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Abstract. Reinforcement learning (RL), a dynamic programming algorithm, solves op-
timization problems through autonomous agents. These agents interact with the environ-
ment to learn the optimal actions which lead them to the goal. Q-learning algorithm
is a model-free reinforcement learning algorithm that learns a Q-function from delayed
rewards. Commonly RL algorithms are applied for discrete state and action based envi-
ronments. This discretization commoves the performance of the RL agent in control sys-
tem applications, where the state and action spaces are continuous. This paper addresses
the problem of handling continuous state-action spaces using Q-learning, by utilizing an
artificial neural network (ANN) as an interpolator. A simple feedforward neural network
was trained using the discontinuous policy function, extracted from the final Q-function.
The proposed controller learning scheme was tested on a benchmark, real time ball-beam
setup. Observed results indicate, the controller with approximated policy function pro-
duces less magnitude of oscillations and reduces steady state error.
Keywords: Artificial neural network, Ball on beam, Iterative learning, Q-learning, Re-
inforcement learning, Function approximation

1. Introduction. A reinforcement learning problem [1] is to find an optimal control pol-
icy that maximizes the long-term sum of rewards in a sequential decision-making process.
This already started replacing the conventional decision-making approaches in many fields
like games, robotics and control systems. Researchers [2,3] used RL strategies for esti-
mation and online learning of a game playing environment. RL approach for controlling
the mobility of robots and related vehicles were discussed in [4-6]. In [7], a solution for a
classification problem using RL is presented.

Q-learning [8] is an iterative approach adapted from RL that does not require the model
of the environment. This model free Q-learning can be used for on-line learning. Work
in [9] talks about the implementation of the multi-robot path planning using Boltzmann
based Q-learning. The Boltzmann policy uses statistical probability based on Boltzmann
Probability Distribution and thus tries to avoid the local minima and reaches the global
minimum.

The property of finding the best policy by optimizing a cost function, the accumulated
reward, makes RL closely related to the theory of optimal control system. The RL ap-
proach has been synergistically combined with conventional controllers to obtain optimal
system behavior. Control experts [10-13] developed optimal controllers by utilizing RL
with neural controllers, while [14] discussed the design of an adaptive PID based on RL.
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The state and action spaces, in most control applications, are continuous and multi-
dimensional. In such control environments, the RL tuned controllers could exhibit unsta-
ble response due to its lookup table approach. For handling continuous spaces in control
applications, function approximation techniques were proposed by researchers to gener-
alize the function learned by the controller. Parametric function approximating methods
for approximating the value function was surveyed in [15,16]. RBF network structures
were used in [17] to learn and approximate value and policy functions learned by the RL
controller. For computing the Q-values for a given state-action pair, a neural network
based, Q-net, approach [18] was discussed. Most of the control problems handled with
RL, including function approximation, are model based, offline approaches. This paper
synergically combines the model free, online learning approach with ANN based function
approximation to address a continuous state space control problem.

This paper deals with a policy function approximation technique tested on an indige-
nously built ball and beam setup. The open loop unstable nature of the ball and beam
system makes it a favorite benchmark system to evaluate various control strategies. The
detail of the theoretical and mechanical design of a ball and beam system is elaborated
in [19]. Ball-beam setup has been used to validate the controllers proposed based on
evolutionary algorithms and artificial intelligence [20,21]. A fuzzy logic controller was
tuned with the help of simulated annealing [22] and the ideology was implemented both
in simulation and in real time and has shown that the fuzzy logic controller, tuned by an
evolutionary algorithm, gives better results.

The work was done in two phases, viz. learning phase and implementation phase. In
the learning phase, a Q-function was updated through multiple trials using accumulated
rewards. In the implementation phase, the best policy function was extracted from the
Q-function learned and an artificial neural network was trained to approximate this dis-
continuous best policy function to a continuous function. This ANN was implemented as
a controller, which takes the system state as its input and gives the action to be executed
on the system. In the test environment considered, the system state is the ball’s position
on the beam and the action is the beam’s angle with respect to the base. Observed re-
sults indicate improved controller performance, in terms of reduction in the magnitude of
oscillations and closeness to the desired state after settling.

