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Abstract. The problem of robust control for hypersonic gliding vehicle (HGV) with H∞
performance through dynamic output feedback controller is considered in this paper. The
hypersonic vehicle system is high order plant with strong nonlinear coupling parametric
uncertainty and external disturbance. In order to handle the complex HGV dynamics,
an affine nonlinear plant is transformed to a control-oriented form, which is used as a
basic model for the subsequent establishment of T-S fuzzy model. Then based on the
approximation and HGV maneuvering in 6DOF, an overall nonlinear T-S fuzzy system
with uncertain and disturbance is constructed by parallel distributed compensation (PDC).
Further, based on the closed loop system, a robust H∞ dynamic output feedback controller
with complete form that guarantees the closed system stable for the prescribed performance
index is designed by a set of strict linear matrix inequality (LMI) conditions. Finally,
the designed controller is used to stabilize the HGV attitude system in three channels.
Keywords: Hypersonic gliding vehicle, H∞ performance, Dynamic output feedback
controller, T-S fuzzy model, Parallel distributed compensation (PDC), Linear matrix
inequality (LMI)

1. Introduction. Hypersonic gliding vehicle (HGV) is a new class of hypersonic glider
being developed nowadays which is shown to endure strongly nonlinear dynamic behavior
over the flight envelope between 120Km and 30Km. The vehicle is generally launched
by boosters from the ground or released from the space orbiter, and glides inside the
atmosphere even more than ten thousand kilometers. As the typical HGVs, such as
CAV (common aero vehicle) [1], HTV (hypersonic technology vehicle) [2], and IGLA [3],
possesse the capabilities of rapid response, strong penetration, good maneuverability and
global reach, HGVs have been regarded as the advanced precision-guided weapon with
important strategic deterrent and tactical strike, and being researched and developed by
the world especially military powers, which indicates a significant scientific value and
military and political significance.

In the extant studies on HGVs, much attention has been paid to the trajectory optimiza-
tion and guidance [4-6]; however, the reentry attitude control issue is explored in depth [7-
10], which shows important value for further research. Compared with traditional aircraft,
HGVs have greater flight envelope, and more diverse aerodynamic heat and aerodynamic
force uncertainties brought from more complex atmospheric environment, additionally,
greater flight speed and shape layout make the structure of the aerodynamic parameters
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more diversified and complicated. On the other hand, HGVs are extremely sensitive to
changes of atmospheric conditions as well as dynamics and aerodynamic parameters dur-
ing the reentry period. These characteristics pose a significant challenge for the system
control, such as bringing problems of strong nonlinearity and fast time-varying parame-
ters, strong coupling for model states and parameters, and uncertainty and disturbance
of the model.

To deal with these problems, various nonlinear control methodologies have subsequently
been developed and applied to the study of hypersonic vehicles [7-15], such as backstepping
control, linear parameter-varying control and adaptive sliding mode control schemes. In
[8], the LPV-LFT method is applied to designing an angle-of-attack tracking control
system whose aerodynamic parameters vary dramatically during reentry phase. In [11],
Xu provides adaptive dynamic surface control for the flexible model of hypersonic flight
vehicle in the presence of unknown dynamics and input nonlinearity. Direct neural control
with robust design is used to avoid singularity, and the uniform ultimate boundedness
stability of the closed-loop system is guaranteed. In [15], a multi-input/multi-output
adaptive sliding controller is designed and analyzed to solve the problems of nonlinear,
multivariable, and unstable and includes uncertain parameters for a longitudinal dynamics
of a generic hypersonic air vehicle.

However, these nonlinear control schemes require the nonlinear systems present pre-
dictable behaviors, such as minimum-phase characteristics and precisely available param-
eters, which limit practical applications for HGVs. For the high nonlinear dynamics of
hypersonic vehicles, the control scheme is still an open and challenging problem, including
when uncertainties and disturbances exist simultaneously.

Since the T-S fuzzy control theory was put forward in 1989, a large amount of de-
velopments have been achieved during recent decades. In fact, the T-S fuzzy models
have shown to be universal function approximators in the sense that they can approxi-
mate any smooth nonlinear function to any degree of accuracy in any convex, compact
region [16-18]. Until now, the T-S fuzzy control theory, including the fuzzy modeling
technology based on universal approximation and the feedback control technology based
on Lyapunov stability theory, has been well studied and employed both in traditional
engineering systems [19-22] and the hypersonic vehicle control systems [23-27]. In [25], a
fuzzy guaranteed cost state feedback controller is designed to stabilize the obtained T-S
fuzzy system based on the longitudinal model of a flexible air-breathing hypersonic vehi-
cle (FAHV). In [26], a fuzzy multi-objective robust controller is developed by deriving a
linear matrix inequality (LMI) sufficient condition for fuzzy singularly perturbed models
(FSPM) for the longitudinal motion of an air-breathing hypersonic vehicle.

