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Abstract. This paper considers the design problem of mixed H∞/passive projective
synchronization for fractional-order (FO) neural networks with uncertain parameters and
time-delays. Firstly, by use of active control and adaptive control method, efficient hy-
brid control strategies are designed for the synchronization of time-delayed FO dynamic
networks with uncertain parameters. Then, a continuous frequency distributed model
of the FO dynamic networks is given, via the application of FO system stability theory
and robust control, the projective synchronization conditions are addressed in terms of
linear matrix inequality techniques. Based on the conditions, a desired controller which
can guarantee the robust stability of the closed-loop system and also ensure a mixed
H∞/passive performance level is designed. Finally, synchronization of two time-delayed
FO dynamic networks with uncertain parameters and the application in secure commu-
nications as simulation examples are given to illustrate the effectiveness of the proposed
method.
Keywords: H∞/passive performance, Adaptive projective synchronization, Fractional
order neural networks, Time delay, Uncertain parameters

1. Introduction. The seeds of fractional derivatives were planted over 300 years ago,
and fractional calculus is a field of applied mathematics that deals with derivatives and
integrals of arbitrary orders (including complex orders). In recent years, it has played
important roles in science, engineering, mathematics, economics, and other fields of pure
and applied sciences because it allows modelling of real physical systems more accurately
than calculus of integer order does [1,2]. When the model of a system includes at least
one fraction derivative or integral term, we call it a fractional order system. One of
the important applications of fractional calculus is in the area of fractional-order neural
networks systems. The research related to fractional-order neural networks has received
considerable attention, and some valuable results have been presented [3,4]. Due to the
finite switching speed of amplifiers, time delay inevitably exists in neural networks. It can
cause oscillation and instability behavior of systems [5]. Therefore, the study on stability
analysis and controller design of fractional-order neural networks with time delays is of
both theoretical and practical importance.
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Since Pecora and Carroll [6] introduced a method to synchronize two identical chaotic
systems with different initial conditions, synchronization has received considerable atten-
tion among scientists due to its importance in many applications such as secure commu-
nication, chemical systems, biological systems, and human heartbeat regulation. Since
then, a variety of synchronization methods have been developed [7,8]. Furthermore, pro-
jective synchronization, characterized by a scaling factor that two systems synchronize
proportionally, is one of the most interesting problems. Based on projective synchroniza-
tion, sliding mode control was discussed in [9] for fractional order chaotic systems, and
later, a modified projective synchronization for fractional order hyperchaotic systems was
proposed in [10]. Function projective synchronization scheme was investigated in [11], and
a modified function projective synchronization for a class of partial linear fractional-order
chaotic system was studied in [12]. Very recently, some results with respect to projective
synchronization of fractional-order neural networks have been proposed in [13,14].

On the other hand, the passivity theory plays an important role in the design and
analysis of linear and nonlinear systems, which has attracted significant attention dur-
ing the last decades. For fractional-order systems, passivity-based control approach was
investigated in [15]. It is well realized that the purpose of H∞ controllers/filters is to
guarantee the closed-loop error systems are stable with an H∞ norm bound limited to
disturbance attenuation [16,17]. Recently, state feedback H∞ control of commensurate
fractional-order systems and H∞ model reduction for positive fractional-order systems
were investigated in [18,19], respectively. Noting the importance of H∞ control theory
and passivity theory, the mixed H∞/passive performance index was first presented in [20].
Then, many authors have investigated the H∞/passive control or synchronization for dif-
ferent systems, see, e.g., [21,22]. While for fractional-order neural networks, the projective
synchronization problem based on the mixed H∞/passive performance has been seldom
studied which is one of our main motivations.

Motivated by the above discussions, our work is mainly to discuss the mixedH∞/passive
projective synchronization of fractional-order neural networks by using the adaptive con-
trol approach and in the presence of time-delay and model uncertainties. By combining
the active control and adaptive control, a novel hybrid control scheme is designed, which
is suitable for the time-delayed fractional-order neural networks with uncertain parame-
ters. Then, by fractional-order Lyapunov theorem, stability analysis results are given in
terms of linear matrix inequalities. Finally, numerical examples and the application in
secure communications are presented to illustrate the effectiveness and validation of the
proposed adaptive projective synchronization scheme.