2. Reinforcement Learning. Reinforcement learning has been derived from the con-
cept of living beings learning in real-life environments. It is used in a wide range of
fields like gaming theory, information theory, operations research, genetic algorithms and
control systems. Reinforcement learning is a process, where an agent in an environment
iteratively learns to take the desired actions, based on the reinforcement inputs, which is
referred to as rewards or punishments. An agent in an environment with finite states and
actions decides to take an action randomly from the all possible actions for its current
state. This step of taking the action for that state results in an immediate reward and
the agent reaches the next state. The probability of the agent reaching a particular state
is influenced by the action it took from the previous state. Thus, the next state depends
on the previous state and the agent’s action.

Markov decision process (MDP) provides a way to model a decision making process for
a problem whose output is partly random and partly controlled by the decision maker.
RL algorithms are known to solve these kinds of discrete time stochastic control problems.

MDP is a 5-tuple (S, A,R(s), Tsa(s
′), γ) where

S is a finite set of states in an environment,
A is a finite set of actions for each s in an environment,
R(s) is the reward received by the agent while living in a state ‘s’,
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Tsa(s
′) is the transition function which defines the probability of the agent to reach the

next state s′ when an action a was taken in current state s,
γ is the discount factor.
The objective of the MDP is to find a policy: π, a function that maps all possible states

to an optimal control action. The idea is to choose a policy π(s) that gives the maximum
payoff for a given problem.

This total payoff is expressed as the expected cumulative discounted reward given by
(1):

V π(s) = E
[
R(s0) + γR(s0) + γ2R(s0) . . . |s = s0, π

]
(1)

The optimal policy π∗ is the policy that maximizes the total payoff:

π∗(s) = max
π

V π(s) (2)

The value function, represented as V π(s), is the expected cumulative discounted reward
starting at some state s and following policy π. The optimal value function is the value
function obtained when the optimal policy is executed. The optimal value function, [23],
satisfies Bellman equations:

V ∗(s) = R(s) + max
a∈A

γ
∑
s′∈S

Tsa(s
′)V ∗(s′) (3)

The value iteration algorithm computes the optimal value function by iteratively using
(3) starting with an estimate of all zeros. Once the optimal value function is known, the
optimal policy can be calculated from:

π∗(s) = arg max
a∈A

∑
s′∈S

Tsa(s
′)V ∗(s′) (4)

Once the optimal policy π∗ is obtained, then the agent can simply take the best action
for each state based on the policy learned.

3. Q-Learning. Q-learning is the online learning version of reinforcement learning al-
gorithm [3]. The necessity of domain knowledge, to ascertain the state transitions, is
important for the learning agent in pure RL approaches. This setback is avoided in Q-
learning, where the agent needs only information about the existence of a state and all
possible action available. In Q-learning, the agent updates an evaluation function, Q(s, a),
which is the maximum discounted cumulative reward [1]. This Q-value computation is
given in (5).

Q(s, a) := R(s) + γ max
a′

Q(s′, a′) (5)

From (5), it is apparent that Q-value is the sum of immediate reward received upon
execution of action ‘a’ from state ‘s’ and the future reward discounted by γ. After learning
the Q-function, the best policy function can be obtained just by choosing the action with
the highest Q value in each state. The extraction of this best policy function, which helps
the agent to attain the desired state optimally, is given in (6). This Q-learning process is
given in Table 1.

π∗(s) := arg max
a

Q(s, a) (6)
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Table 1. Q-learning algorithm

1) Define s (desired), R(s) and γ
2) Discretize S, A into n, m levels
3) For each sn, am initialize Q(sn, am) to zero
4) Observe current state ‘s’
5) Do

i. Receive immediate reward R(s)
ii. Select an action ‘a’ such that Q(s, a) = max

b∈A
Q(s, b)

iii. Execute ‘a’ on the system and observe the new state ‘s′’
iv. Update Q(s, a) and s

