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Abstract. Semantic annotation of legacy Web Services is one of the fast and efficient
ways to implement Semantic Web Service paradigm. Semantic similarity between con-
cepts in WSDL (Web Services Description Language) document and ontology concepts is
the backbone of semantic annotation of legacy Web Services. The overwhelming majority
of previous works focused mainly on semantic similarity of concepts in a specific domain
ontology. However, the concepts used in Web Services are often from multiple sources
or different domain ontologies. This makes traditional approaches no longer applicable.
To address this, we propose a hybrid measuring approach to measure semantic similarity
between concepts in WSDL documents and concepts in OWL (Ontology Web Language)
files. The proposed approach mainly consists of two parts: lexical-level similarity measur-
ing and structural-level similarity measuring. Specially, we fusion adopt three commonly
used approaches, i.e., edge-based, feature-based, and information content-based seman-
tic similarity measuring approaches. Specifically, we map the above mentioned three
approaches to three proposed internal features, i.e., depth, width, and density, in the ab-
stract tree structure when measuring structural-level similarity. We conduct experimental
comparisons, and the results show that the proposed approach provides better accuracy.
Furthermore, the proposed approach can be applied in any user defined Web Services de-
scription documents in theory with a wider range of application.
Keywords: Semantic similarity, Semantic annotation, Web Services, Semantic Web
Services, Ontology

1. Introduction. The technology of Web Services is independent of underlying imple-
mentation technologies and platforms [1]. It provides a standardized way to achieve
inter-operability between heterogeneous software systems. However, it is difficult to dis-
cover and compose relevant Web Services when the amount of services increases rapidly
and data heterogeneity continues to grow. In the meanwhile, the accuracy of Web Ser-
vices discovery and composition decreases because the syntactic-based description of Web
Services lacks semantics [2].

Semantic Web Services can provide high accuracy for Web Service discovery, and facili-
tate composition significantly. Furthermore, reusability of Web Services can be improved
in the meanwhile [5]. One realistic and effective way to implement Semantic Web Services
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is annotating legacy Web Services with concepts that are from formal logic-based ontolo-
gies. In this case, intelligent agents and service-based applications can actually reason on
the formal service semantics from an AI (Artificial Intelligence) perspective [3, 4].

The core idea of semantic annotation is tagging a concept in a WSDL document with a
proper domain ontology concept. Because ontologies (that formally represent knowledge
as a set of concepts with relationships) can provide a definitive and exhaustive classi-
fication of entities in all spheres of being, semantic similarity, that reflects how closely
associated concept pairs is, is the backbone of semantic annotation. According to the
result of semantic similarity measuring, concepts in WSDL documents can be annotated
with selected ontology concepts.

At the beginning of the research, researchers focus mainly on semantic similarity mea-
suring between concept pairs in a single ontology. Approaches that have been proposed
to measure semantic similarity between concept pairs in a single ontology can be roughly
classified as: edge-based [8, 9, 10, 11], feature-based [6, 7, 12, 13, 14] and information
content-based [15, 16, 17, 18]. With the widespread adoption of the Semantic Web
paradigms, many ontologies have been developed in the past few decades for various
purposes and domains [19]. Joint application of multiple ontologies has been considered
when knowledge in single ontology is not enough [20]. Many works have been done in
semantic similarity measuring in multiple ontologies [13, 21, 22, 23, 24].

However, WSDL documents are often written manually by different program developers
at the present stage. More seriously, different developers define the same concept from
different scopes, points of view perspectives, and design principles. In addition, differ-
ent concepts may be defined from a similar perspective with the same semantic. Take
“Computer” in WSDL document fragment in Figure 1 for example.

Figure 1. Example definitions of concept “Computer” by different developers

The meaning of “Computer∗” and “Computer∗∗” represents the same object (i.e., a
computer machine). However, the definition of Computer∗ may be used in a scenario
that performance is critical when “Computer∗∗” focuses mainly on price.

This is a common issue in Web Services that different service providers provide similar
services. However, these services may focus on different perspectives that lead to the
definition of the same concept from different perspectives. There are problems when di-
rectly applying traditional semantic similarity measuring approaches in single or multiple
ontologies in this scenario. Because these approaches are difficult to detect this subtle
semantic differences or they will amplify this difference to much. Traditional semantic
similarity measuring approaches have limitations when concepts are described by differ-
ent language (such as XML, RDF, OIL, or OWL). Furthermore, those approaches are
inflexible because most of them are proposed to measure semantic similarity in a single
ontology.
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In this paper, we propose a hybrid semantic similarity measuring approach to measure
semantic similarity between two concepts that are in WSDL and OWL documents respec-
tively. The proposed approach bases on a fact that semantic similarity between concepts
is heavily influenced by relevant concepts in the same document.

In the proposed approach, we use an abstract tree structure (consists of named nodes
and undirected edges) as an intermediate expression to represent concepts and the re-
lationships (such as inheritance relationship) between the concepts in WSDL and OWL
documents. Based on the tree structure, the proposed approach combines the lexical-
level and the structural-level similarity to measure semantic similarity. The lexical-level
similarity is the measuring of the linguistic similarity between two concepts based on
their names. It just considers the similarity of appearance between concept pairs. The
structural-level similarity is the measuring of the structural similarity between the con-
cept pairs with considering the relevant concepts in the same document of the compared
concept pairs, because the relevant concepts of the compared concept pairs influence
the semantic similarity of the concept pairs. The proposed approach adopts Levenstein
Distance [33] and Abbreviation Expansion [38] to measure lexical-level similarity. It con-
siders three kinds of internal features of nodes in the tree structure when conducting
structural-level similarity measuring. Three commonly used approaches, i.e., edge-based,
feature-based, and information content-based semantic similarity measuring approaches,
are mapped to three proposed internal features, i.e., depth, width, and density, of nodes
in the tree structure. Finally, the semantic similarity is measured through comprehen-
sive consideration of both lexical-level and structural-level similarity. Dynamic weights of
lexical-level and the structural-level similarity are used to reveal the contribution of the
lexical-level and structural-level similarity to the final semantic similarity.

The proposed hybrid semantic similarity measuring approach has some contributions
as:

(1) Semantic similarity is divided into two parts (lexical-level and structural-level simi-
larity). It comprehensively considers both the appearance of the concept’s name and
the relevant concepts with relationships of the compared concept pairs. Therefore,
it can avoid the limitations of separately considering of concept’s name or node’s
structure attribute in the tree structure;

(2) Three internal features (i.e., depth, width, and density) of a node in the tree structure
are considered when measuring structural-level similarity. This approach makes
full use of the advantages of three existing commonly used approaches (i.e., edge-
based, feature-based, and information content-based semantic similarity measuring
approaches).

The remainder of this paper is organized as follows. Section 2 reviews related work.
Section 3 describes the proposed approach. Section 4 gives the experimental results.
Sections 5 is conclusion and future work.