2. Problem Formulation. To discuss fractional-order systems, we often need to solve
fractional-order differential equations. Some commonly used definitions and lemmas about
fractional calculus are proposed.

Definition 2.1. [23] The fractional integral of order α for a function f is defined as

Iαf(t) =
1

Γ(α)

∫ t

t0

f(τ)

(t− τ)1−α
dτ (1)

where t ≥ t0, α > 0 and Γ(·) is the well-known gamma function.
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Definition 2.2. [23] The Caputo fractional derivative of order α of a function f ∈
Cn([t0,+∞], R) is defined as

Dαf(t) =















1

Γ(n− α)

∫ t

t0

f (n)(τ)

(t− τ)α+1−n
dτ, n− 1 < α < n

dnf(t)

dtn
, α = n

(2)

where t ≥ t0, n is the first integer which is not less than α, i.e., n − 1 ≤ α < n.
Particularly, when 0 < α < 1,

Dαf(t) =
1

Γ(1 − α)

∫ t

t0

f ′(τ)

(t− τ)α
dτ (3)

Definition 2.3. [23] Let Ω = [a, b] be an interval on the real axis R, let n = [α] + 1 for
α /∈ N or n = α for α ∈ N . If y ∈ Cn[a, b], then

IαDαy(t) = y(t) −

n−1
∑

k=0

y(k)(a)

k!
(x− a)k (4)

In particular, if 0 < α < 1 and y ∈ C1[a, b], then

IαDαy(t) = y(t) − y(a) (5)

Lemma 2.1. [24] Let U , V , W and M be real matrices of appropriate dimensions with
M satisfying M = MT , then

M + UVW +W TV TUT < 0 (6)

if and only if there exists a scalar ε > 0 such that

M + ε−1UUT + εW TW < 0 (7)

In this section, we consider the time-delayed fractional-order neural networks as the
drive system, which can be described by the following differential equation:

Dαx(t) = −Cx(t) + (A + ∆A)f(x(t)) + (B + ∆B)f(x(t− τ1)) +H1ω(t) (8)

z(t) = Jx(t) (9)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state vector of the neural network sys-
tem (8) and (9). z(t) is the output, C = diag(c1, c2, . . . , cn) represents the self-connection
weight, where ci (i = 1, 2, . . . , n) ∈ R, A = (aij)n×n, B = (bkj)n×n are the interconnection
weight matrix, H1 ∈ Rn×n is a known real constant matrix and τ1 stands for a time de-
lay, which is a positive constant, and f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T ∈ Rn

represents the activation function and ω(t) = [ω1(t), ω2(t), . . . , ωn(t)]T denotes the distur-
bance input that belongs to L2[0,∞). The parameter uncertainties ∆Ai, ∆Bi are time
varying matrices with appropriate dimensions, which are defined as follows

[∆A,∆B] = DF (t)[E1, E2] (10)

where D, E1, E2 are known constant matrices of appropriate dimensions and F (t) is a
known time varying matrix with Lebegue measurable elements bounded by

F T (t)F (t) ≤ I (11)

where I is the identity matrix with appropriate dimension.
The response system is described by

Dαy(t) = −Cy(t) + (A+ ∆A)f(y(t)) + (B + ∆B)f(y(t− τ2)) +H2ω(t) + u(t) (12)

z̃(t) = Jy(t) (13)
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where y(t) = [y1(t), y2(t), . . . , yn(t)]
T ∈ Rn is the state vector of the response system (12)

and (13), z̃(t) is the output, u(t) = [u1(t), u2(t), . . . , un(t)]
T ∈ Rn is a control input vector

and H2 ∈ Rn×n is a known real constant matrix with appropriate dimensions.

Assumption 2.1. [25] The neuron activation function fi is bounded and satisfies Lips-
chitz condition on R, that is, there exists constant li > 0 such that

|fi(φ) − fi(ϕ)| ≤ li |φ− ϕ| (14)

for any φ, ϕ ∈ R. For convenience, we define L = diag(l1, l2, . . . , ln).

