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Abstract. The interception of hypersonic vehicles is a formidable challenge due to
its high speed and strong maneuverability; besides, traditional guidance methods cannot
guarantee interception accuracy. To solve this problem, three-dimensional sliding mode
guidance laws are proposed in this paper based on the head pursuit guidance method. The
first guidance law ensures that the dynamic system converges to head pursuit guidance
conditions in finite time without the knowledge of external disturbances, and can also
weaken the chattering phenomenon. In practical application, the capacity of dynamic
actuators is limited. Therefore, a guidance law with input saturation is proposed using
the hyperbolic tangent function and auxiliary system. This method is novel in which the
system can be ensured finite-time and asymptotically stable. In theory, the two guidance
laws can be proved using Lyapunov stability theory. The correctness and effectiveness of
the methods are verified by numerical simulations.
Keywords: Three-dimensional guidance law, Hypersonic vehicle, Head pursuit, Sliding
mode guidance law, Adaptive method

1. Introduction. The hypersonic cruise targets with the characteristics of high speed,
strong maneuverability and good concealment are difficult to be intercepted. Currently,
the interceptor no longer has an advantage in speed compared to the hypersonic vehicle
target, and improving the speed of the interceptor imposes a great test not only for the
technology but also for the economic test. To solve this problem, Golan and Shima [1]
first proposed a head pursuit method for intercepting hypersonic vehicle in 2004. Using
this method, the closing velocity becomes very low, which can greatly reduce the energy
consumption of the interceptor. Another advantage is that the head pursuit guidance
method can eliminate the perturbation of interceptor of detection induced by aerodynamic
heating. In [1,2], the authors put forward the concepts and conditions of the head pursuit
guidance. In addition, two-dimensional sliding mode guidance laws were proposed. In
[3], a bang-bang controller was designed in two-dimensional engagement. In [4], a head
pursuit guidance law considering the dynamic characteristics of the system was proposed
in two-dimensional engagement, but this guidance law cannot deal with the external
disturbance. A three-dimensional variable structure guidance law was proposed based on
the head pursuit guidance method in [5], but the upper bound of the external disturbance
was still assumed to be a known constant.
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To intercept hypersonic vehicles, most of the traditional guidance laws were established
based on the proportional navigation guidance (PNG) method. Two modified propor-
tional guidance laws were designed in [6,7]. In [8], the composite guidance and navigation
strategy were developed against very high-speed targets. To ensure finite-time conver-
gence of the system states, the concept of terminal sliding mode control (TSMC) was
put forward. Based on non-singular TSMC theory, guidance laws against stationary or
constant velocity targets at a desired impact angle were proposed in [9]. In [10-12], a
finite-time convergent sliding-mode guidance law with terminal impact angle constraints
was presented. In [13], a guidance law based on fast non-singular terminal sliding mode
control was proposed. The tracking error converges to zero in finite time. However, the
above algorithms cannot be applied to intercepting hypersonic vehicles.

Chattering phenomenon is an urgent problem to be solved in practical engineering;
otherwise, it will not only reduce the guidance precision, but also seriously damage the
missile actuator. To suppress this phenomenon, a variety of techniques have been pro-
posed, such as the boundary layer method [14], the high order sliding mode control [15-17],
and the filtered switching function [18,19]. In [20], a new discrete-time sliding mode con-
trol method based on non-smooth control was proposed. This method can avoid the
chattering problem and the generation of over-large control action. In [21], a continuous
higher-order sliding mode (HOSM) control scheme was given based on the concept of the
geometric homogeneity and super-twisting algorithm. In [22], a control algorithm based
on the first order sliding mode technique was proposed. Although lots of above mentioned
chattering suppression techniques have been proposed, most of the techniques require the
knowledge of the uncertainty bounds. To overcome this drawback, slightly different from
the existing conditions, an improved SMC with perturbation estimation, characterized by
a PID-type sliding surface and adaptive gains, was proposed in [23]. Two new approaches
using adaptive SMC (ASMC) were proposed in [24,25]. These new methods can reduce
the gain overestimation and simultaneously speed up the system response to the uncer-
tainties. Through introducing an integral adaptation law, the chatter levels of the sliding
mode were significantly reduced.