2. Related Work. The semantic similarity has been extensively applied in various ap-
plications, e.g., information extraction and retrieval, data privacy, sense disambiguation
and clustering, and Semantic Web discovery. In the past decades, many ontology-based
semantic similarity measuring approaches have been proposed. In this section, we review
existing works of semantic similarity measuring approaches in a single ontology at first.
Then, we give reviews of semantic similarity measuring approaches in multiple ontologies.
At last, we represent some works that are related to this work.
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2.1. Semantic similarity in a single ontology. Existing works of semantic similarity
measuring in a single ontology can be roughly classified into edge-based, feature-based
and information content-based.

Edge-based approaches. This kind of measuring approaches takes an ontology as
a directed graph in which semantic distance represents the semantic similarity between
two concepts. The semantic distance is the number of links separating the concept pairs
[8, 9, 10, 11]. It is the shortest path of all possible paths between two concepts “a” and
“b” as Formula (1):

Distance(a, b) = min
∀i

|path(a, b)| (1)

Edge-based approach chooses the least path distance between nodes in the directed
graph as the semantic distance. Then, a function F () is used to measure the semantic
similarity based on the semantic distance as Formula (2):

Sim(a, b) = F (Distance(a, b)) (2)

Different approach has different function of F (). The core idea of F () normalizes the
semantic similarity in the range of [0, 1].

However, the result of this approach is influenced by the appearance of homonyms.
Besides that, edge-based approach takes the relative distance between node pairs into
account without considering the absolute depth of the node. This is contrary to one of
the implicit ontology design principles (concepts with abstract meaning should be in the
upper layer when concepts with concrete meaning should be in the lower layer).

Feature-based approaches. These measuring approaches utilize concept’s feature
sets when measuring semantic similarity [6, 7, 12, 13, 14]. They measure the semantic
similarity of concept pairs “a” and “b” by a function of features (e.g., concept’s ancestors,
and concept’s descriptions) overlapping set and non-overlapping set as Formula (3):

Sim(a, b) = α ∗ F (ϕ(a) ∩ ϕ(b)) − β ∗ F (ϕ(a) \ ϕ(b)) (3)

where F () is a defined function of the feature sets. ϕ(concept) represents the feature sets
of the concept. “\” and “∩” are operations to get overlapping and non-overlapping set,
respectively. α and β are weights of each part. The main idea is that overlapping features
increase semantic similarity and the non-overlapping features ones decrease it.

The limitation of this kind of approach is that they assume that each concept in the
document has equal contribution to the semantic similarity. However, this is not the case.
For instance, some frequently used concepts (low level nodes in the tree structure) should
contribute less than those infrequently used concepts. In addition, using of feature sets
completely ignores the influence of the organization structure of all concepts.

Information content-based approaches. These approaches consider the quantifi-
cation of semantic information that concepts have in common [15, 16, 17, 18]. IC (In-
formation Content) of a concept “a” is usually computed by − log(P (a)), where P (a) is
the probability of occurrence of concept “a” in a given ontology. Semantic similarity of
concept pairs “a” and “b” is computed through Formula (4):

Sim(a, b) = IC(LCS(a, b)) (4)

where LCS (Least Common Subsume) is the most specific taxonomical ancestor common
to both “a” and “b”.

The core idea of these approaches is that the more concrete meaning of the common
ancestor concept is, the higher semantic similarity between the concept pairs is. This
implies that concept in the concept pairs is more concrete than their common ancestor
concepts, because abstract concept lies in the upper layer of the directed graph. However,
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this kind of approach considers only the absolute distance between the LCS and compared
concept pairs. It ignores the relative distance between the concept pairs.

Generally, concepts that are in a single ontology belong to the same domain. How-
ever, concepts that are used to describe Web Services are likely from different knowledge
sources. This makes the existing approaches not applicable any more, because it is dif-
ficult to compute path distance, feature sets, and least common subsume in the case of
multiple ontologies.

2.2. Semantic similarity in multiple ontologies. With the widespread of Semantic
Web paradigm, numerous ontologies are constructed and available currently, for example,
WordNet [26] (for general-purpose) and other specific domain ontologies. Researches are
focusing on semantic similarity measuring of concept pairs by utilizing multiple ontologies
to overcome the limitations of single ontology. Most of the proposed approaches are
extension of works in a single ontology.

Extended edge-based approaches. The main idea of this kind of approach is con-
necting two ontologies by a bridge (the concept “bridge” is a virtual concept as left
sub-figure in Figure 2), and then, using extended edge-based approach to measure seman-
tic similarity [23]. The authors classified ontologies into primary ontology and secondary
ontology. Firstly, the secondary ontology is connected to the primary ontology by joining
the common concepts (the same concept in two ontologies as “a2” and “b1” in Figure 2) in
two ontologies. They use Formula (5) to calculate the semantic distance between concepts
“a” and “b”.

Distance(a, b) = da + db − 1 (5)

where da = Distance(a, bridge) and db = Distance(b, bridge) are measured based on
Formula (1). bridge is a virtual concept as right sub-figure in Figure 2.

Figure 2. Connecting two ontologies with a bridge

This approach breaks the limitation of original edge-based approaches in which only se-
mantic similarity between concept pairs in the same ontology can be measured. However,
a primary ontology must be selected first in this approach. And, the authors assume that
the primary ontology selected will always provide better result (that is not always the
truth). There must be a pair of common concepts at least; nevertheless, the relationship
of common concepts cannot be decided before performing semantic similarity measuring.
In addition, this approach has the same limitation as original edge-based approach.

Extended feature-based approaches. The authors proposed a multiple ontolo-
gies semantic similarity measuring approach named X-Similarity that relies on matching
synsets and term description sets in [13]. The term description sets are words extracted
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by parsing concept definitions. Two concepts are similar if their synsets or description
sets, or the synsets of the concepts in their neighborhood (e.g., more specific and more
general terms) are lexically similar. Semantic similarity between concept “a” and concept
“b” is measured as Formula (6):

Sim(a, b) =

{
1, if |A∩B|

|A∪B| > 0

max
{

max
{
|Ai∩Bi|
|Ai∪Bi|

}
, |A∩B|
|A∪B|

}
, if |A∩B|

|A∪B| = 0
(6)

where A and B denote synsets or concept description sets of concepts “a” and “b”,
|A∩B|
|A∪B| > 0 denotes the synsets similarity, max

{
|Ai∩Bi|
|Ai∪Bi|

}
means the description sets simi-

larity, and “i” means the relationship type (e.g., IS-A and Part-Of). For instance, AIS−A

represents the direct child concept set of “a”. |A∩B|
|A∪B| and |Ai∩Bi|

|Ai∪Bi| are computed according

to Formula (3). The semantic similarity between concepts “a” and “b” is the larger value
between synsets similarity and description similarity.

This kind of approach enhances the original feature-based approaches by utilizing the
subsidiary information (i.e., synsets and description set) which considers the concept in
the same ontology and the description of each concept. However, it does not overcome
the limitation of the original feature-based approach.