Definition 2.4. The systems (8) and (12) can achieve projective synchronization if there
exists a nonzero constant β and controller ui(t) (i = 1, 2, . . . , n) for any two solutions x(t)
and y(t) of systems (8) and (12) with different initial values x(0) and y(0) such that

lim
t→∞

‖y(t) − βx(t)‖ = 0 (15)

Our objective is to find suitable and effective controller functions ui(t) (i = 1, 2, . . . , n)
to ensure the asymptotically stability of the error system and satisfy the mixedH∞/passive
performance, which is defined in the following.

Definition 2.5. Given a weight scalar σ ∈ (0, 1), the synchronization error system be-
tween systems (8) and (12): e(t) = y(t) − βx(t) is said to be asymptotically stable and
satisfy a mixed H∞/passive performance δ, if the following two requirements are satisfied
simultaneously:

(1) the synchronization error system between systems (8) and (12) is asymptotically
stable;

(2) under zero initial condition, there exists a scalar δ > 0 such that the following
condition is satisfied:

∫ Tp

0

[

−σẑT (t)ẑ(t) + 2(1 − σ)δẑT (t)ω(t)
]

dt ≥ −δ2

∫ Tp

0

[

ωT (t)ω(t)
]

dt (16)

for any Tp > 0 and any non-zero ω(t) ∈ L2[0,∞), where ẑ(t) = Je(t).

Remark 2.1. It has been recognized that the time-delays and parameter uncertainties,
which are inherent features of many physical processes, are very often the cause for insta-
bility and poor performance of systems. As for the fractional-order complex networks with
parametric uncertainties, the issue of synchronization has been well investigated in [26].
Also, the synchronization problem for time-delay fractional-order neural networks has been
tackled in [27,28], respectively. Unfortunately, the parametric uncertainties and the time
delays have not been considered in [26-28] simultaneously for the synchronization problem
of fractional-order neural networks. Especially, our proposed synchronization controller
not only can guarantee the robust stability of the closed-loop system, but also ensures a
mixed H∞/passive performance level.

3. Synchronization Controller Design and Analysis. Firstly, we define synchro-
nization error as follows

e(t) = y(t) − βx(t) (17)

Then based on Definition 2.3, the error dynamical system can be obtained as follows

Dαe(t) = − Ce(t) + (A+ ∆A)[f(y(t)) − βf(x(t))]

+ (B + ∆B) [f(y(t− τ2)) − βf(x(t− τ1))] + (H2 − βH1)ω(t) + u(t)
(18)

where e(t) = [e1(t), e2(t), . . . , en(t)]T ∈ Rn are state vectors of error system (18), β =
diag[β1(t), β2(t), β3(t)] is continuous vector function.
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Remark 3.1. If β1 = β2 = β3 = 1 or β1 = β2 = β3 = −1, the proposed projective synchro-
nization problem will be reduced to the common synchronization or anti-synchronization.
If β1 = β2 = β3 = 0, the projective synchronization problem will be turned to a stabilization
problem of fractional-order delayed neural network system.

Remark 3.2. If β1 6= β2 6= β3 are time-varying parameters, the proposed projective
synchronization problem is said to be function projective synchronization of fractional-
order dynamic networks.

In what follows, we will design appropriate control scheme to ensure the projective
synchronization can be achieved between the drive system (8) and the response system
(12).

At first, the control input u(t) is designed as the following:

u(t) = v(t) + w(t) (19)

where

v(t) = (A+ ∆A)[βf(x(t)) − f(βx(t))] + (B + ∆B)[βf(x(t− τ1)) − f(βx(t− τ2))],

w(t) = −K(t)e(t),

K(t) = diag(k1(t), k2(t), . . . , kn(t)),

and

k̇i(t) =
n

∑

j=1

ej(t) [2λiP1ji + 2λiP2ji + λiP3ji] ei(t) +
n

∑

j=1

Dαej(t)P3jiλiD
αei(t) (20)

where λi (i = 1, 2, . . . , n) are positive constants.
Now, by applying the control scheme (19) to the error system (18), the following error

dynamic can be obtained

Dαe(t) = − Ce(t) + (A + ∆A) [f(y(t)) − f(βx(t))]

+ (B + ∆B) [f(y(t− τ2)) − f(βx(t− τ2))]

+ (H2 − βH1)ω(t) −K(t)e(t)

(21)

Based on Equation (10), the error system (21) can be rewritten as

Dαe(t) = − Ce(t) + (A+DF (t)E1)[f(y(t)) − f(βx(t))]