Another typical feature in the intercepting hypersonic vehicle schemes is that there
always exists a saturation limit in the dynamic actuator, which can, if not properly han-
dled, largely lead to performance degradation or, even worse, instability of the system.
Many researches have been strived to develop guidance laws that explicitly consider input
saturation. In [26,27], a sample saturation function has been used, and the saturated guid-
ance laws have been designed. Nevertheless, this is an approximate method that considers
separately the input constraints from system stability. An anti-saturation guidance law
using the hyperbolic tangent function is proposed in the study. Compared to [26,27], the
innovation of our approach is that the system can be ensured asymptotically stable and
finite-time stable. Moreover, this approach is achieved and proved by Lyapunov stability
theory, and the detailed designing and proving processes are provided in Section 3.3.

This paper is organized as follows. In Section 2, the non-decoupling three-dimensional
engagement dynamics are established. In Section 3, three-dimensional head pursuit guid-
ance laws are designed. Simulation results are presented in Section 4. This paper is closed
with conclusions in Section 5.

2. Problem Statement and Preliminaries. Figure 1 shows the schematic view of the
head pursuit guidance engagement, which can be divided into three phases: approach
phase, trajectory bending phase and endgame phase. After being launched, the intercep-
tor is guided to approach the target in a head-on trajectory. And then at a predetermined
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Figure 1. Schematic view of a hypersonic vehicle interception engagement

time, the interceptor is steered to bend its flight trajectory until reaching a so-called tra-
jectory matching flight mode. In the beginning of the endgame phase, the interceptor
flies ahead of the target at a lower speed and the same general direction as the target.
In this unconventional terminal geometry, the target approaches it from the rear end of
the interceptor. Using this method, the closing speed is greatly reduced compared to the
head-on engagement. The speed requirement for interceptor is significantly lower relative
to a traditional tail-chase engagement. The purpose of this paper is to design fast con-
vergence guidance laws using head pursuit guidance method to guide the interceptor to
finish the final interception.

In [1], the authors only considered the planar endgame geometry. To be more practical,
the three-dimensional engagement geometry is established as Figure 2. In fact, according
to this geometry, the performance of the derived guidance law can be enhanced consid-
erably. In the figure, T and M denote the target and missile, respectively. TXIYIZI is
the inertial reference frame. MXMYMZM is the velocity coordinate system of missile.
TXT YT ZT is the velocity coordinate system of target. R is the relative distance between
the target and missile. The velocities are denoted by Vt and Vm. aym and azm are lateral
accelerations of the missile in the yaw and pitch directions, respectively. Similarly, ayt

and azt are the target accelerations. In this geometry, assume that Vm is a constant,
which is defined by the angles θm and ϕm with respect to the line of sight (LOS) frame.
θt and ϕt are the directions of Vt with respect to the LOS frame, respectively. θL and ϕL

represent the directions of LOS with respect to the inertial reference frame. It is assumed
that the initial position of the target in the endgame phase is the coordinate origin. The
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Figure 2. Three-dimensional engagement geometry

three-dimensional engagement dynamics can be expressed as follows [28]:

Ṙ = Vm cos θm cos ϕm − Vt cos θt cos ϕt (1)

Rθ̇L = Vm sin θm − Vt sin θt (2)

ϕ̇LR cos θL = Vm cos θm sin ϕm − Vt cos θt sin ϕt (3)

θ̇t =
azt

Vt

− ϕ̇L sin θL sin ϕt − θ̇L cos ϕt (4)

ϕ̇t =
ayt

Vt cos θt

+ ϕ̇L sin θL cos ϕt tan θt − θ̇L sin ϕt tan θt − ϕ̇L cos θL (5)

θ̇m =
azm

Vm

− ϕ̇L sin θL sin ϕm − θ̇L cos ϕm (6)

ϕ̇m =
aym

Vm cos θm

+ ϕ̇L sin θL cos ϕm tan θm − θ̇L sin ϕm tan θm − ϕ̇L cos θL (7)

where lateral accelerations of the missile aym and azm, i.e., control inputs, will be designed.
Target information including Vt, ayt and azt is difficult to be accurately measured and is
often treated as the external disturbances.

