               »

xPbestp(t), current
#                   »

xGbest(t) but also affected by the seed position
#             »

xSeedp of this particle.
This seed factor always pulls the particles to the seed positions; even the particles are at
the local minimum. Using this mechanism, the particles may continue to search in other
areas of the searching space.

3. Proposed PSOseed2 Algorithms. In the PSOseed algorithm, with the appearance
of the seed factor, the particles may be kept out of the local minimum. However, the
efficiency of the PSOseed algorithm highly depends on the seed positions. If the suitable
seed factors are generated in the initial phase, the PSOseed could obtain a high recognition
rate and a low Gbest. On the other hand, the performance of the PSOseed algorithm
decreases significantly if the seed positions are improper.

To overcome the drawback of the seed positions of the PSOseed algorithm, the PSOseed2
algorithm which has a mechanism to control the seed positions is introduced. Similar to
the PSOseed algorithm, the seed positions of the PSOseed2 algorithm are randomly gen-
erated in the initialization phase of the PSO training. In each iteration, the calculating
of the new velocity uses the seed positions as presented in Equation (10). However, these
seed positions are not fixed as can be seen in the PSOseed algorithm. If the calculated
fitness value Gbest(t) at time t is not lower than the current fitness value Gbest of the
PSOseed algorithm, the seed factors will be reseeded. The mechanism of our PSOseed2
algorithm can be presented as follows.

• Generate the seed positions of all particles in the initial step.
• Execute the PSO calculation for all particles based on:

– Equation (10) to calculate the new velocities.
– Equation (5) to calculate the new positions.
– Equation (6) to estimate the new fitness values Pbest and the corresponding

positions
#             »

xPbest, for all particles.
– Equation (7) to estimate the new fitness values Gbest and the corresponding

positions
#             »

xGbest.
• Compare the calculated Gbest with the current Gbest of the PSOseed2 algorithm:

– If calculated−Gbest ≥ current−Gbest then reseed all seed factors.
– If calculated−Gbest < current−Gbest then update current−Gbest = calculated

−Gbest.
• Continue a new iteration until the stopping criteria are satisfied.

Figure 4 illustrates the reseed mechanism of the PSOseed2 algorithm which could be
used to solve the problem of seed positions. If both particle p and its initial seed position
are in the local minimum, the PSOseed algorithm will stop. On the other hand, the
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Figure 4. Operation of the PSOseed2 algorithm

PSOseed2 algorithm will activate the reseed mechanism that generates a new seed position
of particle p. This new seed will pull particle p to its position.

4. Implementation of the NN-PSO System. The FPGA-based NN obtains a higher
operating speed than the software-based NN. However, a large hardware-based NN which
has many nodes requires many logic elements. This hardware-based NN may not fit in an
FPGA device. Thus, this research employs the software-based NN for experiments with
large NNs.

This paper presents two different approaches to evaluate the PSO algorithms. The first
approach is the software-based NN, and the other approach is the FPGA-based NN.

4.1. The software-based NN trained by the PSO algorithms. In this design, the
software-based NN is trained by four different PSO algorithms (SPSO, DPSO, PSOseed,
and PSOseed2). The NN and the PSO algorithms were coded in the C language in Visual
Studio 2013 [24].

Figure 5 presents the training phase of our implementation. The training data have two
parts called input data and labeled data. The input data are sent to the particle blocks,
and the labeled data are sent to the evaluation modules. Each particle is a D-dimensional
vector that corresponds to D parameters (weights and biases) of one NN. The output
data of the NN are fed to the evaluation modules. In these modules, the fitness values

Figure 5. Training phase of the NN-PSO
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are calculated by the mean square error function as seen in Equation (11).

fitnessi =
1

T

T∑
j=1

(labeled−dataj(k) − output−dataij(k))2 (11)

where fitnessi is the fitness value of module i, T is the number of training samples,
labeled−dataj(k) is the kth component of labeled data j (1 ≤ k ≤ D), and output−
dataij(k) is the kth component of output data j of particle i (1 ≤ k ≤ D).

The fitness values from evaluation modules are used to estimate the new Pbestp based
on Equation (6) and the new Gbest based on Equation (7).

The stopping-check module is used to check whether the stopping criteria are satisfied
or not. If the stopping conditions are not met, the new velocities and positions of all
particles are calculated in the updated module, and the new iteration will be conducted.
The operation of the updated module depends on the PSO algorithm. For example,
Equations (10), (5), and the reseed mechanism are used in the updated module when
the PSOseed2 algorithm is used. On the other hand, the D trained parameters (weights
and biases) of the NN are determined if the stopping criteria are met. These D trained
parameters will be used in the testing phase.