Extended information content-based approaches. An extended information cont-
ent-based approach is proposed to measure semantic similarity in [24]. The proposed
approach relies on information theory that utilizes notion of mutual information. They
estimate semantic similarity between concepts “c1” and “c2” in different ontologies as
Formula (7).

iIC(MICA(c1, c2)) = min {iIC(csi), iIC(csj)} (7)

where iIC(c) is intrinsic IC of concept “c” in an ontology modeled in [21, 27]. Here, most
informative common ancestor of concepts “c1” and “c2” (MICA(c1, c2)) has the similar
effect as least common subsume (LCS). csi and csj are subsumers of concepts “c1” and
“c2” respectively.

The semantic similarity between concepts c1 and c2 is estimating the least value of all
intrinsic IC (iIC) of the MICA(c1, c2). This approach adopts a conservative method by
accepting the least value of iIC(MICA(c1, c2)).

iIC(c) = − log

( |leaves(c)|
|subs(c)| + 1

max leaves + 1

)
(8)

Formula (8) gives the methods to compute iIC(c). Here, |leaves(c)| is the number
of directly or indirectly child nodes of “c”, and |subs(c)| is the number of directly or
indirectly parent nodes of “c”.

This kind of approach considers parent concepts and child concept of the compared
concepts when estimating semantic similarity. Due to no bridge to connect two different
ontologies, the author adopts a conservative method to estimate the semantic similarity.
This may lead to the result of estimation is less than the actual value. In addition, they do
not fully consider the structure features of concept, such as absolute depth, density, and
the sibling nodes, in the tree structure. This approach also relies heavily on well-defined
ontologies.

2.3. Semantic similarity in user-defined knowledge source. Most of the previous
works neglect a practice that there are many user-defined knowledge sources (e.g., WSDL
documents developed by programmers who have no knowledge of semantic or ontology).
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This makes aforementioned methods hard to work or prone to bad results because user-
defined knowledge may be very simple (e.g., no synsets, no glosses, and no concept de-
scription) and obscure semantic information (i.e., the semantic of concept cannot express
without some related concepts directly).

In this paper, we take semantic annotation of user-defined WSDL document as the back-
ground. The main work of WSDL document semantic annotation is measuring semantic
similarity between concept pairs from WSDL documents and ontology in a knowledge
base (e.g., OWL files). There have been some previous works that concentrate on this
issue; however, most of them pay attention to tools making rather than the measuring
algorithm except for [27, 28, 29, 30].

Patil et al. proposed a framework for semi-automatically marking up Web Services
description with ontologies called MWSAF in [27]. They use a combination of lexical-
level and structural-level similarity measuring, where ontology concepts will be used to
annotate WSDL document. MWSAF introduced the semantic annotation framework to
annotate the input and output data in the WSDL document. The semantic similarity is
measured by Formula (9):

MS =
w1 ∗ ElemMatch + w2 ∗ SchemaMatch

w1 + w2

(9)

where ElemMatch and SchemaMatch represent lexical-level similarity and structural-level
similarity of two concepts, respectively. ElemMatch adopts techniques of NGram and
Abbreviation Expansion. SchemaMatch considered the similarity of sub-concepts and the
ratio of matched sub-concepts. However, the organization structure of elements was not
fully utilized both in WSDL and OWL document. This may decrease the accuracy of the
semantic similarity measuring.

The authors proposed a lexical-based alignment semantic annotation approach in [28].
They generate synonyms of a concept according to WordNet (that provides separate def-
initions for each sense of the word). Then, a 2D matrix that holds the synonyms of the
word for each sense in one dimension, and derivation hierarchies of the senses in other di-
mension was obtained by the synonyms. In the lexical-based alignment, they did matching
over level-sense synsets by using name equality between all elements in the generated syn-
onyms. A table, in which each cell is a tetrad containing name equality concept pairs and
their levels, will be obtained. At last, the semantic similarity of synonyms is calculated
by Formula (10):

md
(
casensei

, cbsensej

)
=

(
2 ∗ dnl

dsl1 + dsl2

)2

(10)

where dnl denotes the derivation order of common node, and dsl1 and dsl2 denote the
derivation order of the first and second sense leaves, respectively.

In [29, 30], the authors proposed a semi-automatic WSDL Web Services description
documents. Firstly, they classify WSDL services description (which is broken down into
XSD data types, interfaces, operations and messages) to its corresponding domain. And
then, the semantic similarity between a WSDL concept and the concepts of the selected
domain ontology will be computed to identify which ontology concept to annotate the
WSDL concept. The algorithm of semantic similarity measuring is not detailed in the
paper.

The limitations of all the above approaches are that they do not fully utilize information
of relevant concepts in both WSDL document and domain ontology file. For example,
[27] does not consider the importance of each concept in both WSDL and ontology, and,
the authors do not consider the sub-concepts of compared concept pairs in [28].
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The proposed approach aims to address the above limitations of annotating WSDL doc-
uments, and improve the accuracy of semantic similarity measuring by fully utilizing the
semantic information (includes lexical-level and structural-level). Especially, structural
semantic information of a concept is represented by the concept itself and its internal
features, depth, width, and density, in the tree structure.

3. Our Solution. Figure 3 illustrates the annotation framework of the proposed ap-
proach that contains three major steps. Step 1 represents the corresponding items in
WSDL document and OWL file with an abstract tree structure respectively. Step 2 mea-
sures semantic similarity degree (abbreviates for SSD hereinafter) between nodes in the
different tree structures. Specifically, the lexical-level similarity of each concept in WSDL
document and each concept in ontology will be measured at first in this step. Then, we
measure the structural-level similarity according to the measured lexical-level similarity.
At last, semantic similarity is measured based on the results of lexical-level and structural-
level similarity. In the last step, concepts in WSDL documents can be annotated with
selected concepts in an ontology based on the results of semantic similarity measurement.

Figure 3. The logic flow chart of the proposed approach

Table 1. Tree structure mapping rules of WSDL concepts

WSDL Document WSDL Tree (WT) Structure
ComplexType Node with ComplexType name
Element defined under ComplexType Node with Element name
ComplexType defined under ComplexType Node with name, such as Figure 4(a)
SimpleType Node with SimpleType name
Values defined for simple types Node with value as its name
Element Node with Element name
Enumerated Node with name
Relationship Edge

3.1. Tree structure representation of WSDL and OWL. Since the different repre-
sentations of WSDL concepts and OWL concepts, direct semantic similarity measuring
between WSDL and OWL concepts is very difficult [31]. A good solution is to map both
of them into a common expression (an abstract tree structure) like the approaches in
[27, 32]. The first step of the proposed approach is mapping concepts in WSDL and
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Table 2. Tree structure mapping rules of OWL concepts

Ontology File OWL Tree (OT) Structure
Class Node with Class name
Property with basic data type as range Node with Property name
Property with Class as range Node with name, such as Figure 4(b)
Instance Node with Instance name
Class-subClass, Class-Property,
and Class-Instance relationship Edge

(a) WSDL document

(b) OWL file

Figure 4. A tree structure abstraction example

OWL documents to intermediate tree structures representation according to the revised
mapping rules based on [27, 32].

