International Journal of Innovative
Computing, Information and Control ICIC International (©)2017 ISSN 1349-4198
Volume 13, Number 4, August 2017 pp. 1425-1432

DNSAM: A DNS DATA REAL-TIME ANALYSIS
AND MONITORING SYSTEM

YING Liu, TING ZHI AND ZEHUI LiU
National Engineering Laboratory for Next Generation Internet Interconnection Devices
Beijing Jiaotong University
No. 3, Shangyuancun, Haidian District, Beijing 100044, P. R. China
{yliu; 15111048; 12111019 }@bjtu.edu.cn

Received November 2016; revised March 2017

ABSTRACT. Web applications are based on DNS (Domain Name System). Aiming at
defending against Internet threats (i.e., phishing, malicious code, etc.) in the Web appli-
cations, this paper presents a DNS data real-time analysis and monitoring system. The
proposed system is called DNSAM (Domain Name System Analysis and Monitoring) as
it uniquely introduces the improved multi-pattern MWM (Modified Wu_Manber) domain
name matching algorithm and the non-collision hashing multi-bit Trie-tree IP matching
algorithm. By means of quick match between the critical information in DNS packets and
DNS security policy, DNSAM successfully completes the suspected information storage
and domain name redirecting. Our analysis and the corresponding experimental results
show that DNSAM offers an effective performance and a favorable success rate to analyze
and monitor the DNS data.

Keywords: DNS monitoring, Improved MWM matching algorithm, Multi-bit Trie-tree
matching algorithm, Domain name redirecting

1. Introduction. With the rapid development of network technology in recent years,
Web applications (e.g., WWW) have been becoming a powerful platform on the Internet.
DNS (Domain Name System) is a hierarchical distributed system providing the necessary
mapping or binding between human comprehensible domain names and the corresponding
numerical IP addresses, and it is the basis of the Web applications. Therefore, as an
important network service, its query and response packets include significant information
— the mapping relations between Web domain names and IP addresses, which plays a key
role for the users to access a Web server.

However, with the continuous development and the widespread use of Web applications,
they are facing more and more security issues [1,2], such as phishing, malicious code,
spamming, pornography, and Internet gambling. As we know, these illegal behaviors
have seriously affected the robust development of Internet environment, but there is no
fundamental solution to Web security problems yet.

This paper summarizes current Web security problems, and presents a DNS data real-
time analysis and monitoring system — DNSAM, which acts as a third-party to capture and
analyze the DNS query and response packets which are transmitting on the Internet [3].
DNSAM uniquely introduces the improved multi-pattern MWM (Modified Wu_Manber)
[4,5] domain name matching algorithm and the non-collision hashing multi-bit Trie-tree
[6,7] TP matching algorithm, and quickly matches the critical information in DNS query
and response packets with the DNS security policy. Compared to the previous algorithms,
the proposed algorithms can simultaneously search multiple patterns and support a large
set of patterns. Also, the improved algorithms can complete the fast match and have
great convergence property and convergence efficiency. At the same time, DNSAM also

1425

1426 Y. LIU, T. ZHI AND Z. LIU

can redirect the suspicious domain name, which prevents users from accessing malicious
Web servers and provides users with legitimate Web servers. The final purpose of DNSAM
is to reduce network security threats and facilitate the healthy development of Internet.

The remainder of this paper is organized as follows. Section 2 briefly outlines related
researches about current DNS and Web security. Section 3 presents the overall archi-
tecture of DNSAM and its functional modules. Section 4 gives the key technologies of
this system. Section 5 carries out experiments on this system and gives the performance
analysis. Section 6 concludes this paper.

2. Related Work. DNSSEC (DNS Security Extensions) [8] is a suite of security ex-
tensions to DNS, provided by IETFEF’s DNSSEC Working Group, and it introduces a
mechanism for users to verify the origin authenticity and integrity of DNS data based
on cryptographic signatures. Although DNSSEC can prevent some illegal behaviors (i.e.,
phishing, spamming, Internet gambling, etc.) to a certain extent, it has not been popu-
larized and applied widely owing to some problems about the system efficiency and key
management.

Dnstop [9] and DSC [10] can carry out the statistical analysis by the use of DNS logs,
and identify the abnormal DNS query information in certain time. However, they are
passive analysis tools which lack for the real-time.