Although these works can effectively solve some hypersonic vehicle problems or even
be applied in HGV control system, most of the above mentioned results are with the
assumption that the full system states are measurable. In fact, during the flight period,
the system states are not entirely measurable as the harsh atmospheric environment and
vehicle constraints. Therefore, conditions for designing controllers via measurable output
information are explored. Thus, the output feedback control strategy presents highly
significance for HGV control.

Generally, three output feedback control approaches are available for system output
stabilization design: state observer, static output feedback and dynamic output feedback.
The state observer approach is interesting when the state is not entirely available and
premises variables are measurable so that a separation principle can be available. The
static output feedback approach is considered to reduce real-time computational cost
because of its concise form and can be easily realized in practice; however, the controller
parameters conditions are difficult to be transformed in terms of LMI but the BMI [28].
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The dynamic output feedback approach can provide more parameters and flexible choice
for controller design. As the static output feedback control for linear time-invariant (LTI)
systems is still an open problem, and the dynamic output feedback problem of LTI systems
has been solved by an LMI-based sufficient and necessary condition [29], although dynamic
output feedback problems can be transformed into static output feedback problems, it is
more necessary to study dynamic output feedback problems but static output feedback
problems for T-S fuzzy systems.

Among the available literature, the dynamic output feedback controller has been de-
signed for the continuous and discrete-time switched systems to render the associated
closed-loop switched linear system globally asymptotically stable [30,31]. For the studies
of hypersonic vehicle system design with dynamic output feedback control in longitudi-
nal model, numerous approaches are exploited to address for the velocity and altitude
tracking [32-36]. Li et al. [32] design an output feedback controller that yields semiglobal
uniformly ultimately bounded tracking of the velocity and altitude while keeping all the
closed loop signals bounded for a genetic hypersonic vehicle, where high gain observers
(HGO) are utilized to estimate derivatives of the velocity and altitude, and neural net-
work based feed forward function is designed to compensate for model uncertainties. In
[33], Zong et al. adopted a combined nonlinear observer and back-stepping technique
to design the dynamic output feedback controller that provides stable tracking of the
velocity and altitude reference trajectories by small-gain theorem for the nonlinear lon-
gitudinal dynamics of a generic hypersonic vehicle. In [34], the authors provide robust
output-feedback controller for a model of an airbreathing hypersonic vehicle by an alter-
native approach to robust output-feedback design that does not employ state estimation
to track velocity and altitude signal in the presence of model uncertainties and varying
flight condition.

Although the longitudinal model control of hypersonic vehicle has been deeply re-
searched, the control schemes of the dynamic model in three channels or the motion
plant in full 6DOF, such as the HGVs and GHVs (generic hypersonic vehicles), are still
far from fully explored, especially based on dynamic output feedback strategy, there is
hardly any investigation so far.

Multiple control strategies have been investigated for the HGV system, such as back-
stepping control [7], LPV control [8] and adaptive control [11,37], and characteristic model
approach [9] is used to handle the complex plant. In [7], the authors employed a robust
dynamic inversion control approach to deal with the parameter perturbations, high un-
certainties and strong couplings during the flight of hypersonic gliding vehicle. In [9], Luo
and Li introduce the fuzzy logic into the characteristic modeling by dividing the whole
restriction range into several subspaces, and a new intelligent controller is proposed to
solve the problem of longitudinal attitude control of hypersonic vehicle in gliding phase.
On the other hand, for the uncertainty and disturbance, observer method is designed for
the system. The observer approaches in [10,38,39] are used to estimate the uncertainty or
disturbance and the state feedback control is employed for HGVs. In [10], Qian et al. used
a nonlinear disturbance observer (NDO) to estimate the unknown disturbance which is
then integrated with a conventional sliding mode controller for HGV control. In [38], Gao
proposed an observer-based approach to obtain the exact values of the parameters in the
kinetic model, and nonlinear dynamic inversion controller is designed for the longitudinal
dynamic model of HGV.

Although these methods solve the HGV control problem to a certain extent, it is difficult
to be applied directly in practice by state feedback, and the observer-based method also
brings difficulty for the complex system synthesis. Therefore, under these circumstances,
it is much necessary to pay more attention to the output feedback control design for HGV
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system with parameter uncertainty and external disturbances, especially by fuzzy control
strategy. This makes up the motivation of this paper.