Table 1 and Table 2 show the mapping rules of WSDL and OWL documents, where WT
and OT are abbreviations of WSDL tree structure and OWL tree structure, respectively.
Unlike [27, 32], we do not take edge’s name into account, because the contribution of
the edge’s information to semantic similarity degree is temporarily not considered. An
example of tree structure extraction is illustrated in Figure 4.

3.2. Semantic similarity measuring. After the tree structure is obtained, semantic
similarity measuring will be performed between nodes in WT and OT. Each node in
WT will do semantic similarity measuring with nodes in OT. The result of the semantic
similarity measuring, i.e., SSD, is a value range of [0, 1]. For the node pairs of WT and
OT, a higher value of semantic similarity degree means more semantic similarity between
two concepts. The aim of this work is finding the most similar concept pairs that come
from WT and OT respectively.
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SSD between node pairs (Wi, Oj) will be denoted as SSD(Wi, Oj), Wi and Oj are
the name of node in WT and OT respectively, and Wi ∈ W = {W1,W2, . . . , Wn} and
Oj ∈ O = {O1, O2, . . . , Om}.

In the proposed approach, semantic similarity degree of the term pairs (SSD(Wi, Oj))
consists of two parts: lexical-level similarity and structural-level similarity. Lexical-
level similarity (Sl(Wi, Oj)) indicates the linguistic similarity between the two nodes,
and structural-level similarity (Ss(Wi, Oj)) means the structural similarity. Specifically,
SSD(Wi, Oj) can be measured by Formula (11):

SSD(Wi, Oj) = wl ∗ Sl(Wi, Oj) + (1 − wl) ∗ Ss(Wi, Oj) (11)

where wl ∈ [0, 1] denotes the contribution of the lexical-level similarity in Ss(Wi, Oj) to
SSD(Wi, Oj).

Table 3 illustrates details about the experience value of wl. It is a dynamic value because
the contribution of Sl(Wi, Oj) and Ss(Wi, Oj) interacts with each other. Principles of
setting the value of wl are as follows:

(1) wl is dynamic that changes with the ratio of Sl and Ss. Especially, the larger Sl

Ss
is,

the smaller wl is;
(2) Structural-level contributes more to the final semantic similarity when Sl = Ss.

Table 3. Dynamic value setting of weight wl

Ss

wl Sl
0 (0, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1]

0 0.4 0.5 0.6 0.8 1
(0, 0.3) 0.3 0.4 0.5 0.7 0.9
[0.3, 0.6) 0.2 0.3 0.4 0.5 0.7
[0.6, 0.9) 0.1 0.2 0.3 0.4 0.5
[0.9, 1] 0 0.1 0.2 0.3 0.4

Note that, the division of the interval of Sl and Ss in Table 3 can be changed case
by case. This depends on the granularity that the algorithm wants to be. The stride of
each interval can be small if the semantic similarity is sensitive to the threshold that is
a value range of [0, 1]. For example, concept “a” will be annotated with concept “b” if
SSD(a, b) = 0.92 when the threshold is set to 0.91.

3.2.1. Lexical-level similarity measuring. The lexical-level similarity is the measurement
of linguistic similarity between WSDL and ontology concept. There are many approaches
to measure the linguistic similarity of two words, such as NGram [36], synonym matching
[37], Levenstein Distance [33, 34], and Abbreviation Expansion [38].

We use Levenstein Distance and Abbreviation Expansion to measure lexical-level sim-
ilarity based on the assumption that the string used for naming concepts in WSDL or
concepts in OWL ontologies is single word or words connected with special character,
i.e., space, capital letter etc. The lexical-level similarity Sl(Wi, Oj) is calculated as For-
mula (12):

Sl(Wi, Oj) = Max {LDsim(Wi, Oj), AEsim(Wi, Oj)} (12)

where

LDsim(Wi, Oj) = 1 − ld(Wi, Oj)

MaxLength(Wi, Oj)
(13)
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denotes the lexical-level similarity from Levenstein Distance. ld(Wi, Oj) [34] denotes the
Levenstein Distance between Wi and Oj, and MaxLength(Wi, Oj) means the largest
string length of the two concepts.

AEsim(Wi, Oj) =

{
0, if no abbreviation between Wi and Oj;
1, else

(14)

For example, let “PC” be abbreviation of “PersonalComputer”. Therefore, we can get
the results that AEsim(PersonalComputer, PC) = 1 and AEsim(PersonalP lane, PC) =
0.

However, there is a limitation if only the lexical-level similarity is considered. Taking
concept pair (string, strong) for example, the value of LDsim(string, strong) = 5/6 that
cannot mean the semantic similarity between “string” and “strong” exactly while they
have completely different meanings. Furthermore, even if the value of LDsim(Wi, Oj) = 1,
the meaning of the two concepts may be different. Taking LDsim(chair, chair) = 1 for
example, the semantic of the two “chair” may be different. One resembles an ordinary
seat for a person while another means an officer/leader of an organization.

Therefore, we cannot consider only the lexicon information of a concept when measuring
semantic similarity. We can utilize the information accompanied by the concept in the
same document. That is, we should take all the relevant nodes in the abstracted tree
structure into account when measuring the semantic similarity degree.

3.2.2. Structural-level similarity measuring. The structural-level similarity is a measure-
ment of structural similarity between two nodes while lexical-level similarity cannot com-
pletely present the semantic similarity between two concepts. We should take use of not
only the string of the node’s name but information of its relevant nodes1. Furthermore,
the location, relationships, and contribution of the relevant nodes will be utilized when
conducting structural-level similarity measuring.

Structure analysis of tree structure: Generally, domain ontology is built by domain
experts; however, WSDL documents are produced by different organizations or persons
with different perspectives. There is probability to cause different understanding of the
same object between the WSDL document designers and domain experts. The ambiguity
of personal understanding often cannot be literally displayed. We need additional infor-
mation to determine the semantic of an object in a description document. In this paper,
we use relevant nodes and their relationships as the additional information. The relation-
ship of concepts in a description document is represented as an abstract tree structure.
We map each concept to a node in the tree structure.

The mapping of a segment in OWL file is illustrated in Figure 5(a), and Figure 5(b)
and Figure 5(c) give two different WSDL document segments and the corresponding tree
structure mappings. We can find that mapping of WSDL document in Figure 5(b) is the
same as the mapping of OWL file when Figure 5(c) has little difference with Figure 5(a)
and Figure 5(b).