Independent third-party detection measures (e.g., email detection [11], web page anom-
aly detection [12], and web page similarity detection [13]) can avoid some illegal behaviors,
such as phishing, spamming, Internet gambling. Whereas these measures need to mine
and analyze the content and structure of Web pages, and the mathematical characteristics
of detection algorithms are very complex and high computational, it is difficult to apply
these measures in Internet.

3. DNSAM Architecture. As a third-party network monitoring system, DNSAM plays
a major role in the access router to monitor the local network, such as campus network,
and corporate network. As shown in Figure 1, by quickly capturing and analyzing the
DNS packets, DNSAM provides a complete real-time detection scheme.

According to the characteristics of TCP/IP architecture and the time order of the packet
processing, DNSAM introduces the hierarchical structure and building block design. It
mainly consists of three modules: data capture and analysis module, DNS security policy
matching module and application management module. Besides, in order to sufficiently
utilize the CPU resources, this system introduces the multi-threading mechanism based
on CPU efficiency balancingas shown in Figure 2.

Data Capture and Analysis Module: This module primarily introduces the NAPI mech-
anism to achieve high-speed packet capture from the Internet, and then filters out all DNS

DNSAM

Access Router

Network DNS Resolver

F1cURE 1. Topology of DNSAM

A DNS DATA REAL-TIME ANALYSIS AND MONITORING SYSTEM 1427

4 . - - Application
Sllspected‘dorr?aln name Suspected information Management
I'CdII’CCtII’lg storage Module
Multi-bit Trie-tree
S T matching
E=
a5 Multi-pattern A
D=2 |- k=== MWM domain
v & name matching
E Multi-pattern
—— — -®» MWM domain DNS
— name matching Security
.) Policy
%ﬂ _______________ -0 Threading 3 Matching
2 Qs Module
Z Qi
= A
DNS query data DNS response data
DNS protocol analysis Data
Capture
? and
NAPTI high-speed packet o . Analysis
capture > DNS packet filter Module

u Network data

FIGURE 2. System architecture of DNSAM

query and response packets. After analyzing these packets, this module educes the crit-
ical information (e.g., IP address, and domain name) which will be matched with DNS
security policy in DNS Security Policy Matching Module.

DNS Security Policy Matching Module: This is the core of DNSAM. In order to suf-
ficiently utilize the CPU resources, this module adopts the multi-threading mechanism
based on CPU efficiency balancing. At the same time, it uniquely introduces the improved
multi-pattern MWM (Modified Wu_Manber) domain name matching algorithm and the
non-collision hashing multi-bit Trie-tree IP matching algorithm, and completes the quick
match between the critical information and DNS security policy. Furthermore, DNS se-
curity policy consists of three blacklists: response domain name blacklist, response IP
blacklist and domain name redirecting blacklist. The first and second blacklists basically
include the illegal or abnormal domain names and IP addresses, and the last blacklist
mainly includes the redirecting domain names.

Application Management Module: This module consists of two parts. One is the sus-
pected information storage, which results from the matching outcome between the DNS
response packets and the response domain name or IP blacklist. What is more, the
suspected information, including time, source and destination IP addresses, suspected

1428 Y. LIU, T. ZHI AND Z. LIU

domain names, IP addresses corresponding to the suspected domain names and so on,
can track the behaviors of users and acquire the computer crime forensics. The other is
the suspected domain name redirecting, which results from the matching outcome between
the DNS query packets and the domain name redirecting blacklist. Besides, in order to
prevent users from accessing malicious Web servers, this operation provides users with
secure [P addresses. Accordingly, it safeguards the legitimate rights of Internet users.

4. Key Technologies.

4.1. Improved multi-pattern MWM domain name matching algorithm. The im-
proved multi-pattern MWM domain name matching algorithm completes the fast domain
name match by comparing the domain names in DNS query packets or DNS response
packets with domain name redirecting blacklist or response domain name blacklist. This
algorithm can simultaneously search multiple patterns and support a large set of patterns.
Furthermore, it introduces the secondary hash to resolve the hash collision problem in
the MWM algorithm [4,5]. Because a great number of strings compose the abnormal
domain name in domain name redirecting blacklist and response domain name blacklist,
the improved multi-pattern MWM domain name matching algorithm can significantly
enhance the efficiency of DNSAM. The improved algorithm is divided into two stages:
the preprocessing stage and the domain name matching stage. And the detailed steps of
this algorithm are as follows.