Equation (6) expresses the dynamic of θm. Note that the second and third terms
contain ϕm, i.e., the coupling effect exists between the dynamics Equations (6) and (7).
Furthermore, the missile acceleration azm acts on both θm and ϕm. Therefore, if a guidance
law is designed using two-dimensional decoupled engagement dynamics, the guidance
precision and performance must be weakened. Similarly, the dynamic of ϕm expressed by
Equation (7) is also related to θm, and the specific analysis is similar to the above.

According to [1], head pursuit method not only requires that R = 0 at the interception
point, but also requires that both the target and the interceptor fly in the same direction;
hence

lim
R→0

θt = 0, lim
R→0

ϕt = 0 (8)

lim
R→0

θm = 0, lim
R→0

ϕm = 0 (9)

In this study, the guidance laws will be designed using the head pursuit to guide the
precursor interceptor into the interception point such that Equations (8) and (9) hold
simultaneously. Because the interceptor flies in front of the target and is slower than it,
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the final geometry can be achieved when the head of the target gets close to the tail of
the interceptor. Hence, according to [1], the lead angles of the interceptor are required to
be proportional to the target flight direction with regard to the LOS, i.e.,

θm = n1θt (10)

ϕm = n2ϕt (11)

where ni (i = 1, 2) is the guidance constant. According to [1], against a non-maneuvering

target, a necessary condition for performing the head pursuit interception is ni > 1/K
(K = Vm/Vt

). Besides, Equations (10) and (11) can guarantee that θm and ϕm vanish
with θt and ϕt, respectively.

Lemma 2.1. [1] During the guidance process, if the system denoted by (1)-(7) satisfies
Equations (10) and (11), the target can be successfully intercepted.

To facilitate the design of guidance laws, the dynamic systems (4)-(7) can be rearranged
as Equations (12) and (13).

ẋ = BU + F (12)

ẏ = M + E (13)

x =

[
θm

ϕm

]
, y =

[
θt

ϕt

]
, B =

 1

Vm

0

0
1

Vm cos θm


F =

[
−ϕ̇L sin θL sin ϕm − θ̇L cos ϕm

ϕ̇L sin θL cos ϕm tan θm − θ̇L sin ϕm tan θm − ϕ̇L cos θL

]

M =


azt

Vt
ayt

Vt cos θt

 =

 1

Vt

0

0
1

Vt cos θt

 [
azt

ayt

]
=

[
c1 0
0 c2

]
a = Ca

E =

[
−ϕ̇L sin θL sin ϕt − θ̇L cos ϕt

ϕ̇L sin θL cos ϕt tan θt − θ̇L sin ϕt tan θt − ϕ̇L cos θL

]
where U ∈ R2 is the input signal, and U =

[
u1

u2

]
=

[
azm

aym

]
. M ∈ R2 is the bounded

perturbation.
In Equation (12), since U is multiplied by matrix B, a guidance law can be derived only

if the matrix B is nonsingular, i.e., θm ̸= ±(π/2). Moreover, in the study, it is assumed

that the signals including R, Ṙ, θL, ϕL, θ̇L, ϕ̇L, θm, ϕm, Vm, θt and ϕt are measurable. To
intercept hypersonic vehicles using head pursuit method, the main purpose of this paper
is to design guidance laws such that the systems (1)-(7) satisfy Equations (10) and (11)
in finite time. The main results will be given in the section below.

3. Design of Guidance Laws.

3.1. Basic knowledge. The main objective of this study is to design guidance laws
so that the convergence of the systems (1)-(7) to the conditions (10) and (11) can be
achieved in finite time. To facilitate the design, the following lemmas are particularized
for applications.
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Lemma 3.1. [29] Consider the nonlinear system ẋ = f(x, t), x ∈ Rn. If there exists a
continuous and positive definite function V (x), such that

V̇ (x) ≤ −µV (x) − λV α(x) (14)

where µ, λ and α are all constants, and µ, λ > 0 and 0 < α < 1, x(t0) = x0, and t0 is
the initial time, then the time of system states arriving at the equilibrium point, i.e., T ,
satisfies the following inequality.