It should be noted that the node “Computer” in Figure 5(b) has the same tree structure
with the node “Computer” in Figure 5(a). And, the SSD may be different between
SSD

(
ComputerA, ComputerB

)
and SSD

(
ComputerA, ComputerC

)
when we consider

the relevant concepts, such as “Software”, “Hardware”, “Input”, and “Output”. Hence,

1In principle, nodes that have paths to Oj called relevant nodes of Oj . In this paper, only nodes in
the sub-layers of Oj are considered. Nodes in the upper-layers do not belong to the relevant nodes set.
For example, “Computer”, “Software”, “Input”, and “Output” have paths to “Hardware” in Figure 5(a).
However, only “Input” and “Output” are regarded as relevant nodes of “Hardware” in this paper.
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(a) OWL file and the tree structure of the concepts

(b) One WSDL document and the tree structure of the terms

(c) The other WSDL document and the tree structure of the terms

Figure 5. Tree structure with OWL file and WSDL document fragment

the difference of the tree structure should be reflected in semantic similarity degree, even
if they have the same value of lexical-level similarity.

To accurately measure a semantic similarity degree between concept pairs, we will take
full advantage of the inherent features of nodes in the tree structure. Especially, we will
utilize the relationship of depth, width, and density of nodes in the tree structure when
measuring the structural-level similarity.

Structural-level similarity matching: Let Ss(Wi, Oj) denote the structural-level
similarity between two terms Wi and Oj in WT and OT respectively. Ss(Wi, Oj) is
calculated by Formula (15):

Ss(Wi, Oj) =
F (Wi, Oj)

NumOf
(
Sl

(
W

′
k, O

′
l

)) (15)

where W
′

k ∈ W
′
=
{
W

′
i |W

′
i is the relevant nodes of Wi

}
and W

′ ⊂ W is the true subset

of W in which Wi is not included, and Oj is the same; NumOf
(
Sl

(
w

′

k, O
′

l

))
is the number
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of relevant nodes of Wi that has a lexical-level similarity larger than a threshold. The
threshold changes case by case. A large value reduces the time that is used for computa-
tion. A small value of the threshold provides more comprehensive coverage and candidate
results with heavy computation.

F
(
W

′
, O

′)
= Max


NumOf

(
Sl

(
W

′
k,O

′
l

)
>0
)∑

i=1

w
(
W

′

k, O
′

l

)
∗ Sl

(
W

′

k, O
′

l

) (16)

F
(
W

′
, O

′)
is a function to select the maximum value of summation of lexical-level

similarity Sl

(
W

′

k, O
′

l

)
with weight w

(
W

′

k, O
′

l

)
(a weight to reflect the influence of the

relevant nodes organization structure in the corresponding tree structure). w
(
W

′

k, O
′

l

)
is

constituted of three parts as the following Formula (17).

w
(
W

′

k, O
′

l

)
= wd

(
W

′

k, O
′

l

)
∗ ww

(
W

′

k, O
′

l

)
∗ wρ

(
W

′

k, O
′

l

)
(17)

where wd

(
W

′

k, O
′

l

)
∈ [0, 1], ww

(
W

′

k, O
′

l

)
∈ [0, 1] and wρ

(
W

′

k, O
′

l

)
∈ [0, 1] are the weight

values of node’s depth, width, and density, respectively.
wd: inherent feature of depth

(
wd

(
W

′

k, O
′

l

))
is a weight that reveals the contribution

of node’s depth in the tree structure to the structural-level similarity.

Definition 3.1. Depth, the level difference between node and ROOT node (with level =
0 and name is “Thing”) in a tree structure, is denoted as Dep(x) = LevelOf(x) −
LevelOf(ROOT ).

For example, Dep(Computer) = LevelOf(Computer)−LevelOf(ROOT ) = n of node
“Computer” in Figure 6. Rada et al. believed that the longer the path is, the semantically
farther the concepts are [8], and Li et al. believed that concepts at upper layers of the
hierarchy have more general semantics, when concepts at lower layers have more concrete
semantics [10]. We believe that the node’s depth will influence the semantic similarity
degree between concept pairs.

Figure 6. Depth of nodes in the tree structure (dashed line represents the
omitted part of the tree)

We adjust the value of wd

(
W

′

k, O
′

l

)
∈ [0, 1] according to the depth difference between

Wi and Oj by the following principles:

(1) if Dep
(
W

′

k

)
= Dep

(
O

′

l

)
, wd

(
W

′

k, O
′

l

)
= 1;

(2) if Dep
(
W

′

k

)
̸= Dep

(
O

′

l

)
, the larger ∆Dep =

∣∣Dep
(
W

′

k

)
− Dep

(
O

′

l

)∣∣ is, the smaller

wd

(
W

′

k, O
′

l

)
is;

(3) if Dep
(
W

′

k

)
̸= Dep

(
O

′

l

)
, the larger ΣDep = Dep

(
W

′

k

)
+ Dep

(
O

′

l

)
is, the smaller

wd

(
W

′

k, O
′

l

)
is.
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The core principle is that the larger depth difference is, the smaller wd

(
W

′

k, O
′

l

)
is.

Based on the above analysis, we proposed Formula (18) as:

wd

(
W

′

k, O
′

l

)
= fd (f∆(∆Dep), fΣ(ΣDep)) (18)

where ΣDep = Dep
(
W

′

k

)
+ Dep

(
O

′

l

)
and fΣ(ΣDep) indicates the principle (3) while

f∆(∆Dep) indicates principle (1) and principle (2).
Taking the above considerations into account, we set fΣ(ΣDep) and f∆(∆Dep) to be

monotonically decreasing and monotonically increasing as Formula (19) and Formula (20),
respectively:

f∆(∆Dep) = e−α∗|∆Dep| (19)

fΣ(ΣDep) = 1 − e−β∗ΣDep (20)

where wd

(
W

′

k, O
′

l

)
is considered to be governed by the ∆Dep and ΣDep, as Formula (21):

wd

(
W

′

k, O
′

l

)
= γ ∗ e−α∗|∆Dep| ∗

(
1 − e−β∗ΣDep

)
(21)

where γ is an adjustment factor to control the value of wd

(
W

′

k, O
′

l

)
. Experimental values

are γ = 1, α = 0.3, and β = 1.
ww: inherent feature of width

(
ww

(
W

′

k, O
′

l

))
is a weight that is associated with the

node’s width.

Definition 3.2. Width, the number of one node’s sibling nodes in the tree structure, is
denoted as Wid(x).

Based on the idea of feature-based approaches [12, 25], the common features increase
the semantic similarity when non-common features decrease it. We give the following
principles of ww

(
W

′

k, O
′

l

)
.

(1) ww

(
W

′

k, O
′

l

)
= 1, if the sibling nodes are the same;

(2) ww

(
W

′

k, O
′

l

)
< 1, if there exist different sibling nodes;

(3) The more of same sibling nodes a node has or the larger lexical-level similarity
between corresponding nodes is, the larger ww

(
W

′

k, O
′

l

)
is.