4.2. The FPGA-based NN trained by the PSO algorithms. The FPGA-based
NN may obtain a higher operating speed than the software-based NN. The operation
of hardware-based NN trained by different PSO algorithms (SPSO, DPSO, PSOseed,
and PSOseed2) was also investigated. Since an FPGA device has limited logic elements
and limited memory bits, our FPGA-based NN has a smaller number of nodes in each
layer than the software-based NN. In addition, the number of input nodes of our NN
corresponds to the number of attributes in the dataset. For this reason, the datasets used
in the FPGA-based NN experiments also have a smaller number of attributes than the
datasets employed in the software-based NN experiments.

Figure 6 shows our design. The PSO algorithms are implemented in a hard processor
system with an ARM processor. This study employs the Cyclone V hard processor system
provided by Altera [25]. In the hard processor system, a Linux operating system is
installed on the ARM processor. Our research uses Ubuntu as the operating system [26].
The Linux file systems are stored on an SD card. The DDR3 random-access memory
(RAM) is divided into two different sections. The first section is reserved for the Ubuntu
operating system. The second section is used for the data transmission. All weights,
biases, input data sent to the NN, output data received from the NN are put in the
second section.

Figure 6. Hardware-based NN trained by PSO algorithms
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Using the direct memory access (DMA) controller [27], the data from the transmission
section may be sent to and be received from the FPGA-based module by DMA. The DMA
controller is configured by the ARM processor with the address of the data transmission
section and the address of the FPGA-based module.

An Avalon memory-mapped slave interface [28] is created in the FPGA-based module
to do the data transmission with the DMA. The floating-point calculation is used in
our design. The FPGA-based module has not only the hardware-based NN but also the
floating-point (FP) calculations. Figure 7 presents the operation of the FPGA-based
module. The details of the operation are as follows.

1) The operation of the FPGA-based NN is based on a finite state machine (FSM) which
has two main states called waiting−phase and NN−running−state. In each clock
cycle, the NN checks the status of the FP submodule by using flag signal. If the
flag signal is ready (flag = 1), the FSM of the NN moves to NN−running−state.
Otherwise, the FSM of the NN is put in the waiting−state. The NN−running−state
of the FSM has several smaller states to calculate the output of each node in each layer
of the NN based on Equations (1) and (2).

2) When the NN needs to use the floating-point calculations, the FPGA-based NN sub-
module sends require−calculations signal to the FP submodule. For example, if the
addition is required, the NN will send float−alu−mode−add signal to the FP compo-
nent.

3) The input data of the NN are forwarded to the FP submodule using data signal.
4) The NN rechecks the flag signal of the NN to determine whether the processing of

floating-point calculations is finished or not.
5) In next clock cycles

(a) If the processing is finished (flag = 1), the NN receives the output data from the
FP submodule. The FSM of the NN continues the operation in the NN−running

−state. When the NN needs to use again the floating-point calculations, the algo-
rithm returns to step 2.

(b) If flag = 0, the FSM of the NN changes to the waiting−phase.

Figure 7. Operation of the FPGA-based module

The FP submodule implements the floating-point IP cores provided by Altera [29].
These IP cores are used in our research because these cores are already optimized for
our FPGA device. In addition, the output latency of the arithmetic operation is also
specified. These output latencies are used in the calculation-counter. If FP submodule
receives require−calculations signal, the flag signal is assigned value 0 (flag = 0),
and the calculation-counter is set to a corresponding value. For example, the output



PSOSEED2 ALGORITHM FOR TRAINING OF NEURAL NETWORKS 1213

latency of the addition is seven clock cycles. When require−calculations signal is the
float−alu−mode−add, the calculation-counter is set to seven. This value is decreased one
unit on each clock cycle. When the counter value equals zero or the addition calculation
is finished, the flag signal will have value 1 (flag = 1). When the counter value is greater
than zero, the flag signal still has value 0 (flag = 0).

5. Experiments. Four different PSO algorithms (SPSO, DPSO, PSOseed, and PSO-
seed2) were used to train two different types of NNs (software-based NN and FPGA-based
NN).

Based on our experimental results, the parameters for the PSO algorithms which ob-
tained high recognition rates and low learning errors in the training of the NNs could be
w = 0.9, c1 = 0.5, c2 = 0.5, c3 = 0.5, and the range of velocity was from −2 to 2. The
parameters of the DPSO algorithm were similar to the previous research [20] (cv = 0.0,
cl = 0.001). In our experiments, the number of particles and the number of iterations
were varied to investigate different situations of the NN-PSO system.