Summarizing, the main contributions in this paper are to provide the T-S fuzzy model
of HGV three-channel attitude dynamics, and firstly introduce dynamic output feedback
controller with complete form by T-S fuzzy control strategy to address the problem of
HGV attitude control in three channels, and a new sufficient condition to ensure system
performance through strict LMIs is proposed. This paper is organized as follows. In
Section 2, the system description is presented and the problem of dynamic controller
design is raised. In Section 3, we construct the closed loop control system with the
presented T-S fuzzy model and dynamic output controller. In Section 4, the robust H∞
dynamic output feedback controller is provided to stabilize the presented uncertain closed
loop control system for a prescribed performance. Simulation results are given in Section
5. Finally, concluding remarks are made in Section 6.

2. Problem Formulation. Hypersonic vehicle is a complex nonlinear system with multi-
state, strong coupling and strong time-varying. The reentry dynamics present as the form
of differential equation with multiple variables and structures, which is not conducive to
the analysis of the control system because of the lack of necessary control structure. In
order to solve this problem, in this section the dynamics model is transformed into a
control-oriented affine nonlinear form.

2.1. Reentry dynamics. The original nonlinear reentry attitude equations of the hy-
personic vehicle can be described as follows [40]:

α̇ = q − tan β(p cos α + r sin α) − cos µ
cos β

Fγ

MV
+ cos µ

cos β

Fχ

MV

β̇ = p sin α − r cos α + sin µ Fγ

MV
+ cos µ Fχ

MV

µ̇ = −q sin β − cos β(p cos α + r sin α) + α̇ sin β − Fχ

MV
tan γ

ṗ = Ip
pqpq + Ip

qrqr + gp
nn + gp

l l

q̇ = Iq
ppp

2 + Iq
rrr

2 + Iq
prpr + gq

mm

ṙ = Ir
qrqr + Ir

pqpq + gr
l l + gr

nn

(1)

Here, α, β, µ denote the angle of attack, sideslip angle, and bank angle, respectively; p,
q, r denote the bank angle rate of rotation, angle of attack rate, and sideslip angle rate of
rotation, respectively. Fγ, Fχ denote force functions associated with aerodynamic drag,
lift and side forces.

So the affine nonlinear model of (1) can be obtained as:

Ω̇ = fs + gs1ω + gs2δ (2)

ω̇ = ff + gfMc = ff + gf · gfδδ (3)

where

fs =
1

MV


−CL,αQS+Mg cos γ cos µ

cos β

−CY,ββQS − Mg cos γ sin µ

CL,αQS(tan β + cos µ) + CY,ββQS cos β

−Mg cos γ cos µ tan β

 ,

gs1 =

 − tan β cos α 1 − tan β sin α
sin α 0 − cos α

− sec β cos α 0 − sec β sin α

 ,
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ff =

 Ip
pqpq + Ip

qrqr + gp
l lA

Iq
ppp

2 + Iq
rrr

2 + Iq
prpr + gq

mmA

Ir
qrqr + Ir

pqpq + gr
l nA

 , gf =

 gp
l 0 gp

n

0 gq
m 0

gr
l 0 gr

n

 , δ =

 δe

δa

δr


In particular, as the aerodynamic force generated by the rudder deflection is far less

than the force generated by the vehicle body, gs2δ has a negligible effect on variables
Ω = [α, β, µ]T . Therefore, recasting Equation (2) yields

Ω̇ = fs + gs1ω (4)

From Equations (3) and (4), it yields[
Ω̇
ω̇

]
=

[
gs1ω
ff1

]
+

[
0
gf

]
Mc +

[
fs

ff2

]

Let x(t) =
[
ΩT , ωT

]T
= [α, β, µ, p, q, r]T ,

[
gs1ω
ff1

]
6×1

= f(x),

[
03×3

gf

]
6×3

= g(x),

(Mc)3×1 = u(t),

[
fs

ff2

]
6×1

= ∆(x).

Finally, the nonlinear affine model can be rewritten as

ẋ(t) = f(x) + g(x)u(t) + ∆(x) (5)

in which

f(x) =



−p tan β cos α + q − r tan β sin α

p sin α − r cos α

−p sec β cos α − r sec β sin α

Ip
pqpq + Ip

qrqr

Iq
ppp

2 + Iq
rrr

2 + Iq
prpr

Ir
qrqr + Ir

pqpq


∆
=


f1

f2

f3

f4

f5

f6

 , g(x) = G =


03×3

gp
l 0 gp

n

0 gq
m 0

gr
l 0 gr

n



∆(x) =



−CLαQS+Mg cos γ cos µ

MV cos β

−CYβ
βQS−Mg cos γ sin µ

MV

CLαQS(tan β+cos µ)+CYβ
βQS cos β−Mg cos γ cos µ tan β

MV

gp
l lA + gp

nnA

gq
mmA

gr
l lA + gr

nnA


Here, ∆(x) is considered as an uncertainty term related to the vehicle’s aerodynamic
parameters. u(t) is a control variable with respect to the control surface deflections.