T ≤ 1

µ(1 − α)
ln

µV 1−α(x0) + λ

λ
(15)

That is, system states are finite-time convergent.

Lemma 3.2. [30] Consider the nonlinear system ẋ = f(x, t), x ∈ Rn. If there exists a
continuous and positive definite function V (x), such that

V̇ (x) ≤ −τ (16)

where τ > 0 is a constant, and t0 is the initial time, then the time of system states arriving
at the equilibrium point, i.e., t∗, satisfies the following inequality.

t∗ = t0 +
V (t0)

τ
(17)

That is, the system states are asymptotically stable and finite-time stable.

3.2. A novel reaching law. The discontinuity of guidance laws will cause the chattering
phenomenon, which becomes even more serious against hypersonic vehicles. To alleviate
this problem, the right reaching law is urgent to be proposed. In conventional reaching
laws, constant reaching law has a slow convergence rate and large chattering [31]. Expo-
nent reaching law presents large chattering in the faster convergence rate because of the
existing constant term [32]. Power reaching law is smooth when it arrives at the sliding
mode surface while it has shortcomings in fast convergence [33].

In the 1980s, Gao [34] put forward the concept of reaching law and designed the power
reaching law.

ṡ = −h |s|α sign(s) (18)

where r0 > 0, r1 > 0, and p > 0.
The exponent reaching law was proposed in [35] and its function can be expressed as:

ṡ = −hsign(s) − ks (19)

where h > 0, k > 0. Note that the application of −ks leads to an increase in convergence
time, but −hsign(s) would result in large chattering.

To avoid the defects of the exponent reaching law and simultaneously keep its advan-
tages, a new reaching law is developed by combining an integral adaptation term with an
exponential term.

ṡ = −ks − (αy + N(s))sign(s) (20)

ẏ = α|s|, y(0) > 0

N(S) = r0

(
er1|s|p − r2

)
where k > 0, α > 0, r0 > 0, r1 > 0, p > 0, 1 > r2 > 0. −(αy + N(s))sign(s) can reduce
chattering and −ks can accelerate convergence.
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3.3. Design of guidance laws. Equation (21) is chosen as the sliding mode manifold
surface.

S =

[
s1

s2

]
=

[
θm − n1θt

ϕm − n2ϕt

]
(21)

Then, the derivative of S can be expressed as Equation (22).

Ṡ =

[
ṡ1

ṡ2

]
= ẋ − nẏ = BU + F − n(M + E) (22)

where n =

[
n1 0
0 n2

]
.

In this study, the new reaching law, i.e., Equation (20), is adopted. Specifically, the
form can be expressed as follows:

Ṡ = −kS − Q(αy + N(S)) (23)

ẏ =

[
ẏ1

ẏ2

]
=

[
α |s1|
α |s2|

]
, yi(0) > 0, Q =

[
sign(s1) 0

0 sign(s1)

]
,

N (S) =

[
r0

(
er1|s1|p − r2

)
r0

(
er1|s2|p − r2

) ]
Substituting Equation (23) into Equation (22), a new finite-time adaptive guidance law

against hypersonic vehicles is established as follows:

U1 = −B−1 (F − nE + kS + Q(αy + N (S))) (24)

where k =

[
k1 0
0 k2

]
, (k1, k2 > 0), k = min(k1, k2), and α > max(n1, n2).

Theorem 3.1. Consider the systems (1)-(7) Suppose that the external disturbance M is
bounded. If the guidance law is designed as Equation (24), the sliding mode surface (21)
can converge to zero in finite time.