Both FPGA-based NN and software-based NN trained by PSO algorithms were tested
on different datasets to observe the operation of the NN trained by PSO algorithms in
various scenarios. The datasets tested for each type of NN have different numbers of
attributes and classes. In our programs, the number of attributes and classes of the
datasets corresponds, respectively, to the number of input nodes and output nodes of the
NN. If one dataset has a large number of attributes or classes, the NN needs to have a
large number of input nodes or output nodes. This NN will not fit in an FPGA device
because the FPGA-based NN has a drawback concerning the limited logic elements and
the limited memory bits. Thus, the FPGA-based NN was used to test with the wine
dataset and the Australian credit dataset which have smaller than fifteen attributes. The
software-based NN which had more nodes in each layer than the hardware-based NN
was trained with the spam dataset and the handwritten digit dataset that have more
attributes than the datasets used in the FPGA-based NN experiments. Each dataset was
randomly divided into two different subsets, and the cross-validation was conducted. The
list of experiments is illustrated in Table 1.

Table 1. List of experiments

Datasets

Software-based NN

Spambase dataset: 57 attributes, 2 classes,
cross-validation data: 3601 samples in set 1, 1000 samples
in set 2
(Section 5.1.1)
Handwritten digits dataset: 64 attributes, 10 classes,
cross-validation data: 1500 samples in set 1, 500 samples
in set 2
(Section 5.1.2)

FPGA-based NN

Wine dataset: 13 attributes, 3 classes,
cross-validation data: 120 samples in set 1, 58 samples in
set 2
(Section 5.2.1)
Australian credit dataset: 14 attributes, 2 classes,
cross-validation data: 490 samples in set 1, 200 samples in
set 2
(Section 5.2.2)
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5.1. Software-based NN with PSO algorithms. The software-based NN experiments
were conducted in Visual Studio 2013 [24].

5.1.1. Spambase dataset. The spambase dataset is the collection of 4601 emails, which
are marked spam email or non-spam email [30]. Each email has 57 attributes. Most of
the attributes are the percentage of particular words or characters. Our experiments used
a three-layer neural network which had 57 input nodes corresponded to 57 attributes, 2
output nodes corresponded to 2 classes, and 10 hidden nodes. The spambase dataset was
divided randomly into two different sets. Set 1 had 3601 samples and set 2 had 1000
samples. When set 1 was used as the training set, set 2 was considered as the testing set
and vice versa.

Table 2 and Figure 8(a) describe the experimental results when 3601 samples of set 1
were selected as the training data and 1000 samples of set 2 were used as the testing data.
The parameters for the PSO algorithms were 20 particles, 10000 iterations. The Gbest,
the global fitness value of the learning error, of the PSOseed2 algorithm decreased to the
lowest value (0.0396). The PSOseed2 algorithm also obtained the higher recognition rate
(95.40%) than other three algorithms.

Figure 8(b) presents the reduction of the Gbest when set 2 (1000 samples) was consid-
ered as the training data and set 1 (3601 samples) was chosen as the testing data. The
number of particles and the number of iterations were kept at 20 particles and 10000 iter-
ations. The PSOseed2 algorithm still produced better Gbest (final Gbest = 0.0042) than
other three algorithms. As can be seen in Table 2, the recognition rate of the PSOseed2
algorithm was also the highest number (88.25%).

Experimental results showed that the PSOseed2 algorithm obtained the lowest fitness
value Gbest and the highest recognition rate among four different algorithms not only

Table 2. Results with spambase dataset

3601 training data,
1000 testing data

1000 training data,
3601 testing data

Algorithm SPSO DPSO PSOseed PSOseed2 SPSO DPSO PSOseed PSOseed2
Final Gbest 0.1140 0.0660 0.0458 0.0396 0.0580 0.0186 0.0076 0.0042
Recognition

rate
87.40% 92.40% 93.60% 95.40% 80.34% 85.62% 85.87% 88.25%
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(a) 3601 training data, 1000 testing data
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(b) 1000 training data, 3601 testing data

Figure 8. Reduction of Gbest with spambase dataset
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with the large number of training samples (3601 samples) but also with the small number
of training samples (1000 samples).

5.1.2. Handwritten digits dataset. The software-based NN trained by four PSO algorithms
was also tested with another dataset called handwritten digits [30]. This database contains
the processed handwritten digits from 0 to 9. Each processed digit is an input matrix of
size 8 × 8 whose each element has a range from 0 to 16. Each sample in handwritten
digits has 64 attributes and belongs to one of ten classes. With this dataset, 1500 samples
were selected randomly as set 1, and other 500 samples were also chosen randomly as set
2.