Figure 1 provides the zero input response for the original plant (5) at initial states
x(0) = [0, 0, 0, 0.1, 0, 0]T and x(0) = [0, 0, 0, 0, 0, 0.1]T , it can be seen that the attitude
angle of the system exhibits a fast divergent state for the open loop system, while the
attitude angular rate exhibits a characteristic of oscillating divergence. It can be seen that
the original system dynamics has strong coupling and nonlinearity, which is not conducive
to the direct controller design.
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Figure 1. Zero input response for the original plant in different initial states

2.2. T-S fuzzy modeling. Since our aim is to complete the controller design of the
attitude dynamics, although the control-oriented affine nonlinear model has been given
and the original dynamic model structure has been simplified, it can be seen that the affine
model still has strong nonlinear and time-varying characteristics, and it is still difficult
to design the control system directly. However, if we adopt the T-S fuzzy modeling
technology to construct an intermediate fuzzy model for the orignal plant, the difficulty
of designing the closed-loop controller will be greatly reduced. Therefore, it is necessary
to establish the T-S fuzzy model of the original system.

In this section, the reentry dynamics model shown in (9) is transformed into a fuzzy
combination of local linear submodels by T-S fuzzy modeling techniques. The blending
nonlinear fuzzy model is construsted by the selected operating points of interest shown in
Table 1.

Table 1. The selected operating points of interest

Points Values

x1 [0, 0, 0,−pm, 0,−rm]T

x2 [0, 0, 0,−pm, 0, 0]T

x3 [0, 0, 0,−pm, 0, rm]T

x4 [0, 0, 0, 0, 0,−rm]T

x5 [0, 0, 0, 0, 0, 0]T

x6 [0, 0, 0, 0, 0, rm]T

x7 [0, 0, 0, pm, 0,−rm]T

x8 [0, 0, 0, pm, 0, 0]T

x9 [0, 0, 0, pm, 0, rm]T

Note that considering the fuzzy model, this paper constructs an aircraft model in three
channels, so as the open response tests provide in Figure 1, we found the variables of bank
angle rate and sideslip angle rate have a decisive effect on the severe nonlinearity and
response divergence of the original dynamics. Therefore, in order to accurately describe
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these nonlinear dynamics by fuzzy model, the variables of bank rate and sideslip rate are
chosen for the premise variables.

In addition, in order to accurately express the maneuvering behaviors of the vehicle
in these two channels, three state points are chosen in each channel, which respectively
represents, for instance the bank angle channel, the three maneuvers of left, right and
unmaneuver. The other channel cases are similar. Therefore, from the analysis above,
a total of nine operating points of interest are selected, which correspond to nine fuzzy
rules described as follows.
Rule i: If p is about pi

k rad/s and r is about ri
l rad/s, k, l = 1, 2, 3

Then,  ẋ = (Ai + ∆Ai)x + (Bi + ∆B1i)u + B2iω i = 1, 2, . . . , 9
z = Eix
y = Cix

(6)

where pi
k ∈ {−pm, 0, pm}, ri

l ∈ {−rm, 0, rm}, pm and rm are the maximum value of the
rotation angular rate p and r, and the state point formed by each rule in turn corresponds
to the operating point in Table 1. z is the controlled output. y is the measured output.
ω is the disturbance input. The uncertainties considered in this paper are norm-bounded
and described by

[
∆Ai ∆B1i

]
= MiFi[N1i N2i], where ∆Ai, Mi, N1i, N2i are known

real constant matrices of appropriate dimensions and Fi is nonlinear time-varying matrix
functions satisfying F T

i Fi ≤ I.
Based on the Jacobi linearization and fuzzy linearization method [41], the caculation

of local matrix for submodels can be divided in two cases as follows.
For the zero equilibrium point x5, according to the Jacobi linearization method,

Aj = J(f(xj)), B1i = G (7)

For the other operating points except x5 shown in Table 1, the fuzzy linearization
method will be applied as

Aj = J(f(xj)) +
[
xj · Zj

]T
(8)

B1i = G

where Zj
∆
= 1

∥xj∥2

(
[f(xj)]

T − (xj)T [J(f(xj))]
T
)
, J(f) = ∂f

∂x
.

The subsystem matrices and control matrices (see Appendix) were separately modeled
at the operating points of interest shown in Table 1.