+ (B +DF (t)E2)[f(y(t− τ2)) − f(βx(t− τ2))]

+ (H2 − βH1)ω(t) −K(t)e(t)

(22)

ẑ(t) = Je(t) (23)

It is obvious that e(t) = 0 is a trivial solution of the error system (22).
Based on a continuous frequency distributed model of Caputo derivatives proposed in

[29], the error system (22) can be expressed as


























∂Z(ω, t)

∂t
= −ωZ(ω, t) − Ce(t) + (A+ ∆A)[f(y(t)) − f(βx(t))]

+(B + ∆B)[f(y(t− τ2)) − f(βx(t− τ2))]

+(H2 − βH1)ω(t) −K(t)e(t)

e(t) =
∫

∞

0
µ(ω)Z(ω, t)dω

(24)

where Z(ω, t) = [Z1(ω, t), Z2(ω, t), . . . , Zn(ω, t)]
T , µ(ω) = diag [µ1(ω), µ2(ω), . . . , µn(ω)]

and µi(ω) = sin(pπ)
π

ω−p.
Next, we mainly prove the stability of the error system (22) for the zero solution.
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Theorem 3.1. Let Assumption 2.1 be satisfied, for given scalars α, β, δ, γ and 0 < σ < 1,
matrix J and adaptive constant matrix K, if there exist positive definite matrices P1, P2,
P3, R and εi (i = 1, 2, . . . , 6), such that









Ω1 Ω2 Ω3 Ω4

∗ −R1 0 0
∗ ∗ −R2 0
∗ ∗ ∗ −R3









< 0 (25)

where

Ω1 =









ψ11 ψ12 ψ13 ϕ̂14

∗ ψ22 ψ23 ϕ̂24

∗ ∗ ϕ̂33 ϕ̂34

∗ ∗ ∗ ϕ̂44









, Ω2 =









P1D LT
1E

T
1 ε1 P1D LT

2E
T
2 ε2

0 0 0 0
0 0 0 0
0 0 0 0









,

Ω3 =









P2D LT
1E

T
1 ε3 P2D LT

2E
T
2 ε4

0 0 0 0
0 0 0 0
0 0 0 0









,

Ω4 =









P3D LT
1E

T
1 ε5 0 0 0 0

0 0 P1D LT
2E

T
2 ε2 P3D LT

2E
T
2 ε6

0 0 0 0 0 0
0 0 0 0 0 0









,

R1 = diag{ε1I, ε1I, ε2I, 2ε2I}, R2 = diag{2ε3I, ε3I, ε4I, ε4I},

R3 = diag{2ε5I, 2ε5I, 2ε2I, 2ε2I, 2ε6I, 2ε6I},

and

ψ11 = − P1C − CTP1 + P1AL1 + LT
1A

TP1 − P1K −KTP1 +
1

2
P1BL2 +

1

2
LT

2B
TP1

− P2K −KTP2 − P2C − CTP2 + P2AL1 + LT
1A

TP2 + σJTJ,

ψ12 = P2BL2 + LT
2B

TP2, ψ13 = −P2 − CTP3 +
1

2
P3AL1 +

1

2
LT

1A
TP3,

ϕ̂14 = P1H2 − βP1H1 + P2H2 − βP2H1 − (1 − σ)δJT ,

ψ22 =
1

2
P1BL2 +

1

2
LT

2B
TP, ψ23 =

1

2
P3BL2 +

1

2
LT

2B
TP3,

ϕ̂24 = 0, ϕ̂33 = −2P3, ϕ̂34 = P3H2 − βP3H1, ϕ̂44 = R− δ2I,

then the synchronization error system between systems (8) and (12) is asymptotically
stable with a prescribed mixed H∞/passive performance level δ.