Proof: Assuming that |m1| ≤ ε1 and |m2| ≤ ε2, ε =

[
ε1

ε2

]
. Consider the Lyapunov

function candidate as Equation (25)

V1 =
1

2
STS +

1

2
(ε − y)T(ε − y) (25)

The time derivative of the Lyapunov function V1 along with Equations (1)-(7) results in

V̇1 = STṠ − (ε − y(S))Tẏ(S)

= ST(BU + F − n(M + E)) − (ε − y)T

[
α |s1| 0

0 α |s2|

]
= ST(−nM − kS − (αy + N(S))sign(S)) − (ε − y)T

[
α |s1| 0

0 α |s2|

]
≤ − kSTS +

2∑
i=1

|si|niεi − STN (S)sign(S) −
2∑

i=1

|si|αεi

= − kSTS − STN (S)sign(S) −
2∑

i=1

|si| εi(α−ni)

≤ 0
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From the above inequality, we have V1(t) ≤ V1(0), which implies that V1(t) is bounded.
Hence, it can be concluded that sj and εi − yi (i = 1, 2) are all bounded.

In addition, consider another Lyapunov function as Equation (26).

V2 =
1

2
STS (26)

The time derivative of the Lyapunov function V2 can be expressed as:

V̇2 = STṠ

= ST(−nM − kS − (αy + N (S))sign(S))

≤ − kSTS +
2∑

i=1

|si|niεi − STN (S)sign(S) −
2∑

i=1

|si|αyi

= − kSTS − STN(S)sign(S) −
2∑

i=1

|si| (αyi − εini)

Because yi(0) > 0, and ẏi = α |si| ≥ 0, we obtain that yi(t) > yi(0). Choose yi(0) large

enough, and α satisfies α ≥ ni

√
s2
i (0)+y2

i (0)

yi(0)
+ ni. Then, it can be obtained that

niεi − αyi ≤ niεi − ni

√
s2

i (0) + y2
i (0) − niyi(0)

≤ ni(εi − yi(0)) − ni

√
s2

i (0) + y2
i (0)

≤ ni |εi − yi(0)| − ni

√
s2

i (0) + y2
i (0)

≤ ni

√
y2

i (0) − ni

√
s2

i (0) + y2
i (0)

≤ 0

(27)

Combining Equation (27), V̇2 continues to be derived as follows.

V̇2 ≤ − kSTS − STN (S)sign(S) −
2∑

i=1

|si| (αyi − εini)

≤ − kSTS − STN (S)sign(S)

≤ − 2kV2 −
√

2 min
(
r0

(
er1|s1|p − r2

)
, r0

(
er1|s2|p − r2

))
V

1
2

2

(28)

According to Lemma 3.1, Equation (28) indicates that the finite-time convergence of
the sliding mode surface is available. That is to say, the head pursuit conditions (10) and
(11) can be obtained within finite time. The proof of Theorem 3.1 is completed.

Remark 3.1. In guidance law (24), the role of the term y is to compensate for external
uncertainties with unknown bounds and forces the finite-time convergence of the sliding
variables to the sliding surface. However, in the initial stage, the numerical value of y
is very small, which will result in a long convergence time. To make up for this defect,
the exponential term N (S) is added, which provides an extra but sufficiently high gain
when the state is far away from the sliding surface. In this way, convergence speed can be
accelerated and the response of the system to the external perturbations is also speeded up.
When S → 0, y gradually slows down until it stops growing. Moreover, N (S) reduces
its value rapidly until it disappears at the sliding surface. On reaching the sliding surface,
the overall gain can be reduced, i.e., this method can reduce the unwanted chattering level.
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In Theorem 3.1, a new finite-time adaptive guidance law against hypersonic vehicles is
proposed. However, the capacity of dynamic actuators is limited in practice. Therefore,
input constraints should be taken into account. The finite-time guidance law with anti-
saturation characteristic is designed in this section using the hyperbolic tangent function
and auxiliary system.

U2 = −a1 tanh(ε1ζ) − a2 tanh(ε2S) (29)

γ = S − ζ

ζ̇ =BU2+F−nE+
[
ST(BU2 + F − nE)

] γ

γTγ
+a3γ+

(
a4 + m

∥∥STn
∥∥) γ

γTγ
+a5sign(γ)

where a1, a2, a3, a4, ε1 and ε2 are positive constants. n = max(n1, n2), a5 > nm.

Theorem 3.2. Consider the systems (1)-(7). Suppose that the external disturbance ∥M∥
is bounded, and ∥M∥ ≤ m. If the guidance law is designed as Equation (29), the sliding
mode surface (21) can converge to zero with asymptotical stability and finite-time stability.