By the PDC, the blending nonlinear T-S fuzzy model with uncertain and disturbance
can be constructed as

ẋ =
9∑

i=1

µi [(Ai + ∆Ai)x + (B1i + ∆B1i)u + B2iω]

z = Ex
y = Cx

(9)

where µi(t) = mi(t)
r∑

i=1
mi(t)

, mi(z(t)) =
l∏

j=1

Mij(zj(t)).

The model (9) will be used as an intermediate model of the original system (5). In the
next section, for the controller design, we will composite the T-S model into a closed loop
system with dynamic output feedback controller.
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3. Dynamic Output Feedback Control. Figure 2 shows the basic principles of dy-
namic output feedback control. In the general dynamic output feedback studies [30, 42],
the output controller parameter matrix only contains Ac, Bc, Cc without the observa-
tion matrix Dc. This paper firstly introduces T-S fuzzy dynamic output feedback con-
troller with observation matrix into the design of HGV attitude control in three channels.
Thereby the degree of freedom of the parameter design is increased so that controller
design of the conservatism is reduced.

Figure 2. Basic structure of dynamic output feedback control

The full-order fuzzy dynamic output feedback controller with a complete form for the
fuzzy system (6) is constructed as
Rule i: If p is about pi

k rad/s and r is about ri
l rad/s, k, l = 1, 2, 3

Then {
˙̂x = Acix̂ + Bciy
u = Ccix̂ + Dciy

(10)

where x̂ ∈ Rn is the controller state. y is the measurable output, and u is the control
output. Aci, Bci, Cci, Dci are the controller parameter matrices to be determined.

From (9) and (10), the closed loop system with controller states can be described as:

[
ẋ
˙̂x

]
=

9∑
i=1

9∑
j=1

µiµj

{[
Ai + B1iDcjC B1iCcj

BcjC Acj

]
+

[
∆Ai + ∆B1iDcjC ∆B1iCcj

0 0

] [
x
x̂

]
+

[
B2i

0

]
ω

}
z =

[
E 0

] [
x
x̂

] (11)

or equivalently, shown as{
ℵ̇(t) = (Aeµ + ∆Aeµ)ℵ(t) + B2µω(t)
z(t) = Eeℵ(t)

(12)

where ℵ =

[
x
x̂

]
is the closed-loop system state, Aeµ =

9∑
i=1

9∑
j=1

µiµjAeij is the closed-loop

system matrix, ∆Aeµ =
9∑

i=1

9∑
j=1

µiµj∆Aeij is the closed-loop system uncertainty matrix,

B2µ =
9∑

i=1

µiB2eij is the disturbance matrix, Ee =
[

E 0
]

is the closed-loop system
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controlled output matrix, and

Aeij =

[
Ai + B1iDcjC B1iCcj

BcjC Acj

]
,

∆Aeij =

[
∆Ai + ∆B1iDcjC ∆B1iCcj

0 0

]
= MeijFeijNeij, B2eij =

[
B2i

0

]
,

Meij =

[
Mi 0
0 0

]
, Feij =

[
Fi 0
0 0

]
, Neij =

[
N1i + N2iDcjC N2iCcj

0 0

]
.

For the uncertain T-S fuzzy model represented in (12), the robust H∞ performance can
be defined as follows.

Definition 3.1. Given a real number γ > 0, the uncertain T-S fuzzy system (12) is said
to be robustly stable with γ disturbance attenuation if, for all allowable uncertainties and
for any ω(t) ∈ L2(0,∞), system (12) is stable and the response z(t), under zero initial
condition, satisfies the following equation∫ +∞

0

z(t)T z(t)dτ < γ2

∫ +∞

0

ω(t)T ω(t)dτ (13)

or the equivalent form
∥z(t)∥2

∥ω(t)∥2

< γ

Then, our objective is to achieve the controller gains (Aci, Bci, Cci, Dci) in (10) such that
the closed-loop system in (12) is asymptotically stable with γ-disturbance attenuation.

4. Robust H∞ Controller Design. In this section, a set of LMI conditions is derived
for designing the dynamic output feedback controller (10). For finding the controllers,
the following lemmas are needed.