(1) The preprocessing stage

Step 1: Calculate the shortest domain name string’s length in the blacklist, denoted by
m.
Step 2: Sort the domain name strings in alphabetical order, and store them in an array,
denoted by PatArray[|. And then number these strings consecutively from 0, regarded as
its identifier.

Step 3: Create a hash table HASH, a hash collision statistical table NumArray and a
secondary hash table SecHASH. For each substring which is the composition of the first
B byte (actually B = 2) of each domain name, the preprocessing stage regards its hash
value index as the hash address of this domain name, namely HASH[index| = i, where i
is its identifier. If more than one domain name string holds the same hash value index, it
needs to count these domain name strings, denoted by ngroup. ngroup will be stored in
the relevant location of the first domain name string whose hash value is index, namely
NumArrayli] = ngroup. After that, the preprocessing stage calculates the secondary
hash value of the multiple domain name strings which have the same index, and the
secondary hash objects are the shortest prefix characters which can differentiate these
domain name strings. Finally, the corresponding secondary hash value will be stored in
SecHASH.

Step 4: A shift table SHIFT will be established by the preprocessing stage, and all the
initial values will be set to m — B+ 1. After that, the preprocessing stage will traverse all
of the domain name strings and analyze the first m characters of each string. Firstly, the
preprocessing stage achieves the hash value index of every substring of size B in turn from
left to right. Secondly, it considers the location ¢ of the substring’s last character in the
m characters. At last, the preprocessing stage will compare m — ¢ with SHIFT[indezx],
if m — ¢ is smaller, then SHIFT[index] will be set m — ¢; and if m — ¢ is bigger, then
SHIFT[index] will be unchanged.

(2) The domain name matching stage

Step 1: Calculate the hash value indezr of the last B characters which belong to the
current m characters of the domain name information in the DNS packet.

A DNS DATA REAL-TIME ANALYSIS AND MONITORING SYSTEM 1429

Step 2: Look up SHIFT[index] in the shift table, if SHIFT[index] > 0, then shift
SHIFT[index] characters to the right and go to Step 1; otherwise, go to Step 3.

Step 3: Shift m characters to the left from the current position, and calculate the hash
value of B characters, denoted by indexl. Afterwards, search the table HASH by the
use of index! and get i'. If NumArray[i'] = 1, then compare PatArray[index1] with the
corresponding domain name information in the DNS packet; and if NumArray[i'] > 1,
then implement the secondary hash of the corresponding domain name information in the
DNS packet, and then compare this secondary hash value with the table SecHASH. At
last, find the matching domain name string and go to Step 4. If there are no matching
with the table SecHASH, and then go to Step 4.

Step 4: Shift one character to the right in the domain name information, and go to
Step 1.

4.2. Multi-bit Trie-tree IP matching algorithm. The multi-bit Trie-tree IP match-
ing algorithm generates IP blacklist Trie tree by the 16-bit index values that are the
non-collision hash values of IP addresses in response IP blacklist, and completes the fast
match by comparing the IP addresses in DNS response packets with response IP blacklist.
In this algorithm, each branch of IP black Trie tree will point to the suspected information
storage operation in application manage module. The process of this algorithm is shown
in Figure 3.

The algorithm of IP blacklist Trie tree generates the 16-bit index value by hashing each
32-bit IP address in the response IP blacklist, and uniformly maps these IP addresses to
the 16-bit interval. In general, each IP address owns an index value, and all of these index
values compose an index table. At last, the algorithm constitutes the IP blacklist Trie
tree by the use of the index table, as shown in Figure 4. f(IP,, IP,) is the hash function,

1P address DNS response 1P

: address
J{Hash \
¥

16-bit hash value: Non—collision
f(IP) hash function

Ay
Match K \
D v e IP blacklist
/ X \ Trie tree
S NI

-

AN

Suspected information storage

A N

FIGURE 3. Process of multi-bit Trie-tree IP matching algorithm

Index value f(IPu, IPb)

Index table| TD{| IDg | IDjy [sevee- 1D,

v

IP blacklist Trie tree

FIGURE 4. Structure of IP blacklist Trie tree

1430 Y. LIU, T. ZHI AND Z. LIU

I P, is the first 16 bits of IP address, I P, is the last 16 bits of IP address, and 1D is the
16-bit index value.