Q(s, a) := R(s) + γ max
a′

Q(s′, a′)

s← s′

Until time exhaust
6) Repeat for each state

π∗(s) := arg max
a

Q(s, a)

Figure 1. The custom built ball and beam system

4. System Description. The ball and beam system is a benchmark control problem,
where a ball with full mobility is placed on a horizontal beam. The objective of the
setup is to control the position of the ball on the beam by adjusting the beam’s angle
with respect to the base using an actuator. The custom built ball-beam setup, Figure 1,
consists of a beam fixed a shaft which allows the beam to move freely along its length.
The moment of the beam is actuated by a lever connected to a servomotor. A linear
potentiometer rail, where one bar is a conductor and the other coiled with Nichrome, a
non-magnetic alloy of nickel, chromium, and iron, usually used as a resistance wire, is
used as the sensor to measure the position of the metal ball on the beam. A high torque
servo motor is attached to the base and linked to the beam using an L-shaped link as
shown in Figure 1.

In this work, MATLAB R⃝ has been used to handle necessary computations during
learning and also to act as a controller for final implementations. For learning the control
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actions and implementing the closed-loop control, a data acquisition (DAQ) device is
required to get the real-time data from the sensor. The hardware support package offered
by MATLAB has been utilized to interface an Arduino Uno board, which was configured
to act as a DAQ device [24]. This offers a low-cost real-time data acquisition solution.
The block diagram that illustrates the overall system setup is shown in Figure 2. The
ball and beam system is interfaced to a computer via USB serial communication. The
ball position sensor gives input to the Arduino and the Servomotor angle output is taken
from Arduino and fed to the servomotor.

Figure 2. Block diagram

5. Learning and Implementation. The objective here is to control the position of the
ball on the beam, where the state variable is ball’s position (x) and the action from the
controller is the beam angle (θ). The state space, which is decided by the 40cm beam, was
discretized into 5 equal levels and each level covers a length of 8cm as shown in Figure 3.

Figure 3. Discretization of the beam length

The goal state was assumed to be 20cm and hence the goal state is the third state. The
beam can move about ±20 degrees vertically with respect to the base and it is discretized
to 10 levels. Thus, for each possible state level, 10 different actions are available. The
immediate reward is the negative of the weighted difference between the desired state and
current state (7). The discount factor is kept as 0.99 so that the future reward impacts
the Q value.

R(s) = −100 ∥xdesired − xcurrent∥ (7)

The learning phase is divided into a number of trials. Each trial starts with locating
the ball randomly on the beam and stops either after a fixed time of learning or if the
ball settles in the goal state for long. The Q matrix (8) is carried over and updated in
each trial. After enough trials, the Q matrix is obtained and the learning is stopped. The
implementation is started with the updated Q matrix obtained at the end of the last trial.
An optimal policy function was extracted from the Q-function (9).

Q(x, θ) := R(x) + γ max
θ′

Q(x′, θ′) (8)
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π∗(x) := arg max
θ

Q(x, θ) (9)

To handle the continuous state-action space problem, a simple feed forward neural
network was used as a function approximation tool. This ANN was trained to learn
the policy function to give the approximated policy function, π̃∗(x), which can handle
continuous state and action space variables. This ANN, which approximates optimal
control policy, takes the current state of the system as the input and gives the necessary
control action to be taken on the system.

Figure 4. ANN for policy function approximation

The learning and implementation phase algorithms are represented in pseudocode for-
mat in Table 2.

6. Results. The indigenous ball-beam setup was interfaced with a PC with MATLAB
through Arduino to validate the proposed controller. The objective is to bring and hold

Table 2. Q-learning with policy approximation algorithm

1) Define s (desired), R(s) and γ
2) Discretize S, A into n, m levels
3) For each sn, am initialize Q(sn, am) to zero
4) Do

i. Leave the ball randomly on the beam
ii. Observe current state ‘s’
iii. Do

a. Receive immediate reward R(s)

Q(s, a) = max
b∈A

Q(s, b)

b. Select an action ‘a’ such that
c. Execute ‘a’ on the system and observe the new state ‘s′’
d. Update Q(s, a) and s