Proof: Considering the following Lyapunov functional for systems (22) and (23)

V (t) = V1(t) + V2(t) + V3(t) (26)

where

V1(t) =

∫

∞

0

ZT (ω, t)µ(ω)P1Z(ω, t)dω,

V2(t) =
n

∑

i=1

1

2λi

(ki(t) − ki)
2, V3(t) =

∫ t

0

ωT (s)Rω(s)ds.
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Taking the time fractional-order derivative of V (t) and combining Equations (24), (10)
and (20) give the following result:

V̇ (t) =

∫

∞

0

[−ωZ(ω, t) − Ce(t) + (A+DF (t)E1)ψ(e(t))

+ (B +DF (t)E2)ψ(e(t− τ2)) −K(t)e(t) + (H2 − βH1)ω(t)]Tµ(ω)P1Z(ω, t)dω

+

∫

∞

0

ZT (ω, t)µ(ω)P1[ − ωZ(ω, t) − Ce(t) + (A+DF (t)E1)ψ(e(t))

+ (B +DF (t)E2)ψ(e(t− τ2)) −K(t)e(t) + (H2 − βH1)ω(t)]dω

+

n
∑

i=1

1

λi

(ki(t) − ki)

[

2

n
∑

i=1

ej(t)P1jiλiei(t) + 2

n
∑

i=1

ej(t)P2jiλiei(t)

+

n
∑

i=1

ej(t)P3jiλiei(t) +

n
∑

i=1

Dαej(t)P3jiλiD
αei(t)

]

+ ωT (t)Rω(t),

where ψ(e(t)) = f(y(t)) − f(βx(t)), ψ(e(t− τ2)) = f(y(t− τ2)) − f(βx(t− τ2)).
Now, based on Assumption 2.1, we have

V̇ (t) ≤

∫

∞

0

[−ωZ(ω, t) − Ce(t) + (A+DF (t)E1)L1e(t)

+ (B +DF (t)E2)L2e(t− τ2)

+ (H2 − βH1)ω(t) −K(t)e(t)]Tµ(ω)P1Z(ω, t)dω

+

∫

∞

0

ZT (ω, t)µ(ω)P1[ − ωZ(ω, t) − Ce(t) + (A+DF (t)E1)L1e(t)

+ (B +DF (t)E2)L2e(t− τ2) + (H2 − βH1)ω(t) −K(t)e(t)]dω

+
n

∑

i=1

1

λi

(ki(t) − ki)

[

2
n

∑

i=1

ej(t)P1jiλiei(t) + 2
n

∑

i=1

ej(t)P2jiλiei(t)

+
n

∑

i=1

ej(t)P3jiλiei(t) +
n

∑

i=1

Dαej(t)P3jiλiD
αei(t)

]

+ ωT (t)Rω(t)

(27)

From Equation (24), (27) can be rewritten as follows:

V̇ (t) ≤ eT (t)
[

−P1C − CTP1 + P1AL1 + LT
1A

TP1 + P1DF (t)E1L1 + LT
1E

T
1 F

T (t)DTP1

−P1K −KTP1

]

e(t) + 2eT (t) [P1BL2 + P1DF (t)E2L2] e(t− τ2)

+ 2eT (t)[P1H2 − βP1H ]ω(t) + 2eT (t)P2(K(t) −K)e(t)

+ (Dαe(t))T P3(K(t) −K)Dαe(t) + ωT (t)Rω(t)

≤ eT (t)

[

− P1C − CTP1 + P1AL1 + LT
1A

TP1 + P1DF (t)E1L1 + LT
1E

T
1 F

T (t)DTP1

− P1K −KTP1 +
1

2
P1BL2 +

1

2
LT

2B
TP1 +

1

2
P1DF (t)E2L2

+
1

2
LT

2E
T
2 F

T (t)DTP1 + 2P2(K(t) −K)

]

e(t)

+ eT (t− τ2)

[

1

2
P1BL2 +

1

2
LT

2B
TP +

1

2
P1DF (t)E2L2
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+
1

2
LT

2E
T
2 F

T (t)DTP1

]

e(t− τ2) + 2eT (t)[P1H2 − βP1H ]ω(t)

+ (Dαe(t))TP3(K(t) −K)Dαe(t) + ωT (t)Rω(t).

from which we get

V̇ (t) ≤ ηT (t)









ϕ11 ϕ12 ϕ13 ϕ14

∗ ϕ22 ϕ23 ϕ24

∗ ∗ ϕ33 ϕ34

∗ ∗ ∗ ϕ44









η(t) (28)

where

ηT (t) =
[

eT (t) eT (t− τ2) DαT

e(t) ωT (t)
]