It is noted that the value of ww

(
W

′

k, O
′

l

)
mainly depends on the sibling nodes of W

′

k

and O
′

l.
The measurement of ww

(
W

′

k, O
′

l

)
is given as Formula (22):

ww

(
W

′

k, O
′

l

)
=

Max

∑
NumOf

(
Sl

(
sib

W
′
k

f ,sib
O
′
l

g

)
>0

)
i=1 Sl

(
sib

W
′
k

f , sib
O

′
l

g

)
(1 + α) ∗ NumOf

(
Sl

(
sib

W
′
k

f , sib
O

′
l

g

)
> 0
)

+ α ∗ |m − n|
(22)

where α is set to be an experimental value as 0.5, sibW
′
k =

{
sib

W
′
k

m is the sibling node of

sibW
′
k

}
and sibO

′
l is similar to sibW

′
k . m and n are the sizes of sibW

′
k and sibO

′
l , respectively.

NumOf

(
Sl

(
sib

W
′
k

f , sib
O

′
l

g

)
> 0

)
is the number of sibling node pairs that have a lexical-

level similarity larger than 0.
wρ: inherent feature of density

(
wρ

(
W

′

k, O
′

l

))
is a weight that is associated with

the node’s density.

Definition 3.3. Density, appearance frequency of one node in the node set of a tree
structure, is denoted as ρ(x).
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Following the standard argumentation of information theory, the information content of
a concept x can be quantified as negative log likelihood, − log ρ(x). Intuitively, a concept
has less information content if it has a higher ρ(x).

Researchers found that the semantic of a concept was decided by the attributes belong-
ing to it, and the higher an appearance frequency of one attribute is, the less contribution
to the semantic is. In addition, the more common information of two words’ attributes
is, the more similarity the two words are [15, 35]. We believe that the semantic similarity
degree between two nodes in the corresponding tree structures is impacted by the density
of their relevant nodes. Therefore, we define the following principles when measuring
wρ

(
W

′

k, O
′

l

)
as:

(1) wρ

(
W

′

k, O
′

l

)
= 1, if the densities of two relevant nodes are the same;

(2) wρ

(
W

′

k, O
′

l

)
< 1, if the densities of two relevant nodes are not the same;

(3) the higher ρ
(
W

′

k

)
or ρ

(
O

′

l

)
is, the less information of W

′

k and O
′

l is.

Based on the principles, wρ

(
W

′

k, O
′

l

)
is calculated by Formula (23):

wρ

(
W

′

k, O
′

l

)
=

{
1, if ρ

(
W

′

k

)
= ρ
(
O

′

l

)
;

fρ

(
ρ
(
W

′

k

)
, ρ
(
O

′

l

))
, if ρ

(
W

′

k

)
̸= ρ
(
O

′

l

) (23)

and

fρ

(
ρ
(
W

′

k

)
, ρ
(
O

′

l

))
= log

ρ
(

W
′
k

)
1

Nw

∗ log
ρ
(

O
′
l

)
1

No

(24)

where Nw is the total number of the sub-nodes in WT and No is the total number of the
sub-nodes in OT, and ρ

(
W

′

k

)
and ρ

(
O

′

l

)
are the densities of W

′

k and O
′

l, respectively.

3.3. Formal description of the proposed approach. The formal description of struct-
ural-level similarity calculating of concept pair

(
W

′
i , O

′
j

)
is illustrated in Algorithm 1.

In Algorithm 1, the function call FindMaxOf(Ss[i][j]) is used to find the maximum
value of F

(
W

′
, O

′)
in Ss[i][j]. F

(
W

′
, O

′)
is the sum of Ss[i][j].Ss

(
W

′
i , O

′
j

)
with conditions

as follows:

(1) only one element Ss[i][j].Ss

(
W

′
i , O

′
j

)
of each row in matrix Ss[i][j] is selected;

(2) the times of W
′
i and O

′
j appearance in the selected set of Ss[i][j] is no more than the

times they appear in W
′
and O

′
.

4. Experimental Evaluation. In this experiment, we perform comparisons from two
aspects: longitudinal comparison and horizontal comparison. We illustrate longitudinal
comparison to validate that node’s internal features of the tree structure indeed influence
the semantic similarity in Subsection 4.2.1, and give the experimental results of com-
parison in aspect of semantic similarity degree among the proposed approach, previous
approach and artificial scoring in Subsection 4.2.2.

4.1. Setting up. Table 4 lists all the WSDL documents and OWL files used in our exper-
iments2. SSD between “parameter1” and “parameter2” is represented as SSD (param-
eter1, parameter2) where “parameter1” is a WSDL concept and “parameter2” is an OWL
concept.

To simplify the representation in the following experiments, we will use the repre-
sentation at the right part of the equation in Table 4 as a simplified representation of

2Most of the WSDL documents and the OWL file come from MWSAF project at http://lsdis.
cs.uga.edu/projects/meteors/downloads/. “WT1.wsdl” and “WT2.wsdl” documents are modified by
adding and deleting 1 element from “Global-Weather.wsdl”, respectively, to change the structure of
tree structure (actually, depth, width, and density of node in the structure will be changed).
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Algorithm 1 Algorithm of Ss(Wi, Oj) Measurement

Require: W
′

=
{

W
′
1 , W

′
2 , . . . , W

′
p

}
, O

′
=
{

O
′
1, O

′
2, . . . , O

′
q

}
, Ss[p][q] /*p and q are the size of W

′
and O

′
respectively,

and each term in the matrix Ss is a structure type with 3 member variables Wname, Oname, and Ss(Wi, Oj). W
′
i and

O
′
j are both quaternary tuple with member variables (i.e., name, depth, width, and density)*/

Ensure: Ss(Wi, Oj) /*the result of structural similarity between Wi and Oj*/

1: for i = 1→ p do /*for each concept in W
′
*/

2: for j = 1→ q do/*for each concept in O
′
*/

3: wd

(
W

′
i , O

′
l

)
← γ ∗ e

−α∗
∣∣∣Dep

(
W

′
i

)
−Dep

(
O

′
l

)∣∣∣ ∗
(

1− e
−β∗

(
Dep

(
W

′
i

)
+Dep

(
O

′
j

)))
; /*weight value of depth*/

4: ww

(
W

′
i , O

′
l

)
←

Max


∑NumOf

Sl

Sib
W

′
k

f
,Sib

O
′
l

g

>0


i=1 Sl

(
Sib

W
′
k

f
,Sib

O
′
l

g

)
(1+α)∗NumOf

(
Sl

(
Sib

W
′
k

f
,Sib

O
′
l

g

)
>0

)
+α∗|m−n|

;

5: if ρ
(
W

′
k

)
== ρ

(
O

′
l

)
then

6: wρ

(
W

′
i , O

′
l

)
← 1;

7: else

8: wρ

(
W

′
i , O

′
l

)
← log

ρ
(

W
′
i

)
1

Nw

∗ log
ρ
(

O
′
j

)
1

No

;