Proof: Consider the Lyapunov function candidate as Equation (30).

V3 =
1

2
γTγ +

1

2
STS (30)

The time derivative of the Lyapunov function V3 along with Equations (1)-(7) results
in:

V̇3 = γTγ̇ + STṠ

= γT
(
BU + F − n(M + E) − ζ̇

)
+ ST(BU + F − n(M + E))

= − γTnM − STnM − γT

(
a3γ +

(
a4 + m

∥∥STn
∥∥) γ

γTγ
+ a5sign(γ)

)
≤ ∥γ∥ ∥nM∥ + m

∥∥STn
∥∥ − m

∥∥STn
∥∥ − a5 ∥γ∥ − γT

(
a3γ + a4

γ

γTγ

)
≤ nm ∥γ∥ + m

∥∥STn
∥∥ − m

∥∥STn
∥∥ − a5 ∥γ∥ − γT

(
a3γ + a4

γ

γTγ

)
= − ∥γ∥ (a5 − ∥nM∥) − γT

(
a3γ + a4

γ

γTγ

)
≤ − γT

(
a3γ + a4

γ

γTγ

)
≤ − a4

According to Lemma 3.2, the sliding mode S converges to 0 with asymptotical stability
and finite-time stability. So the conclusions of Theorem 3.2 are easily obtained.

Remark 3.2. Based on the above analysis, our approach is novel in which the sliding
mode surface converging to the origin is asymptotically stable and finite-time stable, and
can be achieved and proved in theory.

4. Simulation Results. In this section, numerical simulations are implemented to illus-
trate the performance of the proposed guidance laws. Each of the following subsections is
divided into two parts to carry out simulations. The first part is to verify the effectiveness
of the guidance law. The second part is to verify the superiority of the designed guidance
laws by comparing with traditional guidance laws.
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4.1. Effectiveness verification. In order to demonstrate the effectiveness of guidance
law U1, we consider the following three target maneuvers:

Case 1: azt = ayt = 19.6 m/s2;
Case 2: azt = ayt = 19.6 cos(2t) m/s2;
Case 3: azt and ayt are step signals with an amplitude of 19.6 m/s2 at t = 4 s.
The initial engagement parameters are listed in Table 1 [1,5].

Table 1. The initial conditions for the missile and target

Initial condition Dataset 1
R(0) 5000 m
θL(0) −10 deg
ϕL(0) −12 deg
θm(0) −20 deg
ϕm(0) −15 deg
Vm 1600 m/s

θt(0) −20 deg
ϕt(0) −15 deg
Vt 2100 m/s

(a) Relative movement curves with azt = ayt = 20 g (b) Curves of sliding mode surface

(c) Curves of θm, θt, ϕm and ϕt (d) Missile acceleration profiles

Figure 3. Simulation results when azt = ayt = 20 g
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The parameters of U1 are chosen as k =

[
10 0
0 10

]
, n =

[
2 0
0 2

]
, α = 16, r2 = 0.97,

β = 5, r0 = 5, r1 = 1, p = 1. The parameters of U2 are chosen as n =

[
2 0
0 2

]
, a1 = 200,

a2 = 200, a3 = 0.01, a4 = 2, a5 = 2, ε1 = 40 and ε2 = 40.
Case 1: Figure 3 shows the simulation results of guidance laws designed in this paper,

i.e., U1 and U2. Figure 3(a) presents relative movement curves with Case 1. It can
be obtained that both of U1 and U2 ensure that the missile successfully intercepts the
target. Figure 3(b) shows the curves of sliding mode surface. From it, we can obtain
that the convergence speed under U1 is much faster than it under U2. It also illustrates
that the convergence rate can be accelerated without overloading limit. Figure 3(c) shows
the curves of θm, θt, ϕm, and ϕt, and it verifies that θm becomes 2 times of θt within a
finite time, and finally converges to zero. Similarly, ϕm becomes 2 times of ϕt. Figure
3(d) presents missile acceleration profiles. Note that, in the initial stage of guidance
process, the value of U1 reaches about −1000 g; however, it cannot be satisfied in practice.
Although there is a saturation phenomenon in U2, it is within a reasonable range.