,

and

ϕ11 = − P1C − CTP1 + P1AL1 + LT
1A

TP1 + P1DF (t)E1L1 + LT
1E

T
1 F

T (t)DP1

− P1K −KTP1 +
1

2
P1BL2 +

1

2
LT

2B
TP1 +

1

2
P1DF (t)E2L2

+
1

2
LT

2E
T
2 F

T (t)DP1 + 2P2(K(t) −K),

ϕ12 = ϕ13 = ϕ23 = ϕ24 = ϕ34 = 0, ϕ14 = P1H2 − βP1H1,

ϕ22 =
1

2
P1BL2 +

1

2
LT

2B
TP +

1

2
P1DF (t)E2L2 + +

1

2
LT

2E
T
2 F

T (t)DP,

ϕ33 = P3(K(t) −K), ϕ44 = R.

Then, from Equation (22), it is easy to see that for any appropriately dimensioned matrices
P2 and P3, the following equation holds:

0 = 2
[

eT (t)P2 +DαT

e(t)P3

]

{−Dαe(t) − Ce(t) + (A+DF (t)E1)ϕ(e(t))

+ (B +DF (t)E2)ϕ(e(t− τ2)) + (H2 − βH1)ω(t) −K(t)e(t)}
(29)

Adding the right-hand sides of (29) to V̇ (t), we can get from (28)

V̇ (t) + σẑT (t)ẑ(t) − 2(1 − σ)δẑT (t)ω(t) − δ2ωT (t)ω(t)

≤ ηT (t)









ϕ̃11 ϕ̃12 ϕ̃13 ϕ̃14

∗ ϕ̃22 ϕ̃23 ϕ̃24

∗ ∗ ϕ̃33 ϕ̃34

∗ ∗ ∗ ϕ̃44









η(t),

where

ϕ̃11 = − P1C − CTP1 + P1AL1 + LT
1A

TP1 + P1DF (t)E1L1 + LT
1E

T
1 F

T (t)DTP1

− P1K −KTP1 +
1

2
P1BL2 +

1

2
LT

2B
TP1 +

1

2
P1DF (t)E2L2

+
1

2
LT

2E
T
2 F

T (t)DTP1 − P2K −KTP2 − P2C − CTP2 + P2AL1 + LT
1A

TP2

+ P2DF (t)E1L1 + LT
1E

T
1 F

T (t)DTP2 −
1

2
P3K −

1

2
KTP3 + σJTJ,
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ϕ̃12 = P2BL2 + LT
2B

TP2 + P2DF (t)E2L2 + LT
2E

T
2 F

T (t)DTP2,

ϕ̃13 = − P2 − CTP3 +
1

2
P3AL1 +

1

2
LT

1A
TP3 +

1

2
P3DF (t)E1L1 +

1

2
LT

1E
T
1 F

T (t)DTP3,

ϕ̃14 = P1H2 − βP1H1 + P2H2 − βP2H1 − (1 − σ)δJT ,

ϕ̃22 =
1

2
P1BL2 +

1

2
LT

2B
TP +

1

2
P1DF (t)E2L2 + +

1

2
LT

2E
T
2 F

T (t)DTP1,

ϕ̃23 =
1

2
P3BL2 +

1

2
LT

2B
TP3 +

1

2
P3DF (t)E2L2 +

1

2
LT

2E
T
2 F

T (t)DTP3,

ϕ̃24 = 0, ϕ̃33 = −2P3 − P3K, ϕ̃34 = P3H2 − βP3H1, ϕ̃44 = R − δ2I.

Based on Lemma 2.1, the above inequality can be rewritten as

V̇ (t) + σẑT (t)ẑ(t) − 2(1 − σ)δẑT (t)ω(t) − δ2ωT (t)ω(t)

≤ ηT (t)