Lemma 4.1. [43] Let X, Y , and F be real matrices with appropriate dimensions and
FF T ≤ I. Then for any scalar ε > 0,

XFY + Y T F T XT ≤ εXXT +
1

ε
Y Y T (14)

Lemma 4.2. [44] The parameterized linear matrix inequality

r∑
i,j=1

µiµjM ij < 0 (15)

is fulfilled, if the following condition holds:{
M ii < 0 i = 1, . . . , r

1
r−1

M ii + 1
2

(
M ij + M ji

)
< 0 1 ≤ i ̸= j ≤ r

(16)

Theorem 4.1. [36] For the uncertain T-S fuzzy system (12), if there exist a matrix P > 0
and a scalar ε > 0 satisfying

9∑
i=1

9∑
i=1

µiµj

 PAeij + AT
eijP + ET

e Ee + εNT
eijNeij PDe PMi

∗ −γ2I 0
∗ ∗ −εI

 < 0 (17)

then the system in Equation (12) is robustly stable and the H∞ performance in Equation
(13) is guaranteed for a prescribed performance index γ.
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Theorem 4.2. Consider the uncertain T-S fuzzy system in Equation (12), and for a
prescribed constant scalar ρ > 0, if there exist matrices P1 > 0, G1 > 0, Xi, Yi, Zi, Wi

and a constant ε > 0, such that the following LMIs hold:[
P1 I
∗ G1

]
> 0 (18)

Θii < 0, i = 1, 2, . . . , 9 (19)

1

r − 1
Θii +

1

2
(Θij + Θji) < 0, 1 ≤ i ̸= j ≤ 9 (20)

where

Θij =



AiG1

+B1iXj

+(AiG1

+B1iXj)T

Ai + B1iWjC

+ZT
i

B2i Mi 0
G1N

T
1i

+XT
j NT

2i

0 G1E
T

Zi + (Ai

+B1iWjC)T

P1Ai + YjC+
(P1Ai + YjC)T P1B2i P1Mi 0

NT
1i+

CT WT
j NT

2i

0 ET

∗ ∗ −γ2I 0 0 0 0 0
∗ ∗ ∗ −εI 0 0 0 0
∗ ∗ ∗ ∗ −εI 0 0 0
∗ ∗ ∗ ∗ ∗ −ε−1I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε−1I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I


(21)

then a desired robust H∞ dynamic output feedback controller in the form of Equation (10)
exists, and its parameters can be given by

Acj = P−1
2

[
Zj − P1AiG1 − P1B1iDcjCG1 − P2BcjCG1 − P1B1iCcjG

T
2

]
G−T

2 (22)

Bcj = P−1
2 (Yj − P1B1iDcj) (23)

Ccj = (Xj − DcjCG1) G−T
2 (24)

Dcj = Wj (25)

where P2 and G2 are any non-singular matrices satisfying

P2G
T
2 = I − P1G1 (26)

Proof: Partition the non-singular matrices P in Theorem 4.1 and its inverse P−1 as
follows:

P =

[
P1 P2

P T
2 P3

]
, P−1 =

[
G1 G2

GT
2 G3

]
As PP−1 = I, Equation (26) can be derived.

Without loss of generality, assume P2 and G2 are full rank matrices, and then the
constructed matrices T1, T2 are also non-singular matrices.

T1 =

[
G1 I
GT

2 0

]
, T2 =

[
I P1

0 P T
2

]
As P = T2T

−1
1 > 0,

T T
1 PT1 = T T

1 T2 =

[
G1 I
I P1

]
> 0

With the Schur complement, we can obtain P1 > 0, G1−P−1
1 > 0, so that it is equivalent

to [
P1 I
∗ G1

]
> 0
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Applying the Schur complement to Equation (17) (the right part of
9∑

i=1

9∑
i=1

µiµj) in Theo-

rem 4.1, the following equivalent inequalities can be obtained(
PAeij + AT

eijP + ET
e E + εNT

eijNeij

)
−

[
PB2eij PMeij

] [
−γ−2I 0

∗ −ε−1I

] [
(PB2eij)

T

(PMeij)
T

]
< 0

(27)

It is easy to derive Formula (27) into the equivalent form

PAeij + AT
eijP − PB2eij

(
−γ2I

)−1
BT

2eijP − PMeij (−εI)−1 MT
eijP

− NT
eij

(
−ε−1I

)−1
Neij − ET

e (−I) Ee < 0
(28)

Applying the Schur complement again to Formula (28), it is equivalent to

PAeij + AT
eijP −

[
PB2eij PMeij NT

eij ET
e

] 
−γ2I

−εI
−ε−1I

−I


−1

[
PB2eij PMeij NT

eij ET
e

]T

< 0

(29)

Applying the Schur complement for the third time to Formula (29), it can be derived as
PAeij + AT

eijP PB2eij PMeij NT
eij ET

e

∗ −γ2I 0 0 0
∗ ∗ −εI 0 0
∗ ∗ ∗ −ε−1I 0
∗ ∗ ∗ ∗ −I

 < 0 (30)

Therefore, the overall form can be expressed as follows

9∑
i=1

9∑
i=1

µiµj


PAeij + AT

eijP PB2eij PMeij NT
eij ET

e

∗ −γ2I 0 0 0
∗ ∗ −εI 0 0
∗ ∗ ∗ −ε−1I 0
∗ ∗ ∗ ∗ −I

 < 0 (31)