In this algorithm, the hash function includes three parts: block, shift and XOR. The
formula is the following:

ID = f(IP,,IP,) = (IP, > 3) & (IP, < 3) (1)

5. Performance Test and Evaluation. This section presents the performance test and
analysis about DNSAM, mainly including three parts: the test of response domain name
blacklist, the test of response IP blacklist, and the test of domain name redirecting. The
experiments use the mirror data of a switch in the campus network as the test data, and
the background traffic is about 800Mbps; besides, the range of DNS data traffic is from
10Mbps to 80Mbps. The configuration of DNSAM is as follows: the operating system is
Fedora 8 whose kernel version is 2.6.23, the CPU frequency is 2.4GHz, and the physical
memory is 2GB.

5.1. Test of response domain name blacklist. In order to achieve the successful per-
centage of response domain name monitoring, we carry out the test of response domain
name blacklist for DNSAM under different DNS data traffic (10-80Mbps). Figure 5 illus-
trates the successful percentage of response domain name monitoring when the number of
entries in response domain name blacklist is 10, 100 and 500 respectively, and the string
length of each entry is from 5 to 10 characters. From the figure we can see that with the
increase of the entries in response domain name blacklist and DNS data traffic, the suc-
cessful percentage is decreasing accordingly, but always maintains relatively high values.
At the same time, we can see that the entry in the response domain name blacklist is an
important affecting factor for response domain name monitoring of DNSAM, and this is
why we introduce the improved multi-pattern MWM domain name matching algorithm
to improve the implementation efficiency.

5.2. Test of response IP blacklist. About the same as the test of response domain
name blacklist, in order to achieve the successful percentage of response IP monitoring, we

carry out the test of response IP blacklist for DNSAM under different DNS data traffic (10-
80Mbps). Figure 6 illustrates the successful percentage of response IP monitoring when

—y

o
W

...

o
(ma]

o
-~
1
'

'

'

'
v
'
=
n
-
[=]
-

I
'

'

'
-

'

'

'

'

'

'

'

'

'

'

'
-

'

'

I
'
.

=]
o
H

1

H

H

|

.

H
=
. T}
o
=
o
T

H

H

H

H

\

H

H

H

'

H

H

1

H

'

'

1

H

Percentum(%)
o
(4]

o
=

...

1 | SRR SRS FUNSSSU: VSRR USSR JOPRUUU RS U

v ' I ' i ' 1 1
(1l e e) T ey R R TR ES ST R T T S EL e s}
. . . . ' . .

' ' ' ' ' ' .
[e S S e L e it SeEEEEEEY Py |
. v v i V P i i

0 10 20 30 40 50 G0 70 80
DNS data rate(Mbps)

FIGURE 5. Successful percentage of response domain name monitoring

A DNS DATA REAL-TIME ANALYSIS AND MONITORING SYSTEM 1431

0.8
07 L [—e— n10
—&8—— n=100
% 0.6} n=500
E T
=1 1] SECTEPRT) ECPROREY EURTPRPES SERERERS
]
E 04 peneecann [[—— - R R — [P e — 4
03
0.2
0.1
0 L R I N i
0 10 20 30 40 50 B0 70 80

DNS data rate(Mbps)

FIGURE 6. Successful percentage of response IP monitoring

TEES RS TR m m T :
09 ‘ I ‘ j
08
0.7 1

06

05

Percentum(%)

0.4
03
0.2

0.1}

0
10 20 30 40 50 B0 70
DNS data rate(Mbps)

FIGURE 7. Successful percentage of domain name redirecting

the number of entries in response domain name blacklist is 10, 100 and 500 respectively.
From the figure we can see with the increase of the entries in response IP blacklist and
DNS data traffic, the successful percentage is decreasing accordingly, but always maintains
relatively high values. For example, when the DNS data traffic is about 70-80Mbps and
the number of entries is 500, the successful percentage is more than 90%. So DNSAM has
a satisfying performance by introducing the multi-bit Trie-tree IP matching algorithm.