In the first test, set 1 with 1500 samples was considered as the training data and set
2 with 500 samples was chosen as the testing data. The parameters of the NN were 64
input nodes (for 64 attributes), 10 output nodes (for 10 classes), and 20 hidden nodes.
The number of particles was 85 particles. The number of iterations was 10000 iterations.
The reduction of Gbest is presented in Figure 9(a). The final Gbest values and the final
recognition rates after 10000 iterations are shown in Table 3. These results demonstrated
the high accuracy of the software-based NN trained by the PSOseed2 algorithm concerning
the recognition rates and the global learning errors (Gbest) among four different PSO
algorithms.

To investigate the cross-validation, the 500-samples dataset was also selected as the
training data. The NN in this experiment had 64 input nodes, 10 output nodes, and 15
hidden nodes. The PSO parameters were 100 particles and 3000 iterations. The exper-
imental results are shown in Table 3 and Figure 9(b). The final Gbest of the PSOseed2
decreased to the lowest value 0.0062 among these four algorithms. The recognition rate
of the PSOseed2 was also the highest number (85.60%).

Table 3. Results with handwritten digits dataset

1500 training data, 500 testing data 500 training data, 1500 testing data
Algorithm SPSO DPSO PSOseed PSOseed2 SPSO DPSO PSOseed PSOseed2
Final Gbest 0.3105 0.1096 0.0364 0.0250 0.1931 0.0877 0.0177 0.0062
Recognition

rate
62.20% 92.00% 96.20% 97.60% 40.27% 60.80% 84.93% 85.60%
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Figure 9. Reduction of Gbest with handwritten digits dataset



1216 T. L. DANG, T. CAO AND Y. HOSHINO

5.2. FPGA-based NN with PSO algorithms. The PSO algorithms were also eval-
uated in the training of the FPGA-based NN. Our experiments used the FPGA-based
NN which had a smaller number of nodes in each layer than the software-based NN on
account of the limited logic elements and the limited memory bits of our FPGA device.

In our FPGA-based experiments, the FPGA-based NN was implemented in hardware
by SystemVerilog programming language. The PSO algorithms were coded in the C
programming language by the ARM processor. The target device in our experiments was
the Cyclone V SoC provided by Altera [25].

5.2.1. Wine dataset. The wine dataset comes from a chemical analysis of Italian wines.
This dataset has three different types of wines (three classes) and 178 samples [30]. Each
sample in the dataset contains thirteen attributes. The parameters of the NN in the
experiments with wine dataset were 13 input nodes, 3 output nodes, and 24 hidden
nodes. The samples of this dataset were divided into two different sets to conduct the
cross-validation. The first set had 120 data samples, and the second set had remaining
58 samples. The data in each set were chosen randomly.

Figure 10(a) shows the reduction of Gbest, the learning errors, of the FPGA-based NN
trained by four different algorithms when the 120-samples dataset was used as the training
data, and the 58-samples dataset was considered as the testing data. The configurations
of the PSO algorithms were 15 particles and 800 iterations. Similar to experiments with
the software-based NN, the Gbest of the PSOseed2 algorithm still decreased to the lowest
value. Concerning the recognition rates of the NN, Table 4 gives information that at
the minimum value of Gbest (0.0034), the PSOseed2 algorithm also obtained the highest
percentage of correct recognition at 98.28%. On the other hand, the NN trained by the
SPSO algorithm still had the lowest recognition rate at 89.66% and the highest Gbest at
0.0457 among four algorithms.

Table 4. Results with wine dataset

120 training data, 58 testing data 58 training data, 120 testing data
Algorithm SPSO DPSO PSOseed PSOseed2 SPSO DPSO PSOseed PSOseed2
Final Gbest 0.0457 0.0193 0.0098 0.0034 0.0026 0.0008 0.0006 0.0003
Recognition

rate
89.66% 94.83% 96.55% 98.28% 86.67% 90.00% 90.00% 93.33%
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Figure 10. Reduction of Gbest with wine dataset



PSOSEED2 ALGORITHM FOR TRAINING OF NEURAL NETWORKS 1217

Figure 10(b) and Table 4 show the reduction curves of Gbest, the final Gbest values,
and the recognition rates when set 1 (58 samples) was used as the training data and set
2 (120 samples) was used as the testing data. The PSO parameters were 40 particles,
400 iterations. These experimental results confirmed the high accuracy concerning the
recognition rates and the learning errors of the FPGA-based NN trained by the PSOseed2
algorithm.