Pre- and post-multiplying Equation (31) by diag(T T
1 , I, I, I, I, I) and diag(T1, I, I, I, I, I),

we obtain

9∑
i=1

9∑
i=1

µiµj


T T

1

(
PAeij + AT

eijP
)
T1 T T

1 PB2eij T T
1 PMeij T T

1 NT
eij T T

1 ET
e

∗ −γ2I 0 0 0
∗ ∗ −εI 0 0
∗ ∗ ∗ −ε−1I 0
∗ ∗ ∗ ∗ −I

 < 0

(32)
Equation (32) can be derived as

r∑
i,j=1

µiµjΘij < 0 (33)

where Θij is shown as Equation (21) and Xj, Yj, Zj, Wj are expressed as

DcjCG1 + CcjG
T
2 = Xj (34)

P1B1iDcj + P2Bcj = Yj (35)
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P1AiG1 + P1B1iDcjCG1 + P2BcjCG1 + P1B1iCcjG
T
2 + P2AcjG

T
2 = Zj (36)

Dcj = Wj (37)

Inversing these Equations (31)-(34), Equations (22)-(25) can be obtained. Finally, by
Lemma 4.2, Equations (19) and (20) can be easily obtained.

The proof is completed.

Remark 4.1. Equation (21) provides a complete explicit form of the matrix in Formula
(32) after derivation. Equations (34)-(37) provide the new defined matrix variables that
aim to transform the matrix in Formula (32) into a linear matrix form in the derivation
process so that the final sufficient conditions can be shown as strict LMI forms. Specifi-
cally, for example, the matrix block T T

1

(
PAeij + AT

eijP
)
T1 in Formula (32) can be derived

as

T T
1

(
PAeij + AT

eijP
)
T1

=

 AiG1 + B1i

(
DcjCG1 + CcjG

T
2

)
Ai + B1iDcjC

P1AiG1 + P1B1iDcjCG1 + P2BcjCG1

+P1B1iCcjG
T
2 + P2AcjG

T
2

P1Ai + (P1B1iDcj + P2Bcj) C

 + ∗

As long as the matrix variables are set as (34)-(37), the matrix blocks shown in Equation
(21) can be obtained as[

AiG1 + B1iXj + (AiG1 + B1iXj)
T Ai + B1iWjC + ZT

i

Zi + (Ai + B1iWjC)T P1Ai + YjC + (P1Ai + YjC)T

]
Similarly, the blocks T T

1 PB2eij, T T
1 PMeij, T T

1 NT
eij, T T

1 ET
e in Formula (32) follow the same

principle as above.

5. Simulation Results. In this part, stabilization of attitude control is tested with the
output feedback controller by using Theorem 4.2. Respectively, select the operating points
and the points within domains to detect the output stability of the attitude.

Taking account of the maneuverability of the HGV, set the parameter in Formula (6) as
pm = rm = π/18 rad/s, which is reasonable maneuverability value for HGV [45]. Assume
that the attitude angle [α, β, µ] is measurable, and make the measurable variables as the
controlled output, so that the output matrices and controlled output matrices are set as
follows:

C =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , E =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .

Since in Equation (5), each dimension of f(x) may show parameter uncertainty, we set
some uncertainty for each dimension. Assume the control input parameter uncertainty
exists only in the attitude angle channel (first three dimensions), so that the uncertainty
matrices can be set as follows:

M = diag(0.01, 0.01, 0.01, 0.01, 0.01, 0.01), N1 = diag(0.01, 0.01, 0.01, 0.01, 0.01, 0.01)

N2 =


0.01 0 0
0 0.01 0
0 0 0.01
0 0 0
0 0 0
0 0 0


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Assume the disturbance exists in each state dimension, set disturbance matrix as: D =

[1 1 1 1 1 1]T, ω(t) =

{
0.1 5 ≤ t ≤ 6
0 others

. This result shows the response at a

basic operating point x2 = [0 0 0 − π/18 0 0] and at an extended maneuvering state
[0.05 0 0.01 − π/18 0 0]. In order to better illustrate the performance of this designed
controller, it is compared with the controller in [36] in which only the basic construc-
tion without the matrix Dcj is designed. For better clarification, the two controllers are
described as follows:

Controller I: the designed controller in [36];
Controller II: the designed controller in Theorem 4.2.
Figures 3-6 show the response of system attitude angle and attitude angular rate at

points x2 = [0 0 0 − π/18 0 0] and [0.05 0 0.01 − π/18 0 0]. Although system state
(presented in Figure 3 controlled by controller I), and system state (presented in Figure
4 controlled by controller II) all guarantee the system stability, it can be seen that the
controller II makes the system perform a faster convergence rate for attitude angle α, β,
µ than controller I, which implied better performance of disturbance suppression. The
same situation can be seen in Figure 5 and Figure 6 as well.