9: end if

10: w
(
W

′
i , O

′
j

)
← wd

(
W

′
i , O

′
j

)
∗ ww

(
W

′
i , O

′
j

)
∗ wρ

(
W

′
i , O

′
j

)
;

11: Ss[i][j].Wname ←W
′
i ;

12: Ss[i][j].Oname ← O
′
j ;

13: Ss[i][j].Ss

(
W

′
i , O

′
j

)
← Sl

(
W

′
i , O

′
j

)
∗ w

(
W

′
i , O

′
j

)
; /*structural-level similarity for concept pairs

(
W

′
i , O

′
j

)
*/

14: end for
15: end for

16: F
(
W

′
i , O

′
j

)
← FindMaxOf(Ss[i][j]); /*select the maximum value of Ss[i][j] from all the measured values*/

17: Ss

(
W

′
i , O

′
j

)
←

2∗F
(

W
′
i ,O

′
j

)
p+q

; /*the final structural-level similarity of concept pair
(
W

′
i , O

′
j

)
*/

Table 4. Tree structure mapping rules of OWL

OWL

SSD(WSDL,OWL) WSDL
WeatherConcept.owl

WT1.wsdl SSD(WeatherReport,WeatherReport)=SSD(WT1)
WT2.wsdl SSD(WeatherReport,WeatherReport)=SSD(WT2)
GlobalWeather.wsdl SSD(WeatherReport,WeatherReport)=SSD(GW)
AirportWeather.wsdl SSD(WeatherSummary,WeatherReport)=SSD(AW)
WeatherFetcher.wsdl SSD(Weather,WeatherReport)=SSD(WF)
FastWeather.wsdl SSD(Weather,WeatherReport)=SSD(FW)
UnisysWeather.wsdl SSD(GetWeatherResult,WeatherReport)=SSD(UW)

SSD(parameter1, parameter2). For example, SSD(WT1) represents the semantic sim-
ilarity degree between the concept “WeatherReport” in WT1.wsdl document and the
concept “WeatherReport” in WeatherReport.owl.

4.2. Experimental results. Longitudinal comparison and horizontal comparison will be
conducted in this subsection. The purpose of the longitudinal comparison is to examine
the impact of the internal features in structural-level similarity, and horizontal comparison
will be conducted between the proposed approach and MWSAF in the aspect of semantic
similarity. Additionally, we give some results of semantic similarity degree of artificial
scoring as a reference in Appendix B.

4.2.1. Longitudinal comparison. Figure 7, Figure 8 and Figure 9 present the impact of
depth, width, and density, separately. Labels in x-axis represent compared concept pairs
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Figure 7. Influence of the internal feature depth

Figure 8. Influence of the internal feature width

Figure 9. Influence of the internal feature density

in Table 4, and the y-axis is the value of corresponding structural-level similarity of the
concept pairs.

From Figure 7, we can find node’s depth indeed impacts the structural-level similarity.
Structural-level similarity drops when considering the internal feature of node’s depth.
Because the weight value of depth is wd = 1 if the internal feature “depth” is not con-
sidered, the proposed approach without considering the three kinds of internal features
will get the highest structural-level similarity degree when the proposed approach, which
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considers all of the internal features, is the lowest one. Similar to Figure 7, Figure 8 and
Figure 9 demonstrate the influence of width and density.

Combining Figure 7, Figure 8 and Figure 9, it validates that all the three kinds of
internal features of a node in the tree structure impact the structural-level similarity. More
specifically, they impact the structural-level similarity thereby impacting the semantic
similarity degree between node pairs.

4.2.2. Horizontal comparison. This section presents a comparative study between ap-
proach in [27] and the proposed approach in the aspect of semantic similarity. Initially,
we want to compare the approach proposed in [27] with all other approaches. However,
unavailability of technical details and difficultly to exploit the associated tools with all
these approaches prevent a complete study. Thus, the comparison is limited to study
MWSAF approach that is a framework for semi-automatically annotating WSDL docu-
ment of Web Services with domain ontologies.

To intuitively display the difference, we give a comparison among MWSAF and Arti-
ficialScoring (detail in Appendix B), and the proposed approach. Due to lack of related
benchmarks, 9 evaluators major of computer science are engaged to artificially assess val-
ues of the semantic similarity degree between concept pairs in Table 4. Specifically, 7
evaluators were graduate students in which 1 has experience with WSDL and 1 student
with experience of SAWSDL. The rest of the evaluators were 2 Ph.D. students. It is hard
to find semantic web experts evaluators at this stage of development but on the other
hand, this less-skilled set of users can demonstrate how reality and usable the approach
is.

From Figure 10, we can find that the results of all the three approaches (MWSAF,
ArtificialScoring, and the proposed approach) change in a similar trend in aspect of se-
mantic similarity degree. Semantic similarity degree of SSD(WT1), SSD(WT2), and
SSD(GW ) in MWSAF has obvious difference. Table 6 in the Appendix B illustrates the
results of artificial scoring, MWSAF, and the proposed approach, and we can find that
the proposed approach has less deviation with the artificial scoring of semantic similarity
of SSD(WT1), SSD(WT2), and SSD(GW ). Because, MWSAF considers only the di-
rect child concepts in the file when the tree structures in WT1.wsdl and WT2.wsdl are
obviously different with that in the original WSDL document. The fact is that MWSAF

Figure 10. Comparison among artificial scoring, MWSAF, and the pro-
posed algorithm
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considers without the internal features that is considered in the proposed approach. This
influence is also reflected in the rest four comparisons. MWSAF gives much higher values
of the semantic similarity degree when the other two believe there is a lower semantic sim-
ilarity of the rest four concept pairs. The proposed approach has less deviation than that
of MWSAF in the rest four cases. What is more, MWSAF gives more concentrated results
that may lead to problem when selecting an OWL concept to annotate a WSDL element.
A narrow range of semantic similarity degree values makes a decision on choosing proper
target concept from an ontology difficult. Especially, the value of the threshold should
be set carefully when the threshold value falls within this narrow range. The proposed
approach provides better accuracy, and it provides a clear distinction between the results
that makes it easy to select value of threshold.

Table 5 illustrates the acceptance conditions of OWL concept to annotate corresponding
WSDL element under different thresholds. For example, concept “WeatherReport” in the
“WeatherConcepts.owl” file can be used to annotate the concept “WeatherReport” in
both “WT2.wsdl” and “GlobalWeather.wsdl” documents according to semantic similarity
degree measuring of the proposed approach and Artificial Scoring when the threshold is
set to be 0.8. If the threshold is 0.9, none concept in “WeatherConcepts.owl” can be used
to annotate “WeatherReport” even if lexical-level similarity is 1.