5.2.2. Australian credit dataset. The Australian credit approval dataset was also used
to observe the operation of the FPGA-based NN trained by four PSO algorithms in a
different situation. This database has 690 samples which consist of two classes called
approval and rejection. Each sample which belongs to one of these two categories has
fourteen attributes [30]. To conduct the experiments with this data, the NN had 14
nodes in the input layer, 24 nodes in the hidden layer, and 2 nodes in the output layer.
Similar to the experiments with other datasets, this Australian credit dataset was also
divided randomly into two different sets. The first set had 490 samples, and the second
set consisted of 200 samples.

When set 1 was used as the training data, 200 samples of set 2 were considered as
the testing data. The settings for the PSO algorithms were 10 particles, 300 iterations.
Experimental results which contain the recognition rates and the learning errors Gbest
are presented in Table 5. The reduction of the learning errors in each iteration is shown in
Figure 11(a). These results showed that the NN trained by PSOseed2 algorithm achieved
the highest accuracy when compared with the NN trained by the PSOseed algorithm, the
NN trained by the DPSO algorithm, and NN trained by the SPSO algorithm.

To conduct the cross-validation, set 2 that had 200 samples was also used as the training
data, and 490 samples of set 1 were also selected as the testing data. This experiment
was conducted with 5 particles and 800 iterations as the parameters. The learning curves
of the NN trained by PSO algorithms are illustrated in Figure 11(b). As seen in Table 5,

Table 5. Results with Australian credit dataset

490 training data, 200 testing data 200 training data, 490 testing data
Algorithm SPSO DPSO PSOseed PSOseed2 SPSO DPSO PSOseed PSOseed2
Final Gbest 0.1558 0.1476 0.1282 0.1194 0.0635 0.0316 0.0164 0.0136
Recognition

rate
90.00% 93.00% 94.50% 96.00% 80.82% 81.84% 82.65% 82.86%
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Figure 11. Reduction of Gbest with Australian credit dataset
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the final values of the learning errors were 0.0136 with the PSOseed2 algorithm, 0.0164
with the PSOseed algorithm, 0.0316 with the DPSO algorithm, and 0.0635 with SPSO
algorithm. The NN trained by PSOseed2 algorithm also obtained the highest recognition
rate at 82.86%. Experimental results confirmed that the PSOseed2 could be a suitable
solution for the training of the FPGA-based NN even with the small number of training
samples or the small number of particles.

6. Conclusions. This paper proposes an enhanced version of the SPSO algorithm called
the PSOseed2 algorithm for training NN. The PSOseed2 algorithm slightly modifies the
velocity update function with only slight impact on the performance of the SPSO algo-
rithm in the training of the NN concerning the recognition rate and the learning error.

The operation of the PSOseed2 algorithm was compared with three other PSO al-
gorithms (SPSO algorithm, DPSO algorithm, and PSOseed algorithm) on two different
architectures. In the first architecture presented in Section 4.1 of this manuscript, four
PSO algorithms were used to train the software-based NN. In the second architecture
presented in Section 4.2 of this paper, the PSO algorithms were employed to train the
hardware-based NN.

In our architectures, the number of input nodes of the NN corresponds to the number
of attributes in the dataset. If the dataset has a large number of attributes, the NN needs
to have a large number of input nodes. However, the FPGA-based NN that has a large
number of nodes will not fit in an FPGA device because of the limited resources concerning
the logic elements and the memory bits. Therefore, the FPGA-based NN was used to test
with the datasets which have smaller than fifteen attributes. The software-based NN
which has more nodes in each layer than the hardware-based NN was used to train with
datasets that have more attributes than the datasets employed in the FPGA-based NN
experiments.

Our experimental results demonstrated that the implementations of both FPGA-based
NN and software-based NN trained by PSO algorithms were feasible. With the same
conditions for the parameters, both the FPGA-based NN and the software-based NN
trained by the PSOseed2 algorithm obtained higher recognition rates and lower fitness
values (Gbest) than the NNs trained by other three PSO algorithms.

Our research used the Cyclone V as the FPGA device. This Cyclone V chip, which is
the low system cost and performance, has limited resources concerning the logic elements
and the memory bits. For this reason, the PSO algorithms were implemented in software.
In future studies, if higher device families such as Arria or Stratix could be employed,
the PSO algorithms could be implemented in hardware to increase the training speed. In
this situation, the logic utilization of the PSOseed2 algorithm could be investigated. This
paper focuses on the feedforward NN. Another possible avenue for the future research is
to study the operation of the PSOseed2 algorithm in the training of other types of the
NN.
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