Figure 3. Response of the system state under the controller I at [0 0 0 − π/18 0 0]

Figure 4. Response of the system state under the controller II at [0 0 0 − π/18 0 0]
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Figure 5. Response of the system state under the controller I at
[0.05 0 0.01 − π/18 0 0]

Figure 6. Response of the system state under the controller II at
[0.05 0 0.01 − π/18 0 0]

On the other hand, as the attitude angular rates p, q, r for hypersonic vehicle are
usually up-bounded, a smaller response of attitude angular rate will be more conducive to
aircraft control and attitude stabilization. Compare the attitude angular rate of Figure 6
and Figure 7, as can be seen, when the response state number is increased, the response
amplitude of the attitude angle rate of the controller I (value about 1.5 rad) shows much
greater than that of the controller II (value about 0.6 rad), which means that the improved
controller II ensures the system with more stable response performance, and a more
reliable control effect at state point [0.05 0 0.01 − π/18 0 0] is also achieved. This
because that the introduction of the observation matrix in Equation (10) reduces the gain
of the controller parameters and the design conservatism.

6. Conclusions. The H∞ dynamic output feedback control of the HGV attitude system
in reentry process has been addressed for the attitude dynamics model in three channels.
The T-S uncertain fuzzy model of attitude dynamics is established first by T-S modeling
technology. Then the T-S fuzzy output feedback controller with complete form of the
HGV system with model uncertainties and external disturbances is designed based on
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Figure 7. Local details of the attitude angular rate response at
[0.05 0 0.01 − π/18 0 0] (left: controller I, right: controller II)

partial state information when some states cannot be measured accurately in the flight
process, and the strict LMI sufficient conditions are provided to calculate the controller
parameters and ensure the system stability. Simulation results show that the designed
controller has good dynamic performance when the system has uncertainties and external
disturbances.

It is worth emphasizing that the dynamic output feedback controller proposed in this
work is more practical compared with extant studies designed by full state feedback
control. What is more, the introduction of T-S fuzzy strategy dramatically simplifies the
complex system design, and the proposed strict LMI sufficient conditions make the control
law easier to achieve and realize.
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Appendix.

A1 =


0 0.17453 0 0 1 0

−0.17453 0 0 0 0 −1
0.17453 0 0 −1 0 0

0 0 0 0 1253.5 0
0 0 0 0.011223 0 −0.17222
0 0 0 0 332.21 0



A2 =


0 0.17453 0 0 1 0

−0.17453 0 0 0 0 −1
0 0 0 −1 0 0
0 0 0 0 −451.69 0
0 0 0 0.04586 0 −0.16099
0 0 0 0 −119.48 0



A3 =


0 0.17453 0 0 1 0

−0.17453 0 0 0 0 −1
−0.17453 0 0 −1 0 0

0 0 0 0 −2156.9 0
0 0 0 0.17222 0 0.011223
0 0 0 0 −571.17 0



A4 =


0 0 0 0 1 0
0 0 0 0 0 −1

0.17453 0 0 −1 0 0
0 0 0 0 1705.2 0
0 0 0 −0.16099 0 −0.04586
0 0 0 0 451.69 0


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A5 =


0 0 0 0 1 0
0 0 0 0 0 −1
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



A6 =


0 0 0 0 1 0
0 0 0 0 0 −1

−0.17453 0 0 −1 0 0
0 0 0 −1705.2 0 0
0 0 0 0.16099 0 0.04586
0 0 0 0 −451.69 0



A7 =


0 −0.17453 0 0 1 0

0.17453 0 0 0 0 −1
0.17453 0 0 −1 0 0

0 0 0 2156.9 0 0
0 0 0 −0.17222 0 −0.011223
0 0 0 0 571.17 0



A8 =


0 −0.17453 0 0 1 0

0.17453 0 0 0 0 −1
0 0 0 −1 0 0
0 0 0 451.69 0 0
0 0 0 −0.04586 0 −0.16099
0 0 0 0 119.48 0



A9 =


0 −0.17453 0 0 1 0

0.17453 0 0 0 0 −1
−0.17453 0 0 −1 0 0

0 0 0 0 −1253.5 0
0 0 0 −0.011223 0 0.17222
0 0 0 0 −332.21 0



Bi =


0 0 0
0 0 0
0 0 0

31.983 0 8.4714
0 0.0002 0

8.4714 0 2.244

 , i = 1, 2, . . . , 9