5.3. Test of domain name redirecting. In this section, we implement the experiments
of domain name redirecting to show the successful percentage to redirect the domain name
under different DNS data traffic (10-80Mbps). We use a terminal as the host who accesses
the vicious Web servers, and its DNS query packets would be mixed in the background
traffic. When the number of entries in domain name redirecting blacklist is 10, 100 and
500 respectively, we redirect the DNS query of this terminal and observe the successful
percentage. As shown in Figure 7, when the number of entries in domain name redirecting
blacklist is 10, with the increase of DNS data traffic the successful percentage to redirect

1432 Y. LIU, T. ZHI AND Z. LIU

the domain name maintains more than 95%. While the number of entries in domain
name redirecting blacklist is 100, the successful percentage to redirect the domain name
exceeds 85%. Once the number of entries in domain name redirecting blacklist is 500,
the successful percentage to redirect the domain name reaches to 70%. In many practical
applications, the illegal DNS query packets hold a very small part of all the DNS query
packets; therefore, over 70% of successful percentage can supply a normal demand.

6. Conclusion and Future Work. This paper has proposed a DNS data real-time
analysis and monitoring system — DNSAM. DNSAM uniquely introduces the improved
multi-pattern MWM (Modified Wu_Manber) domain name matching algorithm and the
non-collision hashing multi-bit Trie-tree IP matching algorithm, and quickly matches the
critical information in DNS query and response packets with the DNS security policy. As a
third-party network monitoring system, it mainly includes two functions: one is the DNS
suspected information storage, and the other is the suspected domain name redirecting.
Besides, in order to sufficiently utilize the CPU resources, this system introduces the
multi-threading mechanism based on CPU efficiency balancing. At last, we carry out
the experiments to illustrate the performance of this system. In the future work we will
further research DNSAM and improve the matching algorithm, and its ultimate goal is
to meet the needs of heavy DNS data traffic.

Acknowledgments. This work was supported by the Fundamental Research Funds for
Central Universities under grant No. 2015JBMO00S.

REFERENCES

[1] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell and D. Song, Towards a formal foundation of Web
security, The 23rd IEEE Computer Security Foundations Symposium, Edinburgh, UK, pp.290-304,
2010.

[2] A. D. Rubin and D. E. Geer, A survey of Web security, Computer, vol.31, no.9, pp.34-41, 1998.

S. Yu, Y. Tian, S. Guo et al., Can we beat DDoS attacks in clouds?, IEEE Trans. Parallel &

Distributed Systems, vol.25, no.9, pp.2245-2254, 2014.

Snort, http:/ /www.snort.org.

[5] Y.-H. Choi, M.-Y. Jung and S.-W. Seo, L+1-MWDM: A fast pattern matching algorithm for high-speed
packet filtering, The 27th Conference on Computer Communications, Phoenix, USA, pp.2288-2296,
2008.

[6] F. Shang, Y. Pan, X. Pan and B. Bi, Research on a stochastic distribution multibit Trie tree IP
classification algorithm, Journal on Communications, vol.29, no.7, pp.109-117, 2008.

[7] F. Shang, H. Tang and Y. Pan, Study on an absolute aon-collision hash IP classification algorithm,
Journal on Communications, vol.26, no.2, pp.87-99, 2005.

[8] R. Arends, Protocol modifications for the DNS security extensions, IETF RFC 4035, https://data
tracker.ietf.org/doc/rfc4035/, 2005.

[9] J. Kristoff, An Automated Incident: The Measurement Factory: Dnstop Tool [CP/OL], http://dus.
measurement-factory.com/tools/dnstop/.

[10] W. Duane, The Measurement Factory: DSC-DNS Statistics Collector [CP/OL], http://dns.measure-

ment-factory.com/tools/dsc/.
[11] W. Z. Khan, M. K. Khan, F. T. B. Muhaya et al., A comprehensive study of email spam botnet
detection, IEEE Communications Surveys € Tutorials, vol.17, no.4, p.1, 2015.

[12] Y. Pan and X. Ding, Anomaly based Web phishing page detection, Proc. of the 22nd Annual Com-
puter Security Applications Conference, Washington DC, USA, pp.381-393, 2006.

[13] R. Kozik and M. Choras, Adapting an ensemble of one-class classifiers for a web-layer anomaly
detection system, International Conference on P2P, Parallel, Grid, Cloud and Internet Computing,
pp.724-729, 2015.

NS

=