Case 2: With the same initial conditions and parameters, Case 2 is also simulated.
Figure 4 shows the simulation results of guidance laws designed in this paper, i.e., U1 and
U2. Figure 4(a) presents relative movement curves with Case 2. Both of U1 and U2 can

(a) Relative movement curves with azt = ayt = 20 g (b) Curves of sliding mode surface

(c) Curves of θm, θt, ϕm and ϕt (d) Missile acceleration profiles

Figure 4. Simulation results when azt = ayt = 20 g
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(a) Relative movement curves with azt = ayt = 20 g (b) Curves of sliding mode surface

(c) Curves of θm, θt, ϕm and ϕt (d) Missile acceleration profiles

Figure 5. Simulation results when azt = ayt = 20 g

still ensure that the interception mission is completed successfully. Figure 4(b) shows the
curves of sliding mode surface. Figure 4(c) shows the curves of θm, θt, ϕm, and ϕt. Figure
4(d) presents missile acceleration profiles. Figure 4 shows the same situation as Figure 3,
so no longer repeated here.

Case 3: With the same initial conditions and parameters, Case 3 is also simulated.
Figure 5 shows the simulation results of guidance laws designed in this paper. Figure
5(a) presents relative movement curves with Case 3. Both of U1 and U2 can still ensure
that the missile successfully intercepts the target. Figure 5(b) shows the curves of sliding
mode surface. Figure 5(c) shows the curves of θm, θt, ϕm, and ϕt. Figure 5(d) presents
missile acceleration profiles. Figure 5 presents the same situation as Figure 3, so no longer
repeated here. To sum up, U1 and U2 can ensure the successful intercept of a hypersonic
vehicle with three different maneuvering scenarios. It also proves the validity of guidance
laws designed in this study.

Table 2 presents the interception time and miss distance with three different cases.
It can be obtained that the interception time is different with different cases, but the
miss distances are all within a reasonable range under both U1 and U2. Therefore, the
effectiveness of the designed guidance laws is further proved.

4.2. Superiority verification. To further prove the superiority of the proposed contin-
uous adaptive sliding mode guidance law U1 in chattering elimination, the sliding mode
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Table 2. Interception time and miss distance

Case 1 Case 2 Case 3
Guidance

law
Interception

time
Miss

distance
Interception

time
Miss

distance
Interception

time
Miss

distance
U1 7.213 0.0035 7.069 0.0131 7.157 0.0229
U2 7.326 0.0076 7.071 0.0292 7.173 0.0053

(a) Curves of sliding mode s1 (b) Curves of sliding mode s2

(c) Missile acceleration profiles with U1 (d) Missile acceleration profiles with U3

Figure 6. Comparison between U1 and U3 with azt = ayt = 20 g

guidance law U3 is chosen to compare with it. The guidance law U3 is established by the
application of the exponent reaching law (19).

U3 = −B−1(F − nE + kS + hsign(S)) (31)

where h > 0 and h = 0.2. To ensure fair and valid comparisons, the other parameters
of U3 are selected as the same as those of U1. In this section, the target acceleration is
selected as 2 g.

Figure 6 shows the comparison results between U1 and U3 including the curves of sliding
mode surface and missile acceleration. We can obtain that the sliding mode surfaces and
missile acceleration profiles have serious chattering phenomenon under U3; however, the
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undesired chattering is reduced effectively by guidance law U1. Therefore, the good
performance and superiority of the guidance law U1 have been sufficiently demonstrated.

5. Conclusions. In this paper, two three-dimensional head pursuit adaptive sliding
mode guidance laws have been presented. The system can be ensured to converge to
the head pursuit guidance conditions in finite time. The first guidance law can deal with
the unknown upper bound of the external disturbances. The second guidance law guar-
antees that the sliding surface is asymptotically stable and finite-time stable with input
saturation. However, the second guidance law cannot deal with the external perturba-
tion. How to derive the anti-saturation guidance law that can deal with the external
perturbation is still a challenging problem, which is also the next research direction of
this paper.
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