ϕ̂11 ϕ̂12 ϕ̂13 ϕ̂14

∗ ϕ̂22 ϕ̂23 ϕ̂24

∗ ∗ ϕ̂33 ϕ̂34

∗ ∗ ∗ ϕ̂44









η(t),

with

ϕ̂11 = − P1C − CTP1 + P1AL1 + LT
1A

TP1 + ε−1
1 P1DD

TP1 + ε1L
T
1E

T
1 E1L1

− P1K −KTP1 +
1

2
P1BL2 +

1

2
LT

2B
TP1 +

1

2
ε−1
2 P1DD

TP1

+
1

2
ε2L

T
2E

T
2 E2L2 − P2K −KTP2 − P2C − CTP2 + P2AL1 + LT

1A
TP2

+ ε−1
3 P2DD

TP2 + ε3L
T
1E

T
1 E1L1 + σJTJ,

ϕ̂12 = P2BL2 + LT
2B

TP2 + ε−1
4 P2DD

TP2 + ε4L
T
2E

T
2 E2L2,

ϕ̂13 = − P2 − CTP3 +
1

2
P3AL1 +

1

2
LT

1A
TP3 +

1

2
ε−1
5 P3DD

TP3 +
1

2
ε5L

T
1E

T
1 E1L1,

ϕ̂22 =
1

2
P1BL2 +

1

2
LT

2B
TP +

1

2
ε−1
2 P1DD

TP1 +
1

2
ε2L

T
2E

T
2 E2L2,

ϕ̂23 =
1

2
P3BL2 +

1

2
LT

2B
TP3 +

1

2
ε−1
6 P3DD

TP3 + +
1

2
ε6L

T
2E

T
2 E2L2,

and the other parameters are the same in (25). Then, using Schur complement and
pre-multiplying and post-multiplying the obtained inequality by

diag(I, I, I, I, I, ε1I, I, ε2I, I, ε3I, I, ε4I, I, ε5I, I, ε2I, I, ε6I).

then we can obtain (25). This completes the proof.

4. Numerical Simulation. In this section, we give two simulation examples to illustrate
the effectiveness of the proposed method and controllers for delayed fractional-order neural
network system with parameter uncertainties. Firstly, initial values are selected as follows:

α = 0.995, τ1 = 0.001, τ2 = 0.005, λ1 = λ2 = λ3 = 5,

A =





2 −1.2 0
1.8 1.71 1.15

−4.75 0 1.1



 , B =





−0.2 0.3 0
−0.2 −0.19 −0.15
0.6 0 −0.2



 ,

C = diag(1, 1, 1), L1 = L2 = diag(1, 1, 1), K = diag(2, 2, 2),
E1 = E2 = diag(0.02, 0.02, 0.02), D = diag(0.01, 0.01, 0.01),
F (t) = 0.1 sin(t), k1(0) = 0.05, k2(0) = 0.06, k3(0) = 0.08.
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Example 1:
Case 1: β1 = β2 = β3 are selected as constants, e.g., β1 = β2 = β3 = 3, and

x1(0) = 0.1, x2(0) = 0.4, x3(0) = 0.2,
y1(0) = 0.8, y2(0) = 0.1, y3(0) = 0.7.

After using an appropriate LMI solver to get the feasible numerical solution based on
inequality (25), we can obtain that the positive definite matrices P1, P2, P3 and variables
ε1, ε2, ε3 could be

P1 =





1.6671 0.5568 0.6284
0.5568 0.7896 0.0434
0.6284 0.0434 0.6562



 , P2 =





0.1570 −0.0482 −0.0046
−0.0482 0.1302 0.0520
−0.0046 0.0520 0.1843



 ,

P3 =





1.8640 −0.8946 −0.6145
−0.8946 1.8304 0.8505
−0.6145 0.8505 0.8652



 ,
ε1 = 42.5351, ε2 = 20.4439, ε3 = 42.5349,
ε4 = 42.5349, ε5 = 21.7231, ε6 = 19.2881.

The simulation results are shown in Figures 1-4. Figures 1-3 display the uncontrolled
state trajectories βixi(t), yi(t) (i = 1, 2, 3) between drive system and response system. In
Figure 4, the state trajectories of error system asymptotically converge to zero by using
the proposed control scheme, which implies that the projective synchronization can be
achieved for systems (8) and (12).

Figure 1. The uncontrolled state trajectories β1x1(t), y1(t) of the systems
(8) and (12)

Case 2: The application of fractional-order neural network system synchronization in
secure communication is investigated. The sketch designed for the communication scheme
using our proposed synchronization method is similar to Figure 5 in [30].