Table 5. Tree structure mapping rules of OWL

T

AR A
the proposed approach Artificial Scoring MWSAF

0.1 WT1,WT2,GW,AW,WF,FW,UW WT1,WT2,GW,AW,WF,FW,UW WT1,WT2,GW,AW,WF,FW,UW
0.2 WT1,WT2,GW,AW,WF,FW WT1,WT2,GW,AW,WF,FW WT1,WT2,GW,AW,WF,FW,UW
0.3 WT1,WT2,GW WT1,WT2,GW,AW WT1,WT2,GW,AW,WF,FW,UW
0.4 WT1,WT2,GW WT1,WT2,GW WT1,WT2,GW,AW,WF,FW

0.5 WT1,WT2,GW WT1,WT2,GW WT2,GW,AW
0.6 WT1,WT2,GW WT1,WT2,GW WT2,GW
0.7 WT1,WT2,GW WT1,WT2,GW WT2,GW

0.8 WT2,GW WT2,GW

* A: Approaches; AR: Accepted Results under specific Threshold; T: Threshold values.

5. Conclusion and Future Work. In this paper, we have proposed a hybrid semantic
similarity measuring approach to implement semantic annotation of legacy Web Services.
Firstly, we map concepts in WSDL document and concepts in OWL files to corresponding
abstract tree structure. Then, we proposed three internal features, i.e., “depth”, “width”,
and “density”, of node in the tree structure based on the previous commonly used ap-
proaches, i.e., edge-based, feature-based, and information content-based approaches. At
last, we measure lexical-level similarity and structural-level similarity considering the
proposed internal features. Analysis and experimental results show that the proposed ap-
proach can provide more accuracy value of semantic similarity degree measuring between
two concepts from WSDL document and OWL file respectively. In addition, the decision
can be made easily to determine which one of the OWL concepts can be used to annotate
corresponding WSDL concept. Because the proposed approach obtains semantic similar-
ity degree with high discrimination with a width value range. The proposed approach can
also be applied to any other knowledge resources that are written in different description
languages.

In the near future, we will utilize “WordNet” as the ontology corpus. What is more, we
will combine Levenstein Distance and Abbreviation Expansion with synonyms to improve
the semantic similarity measuring accuracy from the perspective of lexical-level similarity.
Additionally, unused information of the tree structure, such as upper-level nodes and
information of edges, will be fully utilized when measuring structural-level similarity.
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Appendix A. Original and two modified WSDL documents are presented, and the other
source WSDL files used in this paper can be found and downloaded from “http://lsdis.cs.
uga.edu/projects/meteor-s/downloads/ ”.

1. Original “WeatherConcepts.wsdl” document.
<xsd:complexType name=“WeatherReport”>

<xsd:sequence>
<xsd:element name=“timestamp” type=“xsd:dateTime”/>
<xsd:element name=“station” type=“xsd1:Station”/>

<xsd:element name=“phenomena” type=“xsd1:ArrayOfPhenomenon”/>
<xsd:element name=“precipitation” type=“xsd1:ArrayOfPrecipitation”/>
<xsd:element name=“extremes” type=“xsd1:ArrayOfExtreme”/>
<xsd:element name=“pressure” type=“xsd1:Pressure”/>

<xsd:element name=“sky” type=“xsd1:Sky”/>
<xsd:element name=“temperature” type=“xsd1:Temperature”/>
<xsd:element name=“visibility” type=“xsd1:Visibility”/>
<xsd:element name=“wind” type=“xsd1:Wind”/>

</xsd:sequence>

</xsd:complexType>
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2. “WT1.wsdl” adds an element “situation” and adjusts only the placement of some
elements in the original document “WeatherConcepts.wsdl”.

<xsd:complexType name=“WeatherReport”>
<xsd:sequence>

<xsd:element name=“timestamp” type=“xsd:dateTime”/>

<xsd:element name=“station” type=“xsd1:Station”/>
<xsd:element name=“phenomena” type=“xsd1:ArrayOfPhenomenon”/>
<xsd:element name=“situation” type=“xsd1:situation”/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“situation”>

<xsd:sequence>

<xsd:element name=“precipitation” type=“xsd1:ArrayOfPrecipitation”/>
<xsd:element name=“extremes” type=“xsd1:ArrayOfExtreme”/>
<xsd:element name=“pressure” type=“xsd1:Pressure”/>
<xsd:element name=“sky” type=“xsd1:Sky”/>

<xsd:element name=“temperature” type=“xsd1:Temperature”/>
<xsd:element name=“visibility” type=“xsd1:Visibility”/>
<xsd:element name=“wind” type=“xsd1:Wind”/>

</xsd:sequence>

</xsd:complexType>

3. “WT2.wsdl” deletes an element “visibility” in “WeatherConcepts.wsdl”.
<xsd:complexType name=“WeatherReport”>

<xsd:sequence>

<xsd:element name=“timestamp” type=“xsd:dateTime”/>
<xsd:element name=“station” type=“xsd1:Station”/>
<xsd:element name=“phenomena” type=“xsd1:ArrayOfPhenomenon”/>

<xsd:element name=“precipitation” type=“xsd1:ArrayOfPrecipitation”/>
<xsd:element name=“extremes” type=“xsd1:ArrayOfExtreme”/>
<xsd:element name=“pressure” type=“xsd1:Pressure”/>
<xsd:element name=“sky” type=“xsd1:Sky”/>

<xsd:element name=“temperature” type=“xsd1:Temperature”/>
<xsd:element name=“wind” type=“xsd1:Wind”/>

</xsd:sequence>

</xsd:complexType>

Appendix B. “ArtificialScoring” of the semantic similarity degree between concept
pairs.

Table 6. Semantic similarity of artificial scoring from different volunteers

P1 P2 P3 P4 P5 P6 P7 P8 P9 AVG
MWSAF

(Deviation)
Proposed

(Deviation)
SSD(WT1) 0.80 0.86 0.70 0.72 0.90 0.90 0.95 0.90 0.42 0.794 0.576(0.275) 0.797(0.004)
SSD(WT2) 0.70 0.98 0.60 0.74 0.85 0.90 0.97 0.88 0.77 0.822 0.707(0.140) 0.830(0.010)
SSD(GW) 0.90 1.00 0.80 0.71 0.80 0.90 0.90 0.80 0.88 0.854 0.779(0.088) 0.839(0.018)
SSD(AW) 0.60 0.26 0.30 0.06 0.40 0.40 0.50 0.70 0.08 0.367 0.515(0.403) 0.192(0.477)
SSD(WF) 0.40 0.29 0.30 0.09 0.40 0.20 0.30 0.50 0.03 0.279 0.497(0.781) 0.185(0.337)
SSD(FW) 0.30 0.42 0.20 0.06 0.30 0.20 0.20 0.50 0.03 0.246 0.467(0.898) 0.199(0.191)
SSD(UW) 0.10 0.30 0.10 0.00 0.10 0.10 0.05 0.40 0.00 0.128 0.386(2.016) 0.175(0.367)

“Px”: presents the number of a volunteer;
“AVG”: is the average value of semantic similarity of all 9 volunteers;
“(Deviation)”: denotes deviation with respect to the value of artificial scoring.