Q(s, a) := R(s) + γ max
a′

Q(s′, a′)

s← s′

Until time exhaust or s settles at s(desired)
Until Trials exhaust

5) Repeat for each state
π∗(s) := arg max

a
Q(s, a)

6) Use s and π∗(s) to train the ANN. Let π̃∗(s) be the approximation to π∗(s)
computed by the ANN.
7) Do the following for continuous control.

i) Acquire securrent from sensor
ii) Compute ã1(scurrent) = π̃∗(scurrent)
iii) Set the controller output to ã1(scurrent)
iv) Go to i)
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the ball at the center of the beam. So the desired state is 20cm and the reward function
for the learning agent is chosen as in (7).

The environment considered was discretized into 5 states and 10 actions. So the Q-
learning starts with the initialization of a Q matrix of size 5 × 10. The learning was
split into 20 trials each last for 1000 iterations. In real time, one iteration takes 0.3192
seconds. Each trial starts with a random state condition and the updated Q matrix has
been transferred to the next trial. Trials were also terminated when the ball settles in
the goal state for long, which indicates the conclusions of learning or Q matrix update for
that trial. The ball’s movements, along the beam, during selective trials, are displayed in
Figure 5.

(a) (b)

(c)

Figure 5. Ball movement during learning (a) Trial-1, (b) Trial-10 and (c)
Trial-15

During the learning process, it was observed that 14 trails terminated due to the ball
settling in goal state and only 6 trials endured for the maximum iteration period. At the
end of 20 trials, the updated Q matrix was obtained to find the best policy learned by
the controller. The Q function learned is shown in Figure 6 and the extracted best policy
is shown in Figure 7.

It is evident that the Q-values are high around the desired state and also the policy
function is discontinuous. To make the policy function continuous, a single layer ANN was
used as a function approximation tool. The noise immune nature of ANN approximates
the discontinuous best policy function into a smoother function. The approximated policy
function, which is now continuous, is shown in Figure 8.

Comparison of system responses with and without function approximation, Figure 9,
indicates the policy function approximated controller makes the system settle closer to the
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Figure 6. Q function learned

Figure 7. Optimal policy function learned

Figure 8. Approximated policy function

desired state and also produce the less magnitude of oscillations. During multiple tests, it
was observed that the function approximated controller takes little longer to settle than
the normal Q-learning controller. This could be due to the availability of wider settling
zone for the normal Q-learning controller. The controller performances are presented in
Table 3.
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(a) (b)

Figure 9. System response obtained a) Q-learning controller, b) Q-
learning controller with policy function approximation

Table 3. Controller performance

Controller Iteration Settling Time Settled Position
Un-approximated 32 10.21 Sec 18 cm

Approximated 35 11.17 Sec 21 cm

7. Conclusions. This paper discusses the design of a smart controller for a real-time
ball and beam system using Q-learning, a model-free approach of reinforcement learn-
ing algorithm. Through a number of trials, a Q-function was learned. From this, the
best policy was extracted. This discontinuous policy function was approximated using
the artificial neural network so that the controller can handle the continuous state and
action environment. On multiple testing, it was observed that the controller with approx-
imated policy function settles closer to the desired state value. Though the magnitude
of oscillation was reduced, this controller took little longer to settle compared to the un-
approximated controller. This might be due to the availability of more state and action
values, which were not experienced by the control agent during the learning process. Also,
the discontinuous controller was allowed to settle in a wider goal state space, which could
be reached faster. This could be improved by selecting a finer discretization in state
and action spaces. However, finer discretization will increase the state and action space
dimension, which result in longer training period with more number of trials. Providing
an initial knowledge about the environment to the learning agent through a model-based
approach can be tried to reduce large oscillations present during learning.
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Appendix A. Nomenclature.
s – System state
a – Action
Tsa(s

′) – State transition probability
R – Reward function
π – Policy
V π(s) – Cumulative discounted reward
π∗ – Optimal policy
π̃∗(s) – Approximated Optimal policy
V ∗(s) – Optimal value
γ – Discount factor
x – Ball’s position on the beam
θ – Beam angle