In the transmitter, the original information signal S(t) is modulated into the chaotic
signal by using an invertible function Φ, i.e., S ′(t) = Φ(x1, x2, x3, S(t)). Then we add
the signal S ′(t) to one of the three variables x1, x2, x3. For instance, we inject the
signal S ′(t) into the variable x1 and derive a combined signal χ(t) = x1 + S ′(t). In the
channel, the variables x1, x2, x3 and combined signal are transmitted to receiver. When
the synchronization of master-slave system was achieved, the state y1 will tend to βx1;
thus S ′(t) can be derived through a simple transformation S ′(t) = χ(t) − y1/β. Further,

the information signal can be recovered.
Here, we firstly choose an impulse signal, which is shown in Figure 5 as the information

signal. The function Φ is given by S ′(t) = x1 + S(t). We assume that the signal S ′(t) is
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Figure 2. The uncontrolled state trajectories β2x2(t), y2(t) of the systems
(8) and (12)

Figure 3. The uncontrolled state trajectories β3x3(t), y3(t) of the systems
(8) and (12)

Figure 4. The controlled state trajectories ei(t) (i = 1, 2, 3) of the error system
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Figure 5. The information signal S(t)

Figure 6. The transmitted signal χ(t)

added to the variable x2. Simulation results are presented in Figures 6-8. The transmitted
signal is shown in Figure 6; apparently, no effect of the embedded modulating information
signal can be depicted. Figure 7 displays the recovered signal S̃(t), and one can observe
that the recovered signal coincides with the original information signal with good accuracy.
While the error between the original information signal and the recovered one is shown
in Figure 8.
Example 2: β1 6= β2 6= β3 and x(0), y(0) are selected as

β1 = 4 + 0.2 sin(2t), β2 = 4 + 0.3 sin(3t), β3 = 4 + 0.1 sin(5t),

x1(0) = 0.2, x2(0) = 0.6, x3(0) = 0.4,

y1(0) = 0.6, y2(0) = 0.1, y3(0) = 0.9.
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Figure 7. The recovered signal S̃(t)

Figure 8. The error signal S̃(t) − S(t)

The following result can be obtained

P1 =





2.5477 0.4984 0.5490
0.4984 1.5865 0.0437
0.5490 0.0437 0.9872



 , P2 =





0.8140 −0.0997 0.0634
−0.0997 0.5975 0.1765
0.0634 0.1765 0.3572



 ,

P3 =





4.4223 −0.7884 −0.6557
−0.7884 3.5620 1.0844
−0.6557 1.0844 1.7510



 ,
ε1 = 8.0137, ε2 = 4.0025, ε3 = 8.0137,
ε4 = 8.0137, ε5 = 4.0095, ε6 = 3.9958.

The state trajectories of error system by using the proposed control scheme is shown in
Figure 9, which implies that the mixed H∞/passive function projective synchronization
can be achieved for systems (8) and (12).
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Figure 9. The controlled state trajectories ei(t) (i = 1, 2, 3) of the error system

Remark 4.1. In the Numerical Simulation part, two examples are given, and they are
Example 1: β1 = β2 = β3, and Example 2: β1 6= β2 6= β3, respectively.

In Example 1, firstly Case 1 is shown, which is a numerical example. The initial values
in Case 1 are arbitrarily chosen to obey the rules that the considered drive and response
systems under the chosen parameters show chaotic behaviors. Furthermore, under our
proposed controller, the considered drive and response systems can be synchronized. From
Figures 2-4, we can observe that the uncontrolled drive and response systems are chaotic
and they cannot achieve synchronization. Figure 5 shows that the state trajectories of
error system asymptotically converge to zero by using the proposed control scheme, which
implies that the projective synchronization can be achieved for drive and response systems.
Following Case 1 is Case 2, which is an application example in secure communications,
and the aim is to show that our proposed method is valid in practical systems.

In Example 2, just βi, xi(0), yi(0) (i = 1, 2, 3) are different from the ones in Example
1, and the aim is to illustrate that our proposed method is valid for different βi, xi(0),
yi(0) (i = 1, 2, 3).

5. Conclusions. In this paper, the mixed H∞/passive projective synchronization prob-
lem for two time-delayed fractional-order neural networks with uncertain parameters has
been studied. In terms of active control and adaptive control theory, a hybrid con-
troller has been proposed to solve such a problem. Meanwhile, based on Lyapunov sta-
bility theory, the sufficient conditions are obtained, which can ensure the required mixed
H∞/passive performance level of the considered synchronization error system. Finally, the
effectiveness of the proposed control scheme has been illustrated in numerical simulations.
